HYBRID’S ANGELS

Final Report

Hybrid Electric Motorcycle

Stephen Govea;Eric Schafer;Jean Whitney;Ravi Fernando;Jeffrey F. Wolanin
4/30/2009

Table of Contents

1 INEPOTUCTION ettt ettt e s e st e e s bt e sab e e sabe e s bee e abeesabeesabeeesbeesabaesabeeesate sbeesnseenn 4
1.1 Problem StatEmMENTci ittt st e e aae e s be e ebee e 4
1.2 e oTo1Y=To ISYe] 114 T o WA PRSI 4
13 N R =] 0 D= of] o1 o o PNt 4
14 SN R =] 0 T =T UL =T 0 0 1= o 3PS 5

1.4.1 (O3 Y 1 I VA (<] o o U UE USRSt 5
1.4.2 SUDSYSTEM REQUIFEIMENTS ...eeiiiiiiieiiiiiieccitie e et eeesite e e e stre e e e aa e e e s abreeesaaeeeessntaeeesssaeessareeen 5
A R C 1= g 1= - | o | P PP PP PPTRP 5
1.4.2.2 Charging CirCUITIY ...uueiiiciieeicciiee ettt ecte e eere e e et e e et e e e st e e e esatbeeesasaeeesaseeeennsseeesnnsaneann 6
B A B o Yo o o IV <] o SR 6
O Y oY) o] T =] =] o SRR 7
1.4.2.4.1 Data Collection SUDSYSTEM ...cciiii i e e e e s e ae e e e e e e e eanes 7
1.4.2.4.2 ANalysis SUDSYSTEMuiiiiiiiiei ettt e et e e e sbee e e e ba e e e e are e e e narees 7

143 Future Enhancement REQUITEMENTScciiiiiiei e e cciee ettt et e e etee e e aree e e eaveee e 7
1.5 HIGH LEVEL SOLUTION DESCRIPTIONuutiiiiiiiiiiiiieiitienree ettt 8
1.5.1 CONTROL CIRCUIT SYSTEM ...ttt sttt sttt e s e sneeesmneenns 8
1.5.2 CHARGING CIRCUIT SYSTEM ...ttt sttt ettt et iee e s e sbe e sese e smneesreeesneeesaneenas 8
1.6 REVIEW OF FINAL RESULTS ...ttt ettt ettt et sit e st s e e smte e s e saneessneeesmneesaneeennneanns 9

2 DETAILED PROJECT DESCRIPTIONciiiiiiiiiteiieeeiteeniteesiteesteeesiteesateesateesbeeesuseesabeesaseesnsneesaseesseesnseens 10
2.1 SYSTEM THEORY OF OPERATION ..ottt s 10
2.2 SYSTEM BLOCK DIAGRAM ...ttt ettt sttt st st sete e s e sne e smenesaneesanis 11
23 DETAILED OPERATION OF CHARGING CIRCUITRYetiiiiiiiiieniie ettt 12

2.3.1 TRIAC CIRCUIT SYSTEM ...ttt ettt ettt ettt ettt e st e e ene e s e sabe e sbeeesmeeesaneeenns 12
2.3.1.1 OVErALL SCHEMATIC ...ttt ettt ettt sttt et e sab e st e sbe e esateesabeesabeesabaeenateesabeesanes 13
2.3.1.2 ZERO-CROSS DETECTION CIRCUIT ..ceiittiiiiieiitenitesieeeite ettt esreesieessiteesereesbeesveeesnee e 14
2.3.1.3 MICROPROCESSORcccuttiiiiiiriiiitesite ettt ettt sme e saneesanis 14

2.3.1.3.1 SOFTWARE FLOW CHART ...eitiiieitieeee ettt ettt s smee e s e e 16
2.3.1.4 TRIAC CIRCUIT ittt ettt sttt s e e sme e san e e smr e saneeesmneesanes 17

2.3.2 BUCK CONVERTER SYSTEMeiiiiiiiie ettt sttt ettt sttt s smre e s e 17
2.3.2.1 OVERALL SCHEMATICciiiitiitteeiee et stee st e sttt et e st e sabeesbtessateesabeesaseesnbaeesaseesaseesanes 18
2.3.2.2 MICROPROCESSORccccuttiitiiitiiiite sttt sttt ettt sna e saneesanis 19

2.3.2.2.1 SOFTWARE FLOW CHARTooitiiiiiiiitii it 19

2.3.2.3 POWER IMOSFET ...ttt ettt ettt ettt ettt b e b e be e sbe e sbt e shtesaeesate st e sat e et e et e enteenneens 20
2.3.2.4 SMOOTHING CIRCUITRY ..iiiitteeee ettt te e e e ettt e e e e e sttt e e e s s s eanneeeeeeesesamnseeeeeeseennnne 21
2.3.2.5 LAST RESORT MOSFET and final CirCUItry.......ccveiiiiiiiiiiiieeicieee i 21

2.4 DETAILED OPERATION OF CONTROL SYSTEMuuutiiiiiiiiiiiiiiiiiiiieireierereiereeeeeeeeeeeereeeseseseseeseeeeeeeees 23
2.4.1 POWET SUPPIY woteeiiiiiie ettt et e e et e e s et ae e e st te e e e sbteeeeentaeeesntaeeesseaeesansaeeennne 23
2.4.2 Processor and Programiming........ccueeeiiciieeeiiieeeeeiieeeeeiteeesettreeeestreeessteeessenreeeessssaeesssneasnnns 24
243 SOFtWAre FIOW CRart ...coeeiiiiiiie ettt bbb 26
244 LCD USEI INTEITACE ..eiieiieiiieeiie ettt st et st sab e s e s be e s ne e e saneesanis 26
2.5 DETAILED OPERATION OF GENERATOR SYSTEMuutiiiiiiiiiiiiiiiiiiitieeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 27
2.6 SOLUTION FOR POWERING CIRCUIT BOARDScceiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 28
2.7 INTERFACES AND SENSORS ... cotiititieiteiiesite sttt sttt st sttt ettt e sbe e sbe e sieesseesasesmeeemeeenseenneens 28
2.7.1 INTERFACES. ...ttt ettt ettt sb e st st st sat e st s bt e bt e e et e e bt et e e nbeenbeenneenne 28
2.7.2 SENSORS ...ttt ettt ettt et h e s bt e s bt s bt e et s it e e bt s bt e bt et e e bt e be e ebe e sheesheesateeat e et e enteenrean 29
2.7.2.1 VOLTAGE SENSORS: LIM350P ... eennees 29
2.7.2.2 CURRENT SENSOR: ACST756 it eeseseeeeeenene 30
2.7.2.3 TEMPERATURE SENSORS: LIM35DT ... 31
2.7.2.4 Analog to Digital Conversion of Signals: MCP3208........cccccceevuieeeiiiieeeecieeeccireeescieee e 32
SYSTEM INTEGRATION TESTING ...eeiiiiiiiiiiiiiieee ettt ettt e e e e e ettt e e e s s e smnreeeeeeeeesnnreneeeeseeannnnee 32
3.1 INTERGRATION TESTINGceiiiiieeeeeiet et e ettt e e ettt e e e e e s ettt e e e e s s annbe et e e e s e sannnnneeeeesssannnnne 32
3.1.1 CHARGING SYSTEM TESTING ..o eneneee 32
3.1.1.1 TRIAC CIRCUIT TESTING. .. ieieeeeeeeeeeee et ab e sessenenenenene 33
3.1.1.2 BUCK CONVERTER TESTING ... sesesasesnanens 33
3.1.1.3 OVERALL CHARGING SYSTEM TESTINGceeiiieiieieeiieieenieentee sttt sttt 33
3.1.2 CONTROL SYSTEM TESTING ...ttt ettt e e ettt e e e e e e e e e e e e snnreeeeeeeennnne 34
3.2 MEETING DESIGN REQUIREMENTS ..ottt ettt e e e s e s e e e e e e e 34
USERS IMANUAL ...ttt e s e e e s e s e s e s e s e s e e s e s e s nn eee 35
4.1 How t0 Charge the MOtOIrCYCIEuuiiiiciiiec e e e et e e s e e e s earaeeeeans 35
4.2 How to Operate the MOtOICYCIEcii i e e e e etaee e 35
4.2.1 How to Prepare the Motorcycle for US.....uiuiiiiiiie ittt e 35
4.2.1.1 HYBRID MODE ...ttt ettt ettt e e e e st e e e e e e e nbe e e e e e e e sannneeeeeeeanan 35
4.2.2 How t0 Ride the IMOLOICYCIE ...ueeeeiieeee e e e e e e 36

