Configuration Bits cannot be changed during the running of the program, but can only be set when the device is programmed.
#pragma DATA 0x300001, _OSC_HS_1H // HS osc

#pragma DATA 0x300003, _WDT_OFF_2H // wdt off

#pragma DATA 0x300006, _LVP_OFF_4L // lvp off

#pragma DATA _CONFIG3H, _MCLRE_ON_3H //enable mclr

I recommend that you:

· Turn off the watch dog timer, until you are sure that you want to use it.

· Turn off low voltage programming

· The boards that you will be using have 10MHz crystals on them. You should set the oscillator to HS or HSPLL, depending on tye desired speed.

In addition, there is a pragma for the clock frequency:

#pragma CLOCK_FREQ 10000000

This directive is necessary if you use any of the built in delay routines, as the program needs to know how fast the clock is.

There are three registers associated with each I/O port. They are called:

·
port

·
lat

·
tris

Tris is the register associated with the direction (input or output of the pin)

Port is where you read from to see what the inputs are.

Lat is where you write to (does the same thing as writing to port)

The 4620 has:

· 4 8-bit ports named a, b, c, and d.

· One 3-bit port named e.

Thus there is, associated with port a, three 8-bit registers:

· porta

· trisa

· lata

The same is true, mutatis mutandis, for the other ports.

trisa = 0; // set all bits of port a output

lata = data; // send data to the led’s
trisb |= 00010000b; // set bit 4 input

data = portb; // read in the port

Note:

· reading portb reads the input lines; reading latb reads the output latch.

· RS-232 is the simplest form of serial I/O, but there are many other serial I/O standards that evolved from the desire to interface things to microcontrollers without using up lots of I/O port pins.

· Other common serial interfaces are SPI (Serial Peripheral Interface), I2C (Inter-Integrated Circuit), and various other forms of one wire and three wire interfaces.

The example shown is for sending data with 8 bits and no parity (referred to as 8-none). Another possibility (since standard ASCII characters are only 7 bits long) is to send 7 bits of data, and one parity.

The parity can be set so that there are an even (called even parity) or odd (called odd parity) number of 1’s in the transmission. This allows for simple error checking.

This form of serial communications is called asynchronous, because there is no common clock between the sender and the receiver.

The sender and receiver must be set to the same “baud” rate. In its simplest form, the baud rate is the number of bits sent per second.

9600 baud is 9600 bits per second.

At 9600 baud, each bit period is about 104 (sec. The sender sends bits for that length of time.

The receiver watches for the start bit. When that transition occurs, it checks for bits based on its local clock, checking the bit in the center of each period.

If the clocks are close enough, the checks won’t drift out of the correct bit period by the end of the reception.

USART stands for Universal Synchronous Asynchronous Receiver transmitter. It is a hardware device built into computers and microcontrollers that accepts a byte from the computer and shifts the byte out serially, and accepts a serial set of bit and gives it to the computer in parallel.

There is a USART inside the 18F4620, and it is a common feature of microcontrollers. (Note that if your application calls for a serial connection, you should choose a microcontroller with a built in USART.)

The USART greatly simplifies the task of serial communications. It is set up for the desired baud rate and number of bits, and then the microcontroller need only give it the byte to send, and the USART does the rest.

On the receive side, the USART receives the serial bit stream and gives the corresponding byte to the microcontroller.

In the 18F4620 USART, the transmitter and receiver are functionally separate, but share the same baud rate generator
The baud rate is the speed with which the bits are transmitted. Both ends of the serial connection need to be set to the same baud rate.

There are a number of standard baud rates.

The baud rate in the 18F4620 is controlled by a number of registers:

[image: image1.png]TABLE 18-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name | Bit7 | Bite | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bito | Resetvalues
on page
TXSTA CSRC | TX3 | TXEN | SYNC | SENDB | BRGH | TRMT | TX9D 51
RCSTA SPEN | RX3 | SREN | CREN | ADDEN | FERR | OERR | RX9D 51
BAUDCON | ABDOVF | RCIDL | — | SCKP | BRG16 | — | WUE |ABDEN 51
SPBRGH |EUSART Baud Rate Generator Register High Byte 51
SPBRG | EUSART Baud Rate Generator Register Low Byte 51

Legend: — = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.

There is often more than one choice for a given rate, so you should use the one with the smallest error.

[image: image2.wmf]
There are a number of interrupt flags, interrupt enables, and other bits that are associated with the transmitter:

· TXEN – Transmitter Enable

· SPEN Serial Port Enable

· TXIF and TXIE – Transmit interrupt flag and enable

· TRMT – Transmitter empty (MT) flag

· RC6 – External pin on the 18F4620

The registers involved with serial transmission are (view pg. 69-71):

· SPBRGH and SPBRGL – Get the correct value for the desired baud rate based on the system clock speed and BRGH.

· TXREG – Location to place a byte to be transmitted out the serial port.

· TXSTA – Transmitter status register.

· RCSAT – Receiver status register. SPEN (serial port enable bit is found here.)

· PIE1 and PIR1 – Peripheral Interrupt Enable register and Peripheral Interrupt Register (home to TXIE and TXIF respectively).

· INTCON – Global interrupt enable and peripheral interrupt enable.

We will assume that we are talking to a terminal application.

We need three low level routines:

· Initialize the USART

· putc() -- send a character out on the usart

· getc() -- gets a character from the usart

We have already discussed the registers that need to be set up in the init routine.

//Helper macros

#define clear_bit(reg, bitNumb) ((reg) &= ~(1 << (bitNumb)))

#define set_bit(reg, bitNumb) ((reg) |= (1 << (bitNumb)))

#define test_bit(reg, bitNumb) ((reg) & (1 << (bitNumb)))
(pg. 94 interrupts)