5
6

4.2.3 How to Operate the User INtErfacec..ovvveciieeiiciiie e 36

4.2.3.1 How to Read Battery VOItage.....cocueeii ittt e e s e nbaree e e 38
4.2.3.2 How to Read Battery CUITENt........uceeiii ittt eecvere e e e e sarre e e e s s e e snnreneeeeee s 38
4.2.3.3 How to Read Battery TEMPEratUre......cocccuiiieeeeeiecciieeee e et e e e eserrre e e e e e e eennraaeee e 39
4.2.3.4 SYSTEM STatUS ..ottt rarerereaaeeee 40
CONCLUSIONS ...ttt ettt ettt ettt st e ettt e st e st e esab e e sabeesabaeeabeesabeesabeesabaeanabeesabeesbaeens senses 41
APPENDICIES ...ttt st et a e et sne e e ra e eesans 41
6.1 HARDWARE SCHEMATICS ..ottt sttt ettt st ettt smee e s st e s neeesmeeesaneesnneean 41
6.1.1 CHARGING CIRCUITRY ...tteiiteetteeeitee st estee ettt et e sttt sibeesabeessbeeesaneesaseesneeesmseesareesneens 42
6.1.2 CONTROL CIRCUITRY .t eittesitee ettt ettt e sieeetee et e st e sbee e it e e siteesareasbesesaseesaneesnseeesneeesaneesneens 43
6.2 SOFTWARE LISTINGS ..ottt ettt ettt ettt ettt e s sat e e sabeesateesabeeesateesabeesabeesabaeesaseesanes 44
6.2.1 TRIAC CIRCUIT MICROCONTROLLER ..ottt 44
6.2.2 BUCK CONVERTER MICROCONTROLLER ...ccvtiiiiiiiiiiiiiienticrrcc et 47
6.2.3 CONTROL CIRCUIT MICROCONTROLLERceeiitieiieeeieeeiee ettt 50
6.2.4 EESDIib.C (FUNCTION LISTING) .uuttiieeieeieeie ettt ettt ettt sttt st ene e 52
6.3 REVELANT COMPONENT DATA SHEETS ...ciiiiiiiiee ettt sttt ettt e snee e s saneas 83
6.4 P A RTS LIST ettt ettt ettt ettt ettt ettt e st e ettt e s ab e e s bt e e bb e e bbeesabeesabteebbeeanbeesabeeenteennbeenare naee 84
6.4.1 CONTROL CIRCUIT 1ttt sttt sttt sar e s sma e e saneesanee s 84
6.4.2 CHARGING CIRCUIT ..ttt sttt sttt s smn e s s esmenesaneesanee s 87

1 INTRODUCTION

From August 2007 to May 2008, a group of senior electrical engineering majors at the University of
Notre Dame began construction on a series hybrid electric motorcycle. Over the course of the year,
they successfully converted a 1983 Yamaha Seca into a battery powered vehicle; however, they were
unable to meet the ambitious goal of mechanical power system hybridization. In this improved design,
Hybrid’s Angels have realized this goal in addition to fixing and enhancing current issues with the
motorcycle's previous design.

1.1 PROBLEM STATEMENT

The phrase "going green" has gained widespread popularity in recent years. As uncertainty mounts
about the effects of carbon emissions on the earth's future, increased pressure is falling upon individuals
around the world to reduce their carbon footprints. This can be accomplished in a wide variety of ways
from an increased devotion to recycling to simply turning off a light when not in use. Energy
conservation and decreased emissions are more important now than ever because evidence of the
negative effect of the world’s hitherto wasteful nature is finally beginning to manifest itself. One of the
major sources of this waste is a product that has become fundamental to Americans’ daily activities —
the automobile. Automobiles have been a staple of transportation for decades, and the carbon dioxide
and carbon monoxide that they billow through their exhausts is a colossal part of the problem. A great
deal of stress has been placed upon auto manufacturers to trim their vehicles' emissions, and thus far
the most popular response has been the introduction of the hybrid vehicle. Although certainly not the
solution to all of the energy ills, hybrid technology will act as a critical transition technology until
cleaner, more efficient sources are implemented.

1.2 PROPOSED SOLUTION

While hybrid vehicles are not completely independent of fossil fuels, they are much more “green” than
gasoline powered engines. The electricity used to power the batteries in a hybrid is likely to come from a
power plant that burns fossil fuels, but even that situation is much more efficient and environmentally
friendly than the combustion engine of a car. In addition, a hybrid vehicle will not produce any emissions
while running off the batteries. So why not just build an electric vehicle? Range and charging time of
current electric automobile technology cannot compete with traditional gasoline powered engines used
in most cars. A hybrid is therefore the best solution because it is a compromise between current
gasoline powered automobiles and the emission-free vehicles of the future.

Last year, a group of senior electrical engineering majors, the Lightning Riders, built a prototype electric
motorcycle. For this group’s project, they have modified and improved the electric motorcycle built by
the Lightning Riders by turning it into a hybrid motorcycle.

1.3 SYSTEM DESCRIPTION

Hybrid’s Angels’ hybrid motorcycle utilizes a series hybrid configuration. This configuration begins with
power from a standard 120VAC wall outlet being sent into a specially designed circuit. This circuit will
be created to convert the AC waveform into a DC signal of approximately 90V. This 90V of direct current

will be used to charge the 72V stack of batteries. When the batteries are fully charged, the group will
take the wall input plug and insert it into the generator.

The generator produces the same waveform as the wall output but it is mobile because it runs off of
gasoline power. Therefore, we can use the same charging circuit to charge the batteries while the
motorcycle is running. Ideally the generator will be electric start, meaning that we would be able to
start it via a signal from the microcontroller. In order for this functionality however, the generator would
also have to have an electric, or choke-less, start. Due to financial constraints, this proved not to be
possible. Therefore the generator will have to be manually started during operation.

In operational mode, the batteries will be used to power two things. First and foremost, the 72V battery
stack will drive the analog motor controller. This motor controller drives the electric motor, which in
turn rotates the wheel via a gear shaft. It is operated by the bike’s throttle. This entire system was put
in place by the Lightning Riders and will not be our biggest concern. Since the original design suffered a
slight flaw when the electronic circuitry was being powered by two batteries in the stack, the group will
need to explore a more efficient way to power these onboard electronics, which include the
microcontroller, LED display, sensors, and other necessary onboard electronic components.

Of more interest to the group will be the electronic system. There will be a system of sensors placed all
over the bike — temperature on the batteries, current from the batteries, and voltage remaining on the
batteries. All of these data will be fed into the microcontroller. Based on these data, the control
module will make real-time decisions about ways to increase the bike’s energy efficiency. A monitoring
module will also receive the data from the sensors, but its primary focus is to store that data for future
analysis.

1.4 SYSTEM REQUIREMENTS

1.4.1 OVERALL SYSTEM

Hybrid’s Angels’ overarching goal was to make a working hybrid motorcycle. Still, the group intended to
fix and improve some of the features, which were implemented to varying degrees of success in the
Lightning Riders’ model. In May, Hybrid’s Angels expect to demonstrate a fully functional hybrid
motorcycle with top speeds of at least 50 miles per hour and a range of at least 20 miles before refueling
and/or recharging.

1.4.2 SUBSYSTEM REQUIREMENTS

1.4.2.1 GENERATOR

The generator has to be gas-powered and mobile. Hybrid’s Angels decided to use a single generator
mounted on the back rather than the dual-generator saddle-bag configuration, so size and balance are
of the utmost importance. In addition, the group’s initial goal was to use an electric start generator; this
was so that the microcontroller can send a signal to start the gas engine inside. After further
investigation, the group decided that implementing an electric choke in order to start the engine would

be too costly, both financially and time-wise. Therefore although the generator is electric start, it must
be turned on manually. Finally, it has to output 120VAC, and the group will have to be able to draw a
continuous 20 amps in order to charge the batteries to the ideal specifications.

1.4.2.2 CHARGING CIRCUITRY

' Ultimately, the overlying goal in the creation of the charging circuitry was to develop a system that
charges the 72V battery stack as quickly as possible while maintaining an appropriate level of safety.
Appropriate measures were taken not only to protect the user but also the integrity of the batteries. As
a goal of this project is to show that a series hybrid system is a ready, viable solution, the charging
circuitry must interface with a common electrical socket (120 VAC, 60 Hz). While initially it was thought
to double the circuitry in order to maximize power and efficiency, testing proved this unnecessary
resulting in a single charging system.

From the outlet, a mechanism, such as a fuse and or transformer, must be present so as to prevent the
high voltage AC signal from destroying the circuitry. This circuitry then required conversion circuitry to
transform the AC signal to a stable DC one which can ultimately be used to charge the 72V battery stack.
It would have been nice if the group could only output one DC voltage as this would have greatly
simplified the process; however, the group chose to design a circuit that can output variable levels of
voltage and current to the battery stack. The group’s desire to create a quick and efficient charge
necessitated this more complicated requirement. As a result, it is imperative to have a way to receive
feedback from the battery stack and make a decision based on the temperature, voltage, and or current
in the battery. Thus, the charging circuitry required a way to interface with the microcontroller, which
reads the appropriate sensors at a given interval, in order to make the correct decisions in a timely
manner.

Charging the 72V battery stack is not the only on board device that the group must power. The design
must also power onboard electronic circuitry on the motorcycle—LED display, microcontroller, etc. As
last year’s group experienced some issues with the battery system being heavily taxed by the onboard
electronics, a separate battery was added instead of drawing the power from the 72V stack, which
serves as the primary source of energy to the motorcycle’s motor.

1.4.2.3 CONTROL SYSTEM

For this project, the control system is the brains behind the operation. It is extremely important to write
robust, functional code as the microcontrollers has to shoulder many important tasks without user
intervention. First, it should be able to process the incoming data from various onboard sensors, which
include temperature sensors, voltage sensors, and current sensors. Based on the information that is
read into the system, this design must give feedback to the appropriately adjust the DC voltage and or
current into the 72V battery stack so that the batteries will charge efficiently. Besides making decisions,
it must inform the user of the state of the vehicle via the LED display. Of course, this design must not
only be able to make real time decisions and display them but it also must be able to output formatted
data and save it to an external storage for later analysis and use.

1.4.2.4 MONITORING SYSTEM

1.4.2.4.1 DATA COLLECTION SUBSYSTEM

The finished product has a number of sensors at key locations to measure critical data points such as
voltages and currents. Some of these are vital for successful real-time operation while others are of
more interest in on a historical basis. The data collection subsystem contains appropriate hardware and
software to periodically sample the data from the onboard sensors and record it in an onboard storage
device for future retrieval. Both the hardware and software have specific requirements in this
subsystem:

Hardware — it must be capable of capturing both analog and digital signals; many of the sensors
generate an analog signal between 0 and 5 volts. In addition, it must sample all data inputs quickly to
maintain a high sampling rate while not tying up the system resources for extended periods of time. In
the same way, the storage scheme must be simple and swift to execute, once again to avoid tying up the
system processor during real-time operation. Finally, the subsystem storage capacity needs to be of
sufficient size to hold data from a reasonable length ride.

Software — while important, data collection must be a secondary concern to safe and efficient real-time
operation. The data collection routines should seamlessly integrate with the critical software functions
and should not significantly affect the overall system speed. Wherever possible the system should use
standard communication protocols that are easy to understand and debug, such as SPI. Finally, the
storage scheme should use the available storage space efficiently while avoiding an extremely
complicated methodology.

1.4.2.4.2 ANALYSIS SUBSYSTEM

Data is not much use until it is transformed into useful information, which is accomplished in the
analysis subsystem. Data is transferred from the onboard storage system to a PC where statistical and
graphical analysis can take place. There are both hardware and software components to this subsystem:

Hardware — primary component is the physical data link between the microcontroller and the PC.
Ideally this would be a wireless data link but a hardware backup is in place to ensure a reliable
connection. The data link is based on the standard RS-232 protocol

Software — there are two software components to this subsystem. First, on the microcontroller end the
software must interface with the storage system and retrieve all the data in an organized fashion and
send it through the data link. In addition, the microcontroller software must communicate back and
forth with the PC based software to reliably transfer the data. On the PC side, the software must
capture the incoming data, store it in more permanent hard drive based storage (database) and enable
the user to perform statistical and graphical analysis.

1.4.3 FUTURE ENHANCEMENT REQUIREMENTS
Although of minor importance, the Hybrid’s Angels would like to suggest a few features to either
enhance the safety or mission of the hybrid motorcycle. First and foremost, the group would like to

implement a functional headlight, which the user could turn on or off from the control console. To
make the design fully street legal, it will also be necessary to install front brakes, a taillight, brake lights,
mirrors, and a horn. These devices will require a neat, orderly connection and wiring scheme. Another
additional feature would be to digitize the motorcycle’s speedometer instead of the analog sensor that
is currently present. In order to further enhance the operation safety, the Lightning Riders indicated
that it may be useful to create a physical disconnect on the battery stack, allowing for safer
maintenance.

In the spirit of energy economy, the group would also like to suggest an alternative energy source to
power one of the electronic components. Preliminary thoughts on such an implementation would
include utilizing solar technology or better harnessing the energy from the existing regenerative braking
system. Incorporating an alternative source will be no small challenge; it will require a proper design to
achieve the necessary ratings to power the given electronic device as well as a storage scheme when
peak conditions are not present.

Last year, team member Steve Govea received a wireless module that simulates an RS232 connection
with a computer. Since this part is already present, he intends to implement this part when the group
designs its board for the project. Although a nice feature, this part is certainly redundant as the group
will already be able to program and download information from the system via a USB to serial converter,
which is described below.

1.5 HIGH LEVEL SOLUTION DESCRIPTION

In order to solve the problem described above, Hybrid’s Angels have continued to pursue the series
hybrid configuration first established by the Lightning Riders. Although the general hybrid concept has
remained consistent, the exact solution varies widely from that attempted last year. As a general
overview, the final design contains three major subsystems: the control system, the charging system,
and the monitoring system. A high level description of each is described below.

1.5.1 CONTROL CIRCUIT SYSTEM

For this project, the control system is the brains behind the operation. It was extremely important to
write robust, functional code as the microcontroller had to shoulder many important tasks without user
intervention. First, it was able to quickly and accurately process the incoming data from various
onboard sensors, which include temperature sensors, voltage sensors, and current sensors. Besides
making decisions, it informed the user of the state of the vehicle via the LCD display. Of course, this
design is also able to store information for later analysis in design problems.

1.5.2 CHARGING CIRCUIT SYSTEM

The charging circuitry is responsible for the primary conversion of the generator voltage to a usable DC
input to charge the batteries. The circuitry itself is composed of three smaller circuits: triac circuitry, the
buck converter, and a pi filter.

The triac circuitry functions to reduce the AC voltage coming from the battery. In essence, the
functionality is similar to that of a digital AC dimmer switch used for common home lighting
applications. A zero-cross detection circuit is implemented to determine when the AC waveform crosses
the OV mark during each cycle. This information is then sent to the triac circuit’s microcontroller.
Software decisions are then made to determine when to fire the triac. This will delay the signal that is
passed by the circuit, thereby rectifying the original signal from the generator. Visually, the idea can be
seen as follows in Figure 1.5.2.

3 cycles
I

&

S W |\
vl

Figure 1.5.2: AC Wave Dimming

INPUT: -

This dimmed signal that is passed is then rectified using a full bridge rectifier. The result is a DC voltage
that can be varied by varying the firing time of the triac, controlled via the microcontroller. In essence,
this triac circuitry functions as a variable AC-DC converter.

1.6 REVIEW OF FINAL RESULTS

The final result of the series hybrid design employed by Hybrid’s Angels proved successful. It was
demonstrated that the batteries could be charged using the implemented circuitry. While charging at 8A
was observed for a short period of time, the group maintained a charging current of 3-4A continuously
to charge the batteries from a very low charge state to maximum charge.

Additionally, successful control of the charging process was observed. The control circuitry effectively
monitored the voltage and temperature of each battery. An effective charging algorithm was
implemented using this feedback information to charge the battery stack the most efficiently.

User interfaces were also observed to function properly. A user-friendly output was programmed to the
LCD making monitoring and control relatively easy for the operator. Also, a functioning LCD backlight
was implemented in order to make the screen more visible.

A final point to note was the success in mounting the generator itself. Given the size and weight of this
piece of equipment, mounting proved to be no small task. An effective support system was developed to
secure the generator behind the rear wheel of the motorcycle. This process was successfully completed,
making the motorcycle a completely self-contained hybridized unit.

2 DETAILED PROJECT DESCRIPTION

2.1 SYSTEM THEORY OF OPERATION

The Hybrid’s Angels were able to successfully design and build a relatively sophisticated hybrid-electric
motorcycle. This vehicle employs high-power circuitry to charge the battery stack, and this charging is
acutely controlled with a custom algorithm written by Hybrid’s Angels for this express purpose.

At first glance, purely electric vehicles seem devoid of flaws. They are noise-free, emissions free, and it
is drastically cheaper to produce a unit of electric energy for vehicle use that it is to produce an
equivalent unit of liquid fuel. However, electric vehicles do carry many problems, the majority of which
stem from their batteries.

Current battery technology is the major limiting factor in electric vehicle design. Electric motors with
efficiencies upwards of 95% have been invented, and ultra-capacitors that store charge from the
batteries are under development, but problems still plague the batteries themselves. One main issue is
time to charge — many batteries take many hours to charge now. Another main issue is the life cycle of
batteries, or the number of deep discharges that a battery can sustain before it is unusable. New
batteries are being developed that are starting to really address this problem, but in the meantime they
are much too expensive.

The theory behind hybrid-electric vehicles was created around the idea that batteries are still too
primitive to be used in day-to-day applications. This would allow vehicles to use the best features of
internal combustion engines in conjunction with the best features of electric motors. In particular, the
series hybrid architecture that the Hybrid’s Angels’ motorcycle utilizes the fact that internal combustion
engines operate at their peak efficiency in a small rpm band.

10

100 HP
90
80
70
460
50
40
30
20
=10

bmep [bar]

1000 2000 3000 4000
Engine Speed [rpm]

Figure 2.1: Brake-Specific Fuel Consumption Curve for a Typical IC Engine

As shown in the above chart, the sample internal combustion (IC) engine has its peak efficiency,
measured by its brake-specific fuel consumption rate of 197, at a single output power for a single rpm.
Varying the rpm just a little bit along that power curve severely changes the efficiency of the engine.
The primary benefit of the series-hybrid architecture is that it allows the IC engine to operate at that
peak efficiency for the entire duration of operation. The IC engine is used to charge the batteries and
prevent the sorts of deep discharges that are so damaging and harmful to their lifetimes.

This is the general theory behind the motorcycle’s design. The generator is meant to be run at around
its peak level in order to charge the batteries and improve the vehicle’s run time. The charging is
completed in two stages — the triac circuit and the buck converter.

The triac circuit achieves AC-to-DC conversion and its theory is quite simple. A standard 120Vrms signal
from the wall is fed into the circuit as the input. In order to output a desired DC value from this
waveform, the sine wave is cut off when it reaches said value. This creates a saw-tooth type signal
which is fed into a smoothing capacitor. The buck converter, on the other hand, achieves DC-to-DC
conversion. This is done with a switching MOSFET which continuously charges and discharges a
capacitor through an inductor. The varying current through the inductor creates a voltage drop which
causes the original DC voltage to be stepped down. Both of these systems will be explained more fully
with diagrams later.

The theory behind the user interface (Ul) is also very straightforward. The control circuit mounted on
the motorcycle features a microcontroller that constantly gathers data such as temperature, voltage and
current on the batteries. This information is fed in real time to an LCD screen which is featured
prominently between the bike’s handlebars.

2.2 SYSTEM BLOCK DIAGRAM

11

-

W Generator

120 VAC
Outlet

12V Battery
Control Circuit

T Microcontroller

Feedback Sensor
Triac 45
. |l
Microcontroller L“\
m Triac Mhﬂ N
LT
N + S
| —
I
Buck Converter
+
= | (e () —— =
rging Lirculiry —I—I |
+ .
T |
Separate
72\ Battery Stack

LCD Display

Figure 2.2: System Block Diagram

2.3 DETAILED OPERATION OF CHARGING CIRCUITRY

The function of the control circuitry at the highest level is to convert the signal from the generator or a
wall socket to a usable input into the 72V battery stack for charging. This is accomplished by first using a
triac circuitry connected to the generator, followed by a buck converter. These two subsystems are
controlled via their own microcontroller and act separately. In essence, the triac circuit functions as a
variable digital AC-DC converter. The buck converter, by convention, functions as a DC-DC converter.

2.3.1 TRIAC CIRCUIT SYSTEM

The triac circuit functions as an AC-DC converter. The subsystem itself is composed of a zero cross
detection circuit, a separate microcontroller, and the triac circuit itself. These systems are explained in
detail below.

12

2.3.1.1 OVERALL SCHEMATIC
The diagram below shows the overall hardware schematic of the triac subsystem as well as some
additional features necessary for the circuit board design. Each portion of the circuitry will be described

below.

REL&Y

N
T
| T
3
| =
T
I & [.
i gl |
EX
QT -
T
=
T3 " pr
i [+
FE ot
= et
-
A
' 3 . T
s ST
LS

,m: i. s
LESS

i

L

=)
'm [

b
FEEY e
-t
im
Cik
= FOF

Ar-L

IS WP LT
40

Figure 2.3.1.1: Triac Circuit System

13

2.3.1.2 ZERO-CROSS DETECTION CIRCUIT
Pictured in the top left of the main schematic is the zero-cross detection circuitry. The role of this circuit
is to sense when the incoming AC signal has crossed the OV mark during each AC cycle. The circuit is
reproduced below for convenience.

— R

Figure 2.3.1.2: Zero-Cross Detection Circuit

The zero-cross detection circuit functions as follows. The AC voltage is passed through a full bridge
rectifier, as pictured on the right of the schematic. Then the output of the rectifier is applied to an
optocoupler. The optocoupler consists of an LED on the input side and a BJT on the across the output
terminals. When current is flowing across the LED, the emitted light turns on the BJT. Since the LED will
be conducting current any time the rectified signal is above 0V, the BJT will always be conducting. In this
situation, the input to the microcontroller (B0O) will be low.

When the AC rectified input signal to the optocoupler hits OV however, the LED will not emit light and
the BJT will therefore not conduct. This will bring the input to the microcontroller (B0) high, signifying
that a zero cross has been detected.

2.3.1.3 MICROPROCESSOR

' Clearly pictured in the center of the above schematic is the 18F46204P microcontroller the group chose
for the design. Although the capability of this processor may be excessive for this particular application,
this part was chosen for multiple reasons. The processing power and capability made this
microcontroller attractive given that precision and robustness are critical for this application.
Additionally, the group’s experience with and access to the 18F46204P during the fall semester made it
the best choice for the final design.

The primary function of the triac system microcontroller is to make decisions as to when to “turn on”
the AC signal from the generator or the wall. During each AC cycle, the microcontroller first recognizes
the zero-cross signal from the detection circuitry as an interrupt. Then based on the desired output

14

signal, the microcontroller delays a certain amount on time and “fires” the triac itself by setting pin CO
low. This will produce a rectified and cropped AC signal.

One important feature of the digital control provided by the microcontroller is the level of precision that
is available. Given a 60 Hz input signal, there will be 8.33 ms between each zero-cross. Given the clock
speed of the microcontroller is 10MHz/4 (Fosc/4), there will be an accuracy level of 400ns per count. In
theory, this means that there are 20,833 counts in between each zero-cross of a 60 Hz input signal. This
level of accuracy is desirable in that it gives a precise level of control.

Additionally, the microcontroller takes information about the proceeding buck converter circuitry into
consideration when making decisions about the voltage to output from the triac. This is done via the
voltage sensor circuit pictured below the microcontroller in the schematic. In essence, the buck
converter will try to meet a set current to deliver to the batteries (Section 2.3.2). In doing so, the buck
converter will adjust its output voltage to the 72V stack accordingly. Then this information level will be
passed into the triac microcontroller via the A/D converter (MCP3208) and a voltage sensor. The triac
microcontroller will then try to set its output voltage to approximately 3V above that outputted by the
buck converter.

This is done in order to minimize the power dissipated across the buck converter. By making the voltage
differential from the output of the triac to the buck convert and the output of the buck converter to the
battery stack as small as possible, the power dissipated is minimized. For example, if there is 5A being
delivered to the battery and a total of 3V is being dissipated across the buck converter then a total of
75W must be dissipated by the MOSFET in the buck converter. This value should be as small as possible
and is done so by this functionality in the output of the triac to the buck converter.

15

2.3.1.3.1 SOFTWARE FLOW CHART

Below is a chart depicting the overall flow of the code in the triac microcontroller. For the exact code
listing, see the Appendix.

Zero-Cross
Interrupt

Desired Output
Voltage: Based
on
buck converter
output voltage

Feedback:
Triac Output
Voltage & Current

Determine Triac Fire Timing
CO0 = 0; //Turns on

Triac Voltage: OK
Current: OK

above Buck
Output?,

Ss,
s ,/76/7 s
14

Equals 3V

Increase fire timing delay:
Increases rectification and
lowers output

Decrease fire timing delay:
Maintain fire timing delay: Decre_ases redlﬁc?tn'.)tn it
Desired Output achieved USRS EEID

Figure 2.3.1.3.1: Triac Microcontroller Software Flow Chart

The above software flow diagram shows the general flow of code in the microcontroller for the triac
circuitry. The process begins when an interrupt occurs due to the detection of a zero cross. This
interrupt is recognized by the microcontroller. Then the microcontroller uses the information about the
desired output voltage and feedback from the triac’s present voltage and current outputs. The desired

output voltage is set to be approximately 3V about the output of the buck converter in order to
minimize power loss as previously discussed.

The microcontroller then checks to make sure the triac voltage is within its defined bounds and that the
current being output is at the desired level. If these safety precautions are met, then the microcontroller
compares whether or not the present output voltage is 3V above the output of the buck converter.

For a complete software listing, refer to the Appendix.

16

2.3.1.4 TRIAC CIRCUIT

The triac circuitry itself is the primary controller of the rectification of the AC waveform. As depicted in
the reproduced schematic below, the AC signal is applied to the triac (Q4015L5). Then using an
optocoupler (MOC3010M), the microcontroller determines when to fire the triac. By setting pin CO low,
current flows through the LED and turns on the internal triac in the optocoupler. This in turn fires the
external trial and allows the remaining portion of the AC signal to pass (See Figure 1.5.2).

This cropped AC signal is then passed through a full bridge rectifier as shown in the schematic. The
resulting waveform in then passed to the triac capacitors (21.6 millifarads), resulting in a DC signal.

As an additional note, a 2KQ resistor is connected across the triac capacitor bay. This bay has such a
large capacitance (21.6 millifarads) in order to smooth the desired DC voltage and drive the desired
current as efficiently as possible on to the buck converter and eventually the batteries. Therefore, the
resistor is connected in order to create a time constant that will dissipate the voltage at a rate that
allows for decent responsiveness when the desired output voltage is changed. For example, if the
desired output voltage changes from 90V to 85V, the resistor needs to dissipate the 5V at a rapid
enough rate to achieve effective responsiveness.

L1

D

W

Figure 2.3.1.4: Triac Circuit Schematic

2.3.2 BUCK CONVERTER SYSTEM

The buck converter system functions as a DC-DC converter. The input to the circuit comes from the Triac
Circuit System output, and the output of the buck converter is used to charge the batteries. The buck
converter is composed of a microcontroller, switching power MOSFET, and smoothing circuitry. These
subsystems are described below.

A buck converter functions as a DC-DC converter by varying the switching speed and duty cycle of a
MOSFET. An initial DC voltage is applied to the drain of a power MOSFET and the output is taken at the

17

source. By varying the duty cycle, the output DC voltage can theoretically be controlled from 0 to 100%
of the DC voltage on the drain. If the duty cycle was 100% (always on), then the output would
theoretically be OV. If the duty cycle were 0% (always off), then the output would theoretically be that
voltage applied to the gate. Therefore a desired DC output can be obtained by picking the proper duty
cycle and switching frequency of the power MOSFET.

Through testing and analysis, an ideal switching frequency and duty cycle range was found. For this
specific DC-DC application, a switching frequency of 26.1kHz was optimal in terms of output and
efficiency in control. Additionally, varying the duty cycle between 16% and 100% seemed to be
necessary to meet the desired output from the buck converter.

2.3.2.1 OVERALL SCHEMATIC
The diagram below shows the overall hardware schematic of the buck converter subsystem as well as
some additional features necessary for the circuit board design. Each portion of the circuitry will be

described below.

g P

51 |3

i

{

J ﬁ
S % f:- ! I o iy
) l@ﬁ

Figure 2.3.2.1: Buck Converter System Schematic

i

*

i

2.3.2.2 MICROPROCESSOR

Clearly pictured in the center of the above schematic is the 18F46204P microcontroller used for the
design. Although the capability of this processor may be excessive for this particular application, this
part was chosen for multiple reasons. The processing power and capability made this microcontroller
attractive given that precision and robustness are critical for this application. Additionally, the group’s
experience with and access to the 18F46204P during the fall semester made it the best choice for the
final design.

The primary function of the microcontroller is to control the voltage and current being output to the 72V
battery stack. A desired charging current and an allowable voltage range (65 to 89V) is programmed into
the processor and the microcontroller. The main goal is to continuously deliver a constant current within
the allowable voltage range applied to the batteries. The voltage range is 65V to 89V, meaning that any
voltage in between is allowed to be put on the batteries. The microcontroller then attempts to deliver
the desired charging current. If more current is needed, the duty cycle of the control signal to the buck
converter is decreased in order to increase the voltage applied and therefore the current sourced. If less
current is needed, the duty cycle is increased in order to decrease the voltage applied.

The microcontroller will continue this process until the desired current is reached or until the voltage
being applied to reach this desired current reaches one of the defined limits (65V or 89V). If and when
the voltage does reach the upper limit, then the voltage is held constant at this 89V limit. This will
inherently result in a constant voltage charging state, with a likely decrease in charging current.

This overall control procedure is characteristic of commonly used charging algorithms today. The most
efficient algorithms involve an initial constant current mode followed by a constant voltage mode. In
this design’s case, the constant current mode is implemented by programming a desired current to be
delivered for charging. If the batteries are depleted of charge enough, the voltage output by the buck
converter will be able to obtain a value that will deliver this current. Then as the batteries are charging,
the current will remain constant as the voltage increases within the limited range (65V to 89V) to deliver
this current. When the voltage reaches the upper limit of 89V, the voltage will remain at this value and
the current will therefore begin to decrease. This will be the transition into the constant voltage mode.

Additionally, the buck converter microcontroller is responsible for controlling the last resort MOSFET
after the buck converter circuitry. By setting the appropriate pin as described in Section 2.3.2.5, the
MOSFET is able to open circuit the connection to the 72V battery stack in the event of a potentially
dangerous condition.

2.3.2.2.1 SOFTWARE FLOW CHART

Below is a chart depicting the overall flow of the code in the buck converter microcontroller. For the
exact code listing, see the Appendix.

19

- Output voltage Feedback:
‘ Dzl S | limits: 65-89V Buck Converter Output
|| Voltage & Current
T

v

) Duty cycle set; 26.1KHz
switching speed.

lw,,.

‘ Measure Output Current ‘

Lmoresne: ™ Netesicest e < = Dieineat
.
Increase duty cycle; Decrease duty cycle; Keep duty cycle:
decrease current increase current Desired current
output output achieved

Figure 2.3.2.2.1: Buck Converter Microcontroller Software Flow Chart

2.3.2.3 POWER MOSFET

For the buck converter application, a p-channel power MOSFET, IXTP36P15P, was chosen. This part is
ideal from both a functionality and cost standpoint. The MOSFET is rated for 36 amps and 150 volts
maximum. Additionally it is able to dissipate 300W of power provided the proper heat sink and
ventilation. It is also capable of handling the switching speeds implemented in the buck converter design
(26.1 KHz).

S

Figure 2.3.2.3: Power MOSFET Schematic

Looking at the above power MOSFET configuration used in the IXTP36P15P, the general schematic can
be visualized. Note the standard p-MOSFET configuration. Additionally, the power MOSFET employs a
diode allowing any back current to flow from drain to source without damaging the device. This design is
common to most power MOSFETSs.

20

2.3.2.4 SMOOTHING CIRCUITRY

The smoothing circuitry, reproduced below, follows the power MOSFET in the buck converter system.
This circuit uses a fast-switching diode, an inductor, and a capacitor bay in order to smooth the voltage
and produce a smooth DC output.

From power MOSFET l

ol

X

l To Load

Figure 2.3.2.4: Smoothing Circuitry

The smoothing circuitry functions as follows. When the MOSFET is switched on, current is allowed to
pass through the inductor to charge the capacitors (BCV). Then when the MOSFET is turned off, current
is no longer flowing into the smoothing circuitry. In this case, the inductor and capacitor attempt to
drive current and voltage respectively to the load. The diode directs this flow on to the load by
preventing backflow.

The FFPF30UP20STU diode was chosen for multiple reasons. First, its ultra fast switching capability
makes it ideal for a switching circuit like the buck convert. Additionally, the part is rated for 200V
allowing for an adequate buffer against voltage spikes from the neighboring inductor.

An inductor value of 2.3 millihenries and a capacitance of 20 millifarads were found to be best for this
design as well. A high inductor and capacitor value function to effectively and strongly drive energy into
the load. Additionally, the large capacitance functions to provide the most stable and constant DC
output possible.

2.3.2.5 LAST RESORT MOSFET AND FINAL CIRCUITRY

“As afinal precaution, a last resort MOSFET was added between the output of the smoothing circuitry
from the buck converter circuit and the 72V battery stack itself. This MOSFET functions as a form of last
resort protection, directly controlled by the buck converter’s microcontroller. Its sole function is to
monitor the voltage and current being delivered to the battery stack, shutting off if those values exceed
certain programmed limits. This protects against any major power surges that could be pumped into the
batteries by providing a simple, yet effective, means of terminating the connection.

21

Sdanh
L

o[], |
=R b

-

Figure 2.3.2.5(a): Temperature Sensor Configuration

[

The MOSFET chosen is the same as that used in the buck converter, IXTP36P15P. This is a p-MOSFET,
meaning that with a low signal, or no signal, applied it will remain on letting current flow to the
batteries. If a limit is exceeded, the microcontroller will turn the MOSFET off, protecting the batteries.

The buck converter microcontroller is connected to the last resort MOSFET via an optocoupler, as
pictured in the above schematic. The anode of the optocoupler diode is then connected to port CO from
the microcontroller. Therefore when CO is set low, current flows from VDD to the microcontroller and
turns on the BJT in the optocoupler. Turning on the BJT causes a low voltage to be placed on the gate of
the last resort MOSFET, thereby turning it on and allowing current to be passed to the batteries. If a
dangerous voltage or current is detected by the microcontroller, CO is then set high which turns off the
BJT in the optocoupler and applies a high voltage to the gate of the last resort MOSFET. This turns off
the MOSFET and protects the batteries from the dangerous signal.

After the last resort MOSFET, some additional miscellaneous circuitry exists prior to power delivery to
the batteries. This schematic is shown below.

]

—lEﬂ' x

[}

Figure 2.3.2.5(b): Miscellaneous Circuitry Following Buck Converter

Lass)
™

Shown directly following the MOSFET, is a pi-filter design that was intended to filter any remaining
ripple from the DC signal before the signal was delivered to the batteries. However after extensive
testing, this filter proved more harmful than beneficial. It stores a great deal of charge and was observed
to have the ability to spike the output voltage through the entire Charging Circuit System to dangerous
levels (150V to 160V), destroying some components. Therefore, the inductor was short circuited and the
capacitors were left in place as a further smoothing component.

Following the capacitors is the current sensor, ACS756. This part is a 5 pin Hall Effect current sensor. It
was chosen because of its sensitivity (20-40 mV/A), and it is powered by 5V. This current sensor

22

monitors the final current being delivered to the 72V battery stack. This information is then fed back to
the buck converter and triac microcontrollers as well as the control circuit.

Finally, the signal is passed through a diode as protection between the batteries and the circuit. If the
charging circuitry was not sourcing current, this diode would prevent any backflow that would cause
damage to the circuitry. The part used here is the diode FFPF30UP20STU. It is rated for 200V which is
more than enough to prevent current backflow.

2.4 DETAILED OPERATION OF CONTROL SYSTEM

This section describes the power supply, microcontroller, software, user interface and communication
between the control and charging boards. While many of the sensors are located on the control circuit
board, they are not discussed in this section. The user interface is also not covered in the control circuit
section. Please refer to “Interfaces and Sensors” for descriptions of these subsystems.

2.4.1 POWER SUPPLY

In the previous configuration, the Lightning Riders tapped two batteries in the 72V stack to power the
control system circuitry. Naturally, this voltage was stepped down from 24V to more useable levels,
such as 12V, 10V, 5V, and 3.3V. As a result, last year’s group perceived some irregularities on the overall
voltage stack as a result of this technique. Because the current charging circuitry is no longer functional,
it would be a hefty task to reconstruct the previous group’s circuitry to test the validity of their theory.
For better or worse, the group must accept this evaluation as it is. In this light, the Hybrid’s Angels have
decided to power the control circuitry by mounting an additional 12V battery to the front of the
motorcycle.

All components in the control system cannot be powered at 12V. In fact, most components, such as the
microcontroller, the analog to digital converters, and USB to serial converter, require a 5V input. This
voltage is generated by utilizing the LM1117-5.0 voltage regulator that produces the necessary output to
power these devices. Although most devices need 5V to operate, six components require 12V. These
components are the LM392 Comparator/Operational Amplifier chips used to measure the voltage on
each of the batteries.

S :

A
7l

Figure 2.4.1: Power Supply Schematic

23

2.4.2 PROCESSOR AND PROGRAMMING

Due to the importance of a fast response time to the charging system, the group has opted to use three
separate microcontrollers in this project. Two microcontrollers are programmed to monitor and control
the charging circuitry, while the remaining one is used to manage the control system circuitry.

For this project, space is certainly not a concern, at least not as it has to do with the onboard electronic
circuitry. Thus, the group decided to stick with the seeming EE 41430 standard, 18F4620P
microcontroller from MicroChip. This microcontroller provides the group with sufficient speed and port
availability to accomplish the goals of this project. Data storage for this device is not an issue as the
group will include a MicroSD chip on the order of a couple gigabytes. Admittedly, the decision to utilize

this microcontroller was aided by the presence of eight of these chips left over from the year before.

Selection of the microcontroller is just one portion of the decision making process for the control

system. In addition, the group needed to allocate ports on the microcontroller. This decision making

process was performed mainly by meeting functionality and availability. For instance, certain ports on

the device are utilized for Serial Peripheral Interface (SPI) communication; whereas others are strictly

reserved for VDD or GND. Listed in the table below is a summary of the allocation of microcontroller

ports.

MCLR Reset Button Input
AO HRI Ring Indicator on USB to Serial
Al Chip select Data Storage Chip Select
A2
A3
A4
A5
Main LED
EO display Output
Main LED
El display Output
E2
Vvdd 5V
GND ov
OX1/A7 Oscillator/timer 1/0
OX2/A6 Oscillator/timer 1/0
Cco Button Display Button
c1 Button Display Button
Cc2
C3 SPI CLK SPI Clock (A/D, Storage Card)
Main LED
DO display Output
Main LED
D1 display Output

24

B7

B6
B5
B4 Chip select A/D 3 Chip Select
B3 Chip select A/D 2 Chip Select
B2 Chip select A/D 1 Chip Select
B1 CTS Control Signals
BO RTS Control Signals
Vdd 5V
GND ov
Main LED
D7 display Output
Main LED
D6 display Output
Main LED
D5 display Output
Main LED
D4 display Output
Cc7 TXD Serial Output
Cé RXD Serial Input
C5 Data Input Data Input (A/D, Storage Card)
c4 Data Output Data Output (A/D, Storage Card)
Main LED
D3 display Output
Main LED
D2 display Output

Figure 2.4.2: Control Circuit Microcontroller Pin out

In this project, the microcontroller plays a key role in running the entire system. From reading
important data values to making decisions for the system, the microcontroller is at the heart of this
project. To make sure that the microcontroller knows what to do in a given situation, it is of paramount
importance to have intelligent, yet robust code to allow the system to function as quickly, efficiently,
safely, and effectively as possible.

In the subsequent pages, pseudo-code is given. Whenever the bike is appropriately powered, this code
will run on the microcontroller to check the status of the system. Checking the system includes
constantly ensuring that voltages, currents, and temperatures remain at proper levels on each of the
motorcycle’s subsystems. If these values fall outside the specified constraints, the microcontroller is
instructed to take action until the system properly stabilizes. The microcontroller will further be
responsible for storing important system variables and providing system information to the LCD screen
via low priority interrupts.

25

2.4.3 SOFTWARE FLOW CHART

1A
e
=

Figure 2.4.2: Control Code Flow

2.4.4 LCD USER INTERFACE

The LCD user interface plays a very important role in the control system, as it is the means by which the
microcontroller can communicate intelligibly with the rider of the motorcycle. It is the source of
important information on the cycle such as warnings, critical errors, and general information.

When the ignition key is turned on, the LCD screen first displays the message “Hybrid’s Angles, Revision
4/30/2009”. It then reverts to the main menu screen where the user can scroll between the following
options: System Status, Battery Voltage, Current Info, and Temp Sensors. Using the buttons on the left
handlebar, the rider can scroll up and down through the main menu. The right handlebar buttons
control the “enter/select” and “back” functions.

When “System Status” is selected, the LCD screen will display “Start Generator. Instant SOC” followed by
a percentage. This percentage is an estimation of the instantaneous state of charge on the batteries.

When the “Battery Voltage” menu is selected, the user is taken to a screen that displays the sensed
voltage on each of the six batteries on the stack. This voltage displayed for each battery is not the
voltage on each specific battery, but instead is the voltage on the stack up to that battery. For instance,

26

if Battery 1 had a voltage of 12.3V and Battery 2 had a voltage of 12.5V, then the displayed voltage on
the User Interface for Battery 2 would be 24.8V.

WARNING HIGHBEAM

3

Figure 2.4.4: User Interface Displaying Batter Voltage

The Current Info menu displays information about the current going through the batteries and also the
current being drawn from the wall outlet. This is very important when determining whether the current
is close to tripping a circuit breaker or whether it is about to exceed the physical limits of our
components.

In the Temp Sensors menu, six temperatures are displayed. Each of these temperatures indicates the
temperature of a battery. The sensors were mounted directly onto the batteries and they constantly
monitor the amount of heat that they are dissipating. This is useful when performing analysis about the
efficiency of our system.

2.5 DETAILED OPERATION OF GENERATOR SYSTEM

As originally anticipated, a single generator was used for the series hybrid design. The generator chosen
was the PowerMax XP4400E. This model was decidedly the best choice from both a functionality and a
cost perspective. The generator is a single-phase, key start model rated to output 3500W. Additionally,
the relatively compact size and light weight made it ideal for mounting directly to the motorcycle frame,

The generator was mounted on a metal frame customized to fit the back of the motorcycle. The metal
frame was constructed from % inch thick, right-angled iron beams. These beams were then
appropriately bent and cut to form a support cage. The cage itself sits low behind the rear wheel. The
generator can then be placed inside the metal support cage and fastened with four U-bolts at each of
the respective corners.

27

The major concerns with mounting the generator in this fashion were balance and stability. While the
significant weight of the generator does cause the motorcycle’s center of gravity to be shifted backward,
test runs and experimentation proved that this was not a major issue. The bike experienced no major
front to back imbalances due to the added rear weight. As far as side to side stability is concerned, the
added weight did cause a noticeable effect. While riding at lower speeds, taking turns proved to be
more difficult. The added weight does require that the operator be more cautious when making these
turns and other similar maneuvers.

Overall however, mounting the generator in the rear is still thought to be the best option for the time
being. Other options could include making a sidecar or putting the generator into a tow cart. While a
side-car may prove feasible, it would require a significant amount of design attention as it would shift
the side to side center of gravity as well as adding significantly more weight. The idea of a tow cart was
discarded due to complications with balance and acceleration. In general, motorcycles are not made for
towing as the need for side to side stability is easily compromised at low speeds. Since the bike will be
running at these low speeds (likely at or under 40mph), this would not have been a useful design. In the
end, mounting the generator to the back provided the best solution at the time.

2.6 SOLUTION FOR POWERING CIRCUIT BOARDS

In order to power the two circuit boards (charging circuit and the buck converter circuit), an on board
12V chargeable lead-acid battery was mounted on the motorcycle. The battery chosen for this
application was the Werker WKA12-5F model as pictured
below. This battery proved ideal for the application because all
the circuitry required 12V or less for power. Additionally, the] o
entire control and charging circuitry was tested and found to b

draw approximately 40mA of continuous current, making this j m
battery a feasible solution. 'Q

WKA12:5F

‘sﬁlﬁ::;l:g-gpllub!e Battery

This battery was mounted in the front of the motorcycle, above
the 72V stack and beneath the circuit boards. It was mounted Bt

:ﬂ“,‘.“.':'-ﬂ" s

using basic zip ties to hold it in place. Additionally, the battery ==

comes with a simple trickle charger that allows for charging
when the bike is not in use.

2.7 INTERFACES AND SENSORS

As monitoring and communication among subsystems of the utmost importance for this hybrid
motorcycle design, interfaces and sensors perform a pivotal role in the design. These components are
described in more detail here.

2.7.1 INTERFACES

A USB to serial converter, the FT232RL from FTDI chip, is included in the group’s design of the control
system circuitry. This device provides a valuable interface to not only program the microcontroller but
also download data from the device. Although one of the future enhancements, staunchly proposed by

28

team member Stephen Govea, was to install a wireless interface to download data, and even program
the microcontroller, the USB to serial converter provides a simple, yet powerful way to interact with the
microcontroller in case the wireless connection did not come to fruition.

2.7.2 SENSORS

Three basic sensor types were used on the motorcycle in order to measure voltage, current, and
temperature. Additionally, the analog to digital conversion of circuitry is described here as it involves the
sensing and processing of a signal.

2.7.2.1 VOLTAGE SENSORS: LM350P

' Measuring the voltage on each of the batteries in the 72V stack is of obvious importance for the
charging circuitry to react properly to the change in state of the batteries. Thus, the voltage on each of
the batteries, as well as the entire stack, must readily be available to both protect and enhance the
charging circuitry as much as possible. To accomplish this objective, the group decided to utilize the
method that the Lightning Riders used last year with some minor alterations to correct perceived
problems with the design.

Ultimately, this design renders a voltage between 0V and approximately 2.5V corresponding to the
charge level on the specific battery. This method provides a voltage, which can safely be translated to
the microcontroller via the analog to digital converter circuitry. Then, the microcontroller works
backwards to determine the true voltage on each of the batteries in the stack. With this information,
the microcontroller is able to inform the user of the charge state as well as make the necessary
alterations to the voltage level (and current level) being output by the charging circuitry.

Naturally, calibration is an important element in this process; however, due to the proportionality of the
constructed system, this calibration was easily tested and accomplished.

29

O P o
rml;: = T.ohE : *E':_
! T
B PREMRY | S
E T A = ==
=—| = e
%&—‘L -
A =

g
R
|

-
d

J
i

'
5

1|
|
u
|
!
=

Y

'
N

AT

.

St

Figure 2.7.2.1: Voltage Sensor Schematic

Each battery’s high voltage terminal is fed into the control system circuitry and stepped down to
approximately one tenth of its initial value. This voltage is fed into a comparator, whereby it is
compared with its previous value, allowing it to be amplified to that voltage at any given time. This
voltage is once again stepped down to roughly two thirds of its value and fed into an operational
amplifier. Configuring the operational amplifier in a non-inverting configuration allows for the voltage
to be solved as a value between OV and 2.5V.

Additional features of the voltage sensor circuitry include decoupling capacitors to better stabilize the
important voltages that are fed into the operational amplifiers as well as a Zener diode to help protect
the system from short circuits.

2.7.2.2 CURRENT SENSOR: ACS756

The current sensor chosen for this design was the Allegro Microsystems part, ACS756. This is a Hall
Effect linear current sensor with a 3kVrms isolation rating. Additionally, the sensor is provides a
feedback with an accuracy of 20-40mV/A. Finally given its small size and low power requirement, this
sensor proved ideal for the needed application.

30

This current sensor is utilized after the buck converter circuitry to measure the direct current that is
being sourced to the battery stack for charging, as pictured below. As shown, current enters the sensor
through Pin 5 and exits via Pin 4. Power and GND are connected to Pin 1 and Pin 2 respectively. The
output voltage corresponding to the current passed is output via Pin 3.

]

—lEﬂ' x

[}

Figure 2.8.2.2: Current Sensor Placement Schematic

Lass)
A

2.7.2.3 TEMPERATURE SENSORS: LM35DT

Temperature sensor circuitry is implemented in the same fashion as the Lightning Riders began to do.
At present, the motorcycle has temperature sensors mounted on all of the six batteries. As with the
voltage sensors, these devices will have to be calibrated accordingly.

As five of the six sensors were already mounted, the group naturally decided to stick with the same
technology chosen by last year’s group, the LM35DT. This sensor is constructed in the basic
configuration outlined in the manufacturer’s data sheet and shown below. This configuration allows for
temperatures to be measured from 2°C to 150°C. This range should be more than sufficient for the
temperatures that occur in the battery.

+Vs
(4V TO 20vV)

LM35

L

| OUTPUT
0 mV+10.0 mv/°C

DS005516-3

Figure 2.8.2.3: Temperature Sensor Configuration

It can also be seen in the diagram above that the output voltage is proportional to 10mV per degree
Centigrade. This output voltage is fed into an analog to digital converter, which passes the voltage on to
the microcontrollers. At this point, the Control System’s microcontroller can both inform the user of the
temperature on the batteries as well as make decisions to remedy a high temperature if necessary.

31

2.7.2.4 ANALOG TO DIGITAL CONVERSION OF SIGNALS: MCP3208

Proper analog to digital conversion is essential for the microcontroller to properly receive feedback
regarding currents, voltages, and temperatures that various components of the system may be
expecting. Once again, the group utilized the analog to digital converters purchased by the Lightning
Riders.

These analog to digital converters, which are part number MCP3208, have eight channels which
interface with the microcontroller via SPI. Basically, the microcontroller selects one of the eight
channels on the analog to digital converter and the device outputs the voltage on that channel in binary.
This output value is based on the following digital output code:

4096 x Vyy
Digital Ouiput Code = —;——
REF
Where:
Viy = analog input voltage
Veee = reference voltage

Figure 2.8.2.4: Digital Output Code for Analog to Digital Converter

Since the reference voltage is 5V, a temperature sensor outputting a voltage of 0.5V sends the following
binary values to the microcontroller: 110011010, corresponding to 410. This value allows the
microcontroller to know that the temperature sensor is measuring a temperature of 50°C.

Obviously, each analog to digital converter requires its own distinct chip select port on the
microcontroller. By periodically cycling through all of the channels, the microcontroller is able to read
critical information from the system’s sensors and process decisions accordingly.

To increase the accuracy of the device, a decoupling capacitor is included on the reference voltage. This
decoupling capacitor will stabilize the reference voltage lending to better accuracy in the overall system.

3 SYSTEM INTEGRATION TESTING _

3.1 INTERGRATION TESTING

The integrated set of subsystems was tested in the following manner. Initially each system (control
system, charging system, and monitoring system) were tested separately. Next, the control system and
the charging system were integrated and tested together. Finally all three of the major subsystems were
connected together and a complete test routine was performed. The following provides a more in depth
description of the test procedure.

3.1.1 CHARGING SYSTEM TESTING

32

The charging system circuitry was tested across each individual subsystem as well. First the triac circuitry
was tested. Then the buck converter circuit was added and tested. A more in depth explanation of the
testing is given here.

3.1.1.1 TRIAC CIRCUIT TESTING

The triac circuit was tested by programming the microcontroller to control the output to be 92V. Once
this was done, an AC variac transformer was used to gradually increase the signal applied to the triac
from the wall outlet. The AC voltage from the wall could then be manually and gradually increased in
order to slowly observe the accuracy and robustness of the triac system design.

It was demonstrated that a full wall voltage of 110Vrms could be applied to the triac system, resulting in
a 92V DC output varying from +/- 1 V. This output was desired and the variation actually proved to be
less prevalent than was previously anticipated from other prototype testing. The system was then tested
to output other regulated DC voltages. These tests proved successful with the same degree of accuracy.

3.1.1.2 BUCK CONVERTER TESTING

Following successful implementation and testing of the triac system, the buck converter system was
added to the output of the triac and additional testing was performed. This was done in the following
manner. First, a desired output voltage was programmed to the microcontroller of the buck converter
system. Additionally, the microcontroller for the triac circuit was programmed to output approximately
3V above the desired output of the buck converter. The reasoning behind this was to minimized power
dissipation across the switching MOSFET in the buck converter, as previously described.

Initially the buck converter was programmed to output 90VDC. This setup was implemented and
executed resulting in 90VDC appearing on the output of the buck converter. This in turn resulted in
approximately 93VDC being output into the buck converter by the preceding triac system. The buck
converter was then reprogrammed to output a variety of other DC voltages, proving it was functional
and versatile.

3.1.1.3 OVERALL CHARGING SYSTEM TESTING

The next testing step was to test the entire charging system by charging the batteries. This was
accomplished by connecting the output of the buck converter to the 72V battery stack. This step was
necessary to test the fact that current could actually be delivered from the charging circuitry to the
battery stack for charging.

The buck converter microcontroller was then programmed to deliver a low amount of current (250mA)
to the battery stack. This was accomplished through reading the current being delivered using the
current sensor. This current was then increased or decreased by changing the desired voltage output
from the buck converter automatically in the code. The triac circuitry continued to output 3V above the
buck converter output as before.

The desired current was then systematically increased in order to test the current limit that could be
supplied to the battery stack. Eventually, 8A was able to be delivered for a relatively short period of

33

time. Current delivery at this level caused a great amount of heat across the MOSFET and the associated
heat sink of the buck converter given the increased amount of power dissipation. After further testing
and manual temperature sensing, the team chose to maintain a 3A — 4A charging circuitry as it resulted
in a steady and controllable charge.

The final charging system design was then tested by charging the 72V battery stack from a stack of close
to zero charge to full charge. This was done by programming the buck converter microcontroller to
output 3A to the batteries. Given that the batteries together are rated for 38AH, this 3A charging
current was applied for approximately 13 hours continuously.

3.1.2 CONTROL SYSTEM TESTING

After receiving the fabricated board, the various components were soldered and tested in the different
circuits. The first circuits tested were the voltage sensors. With six voltage sensor circuits on the board,
after each circuit was soldered the necessary source voltages and grounds were applied in addition to a
test voltage; in this way we were able to verify that the sensors were outputting the required analog
voltage.

The next important circuit to test was the power supply to the board. The various resistors and voltage
regulators were systematically attached to the board and tested to make sure that the proper voltage
was being supplied to the microcontrollers and voltage sensors.

Once able to power the microcontroller, all the components related to it and its output ports such as
resistors and decoupling capacitors were attached. Test programs were then used to verify the
functionality of the ports.

3.2 MEETING DESIGN REQUIREMENTS

Looking at the above tests and the associated results, it is clear that the design has met the primary
design requirements outlined in the project proposal and further project plans.

The primary requirement was to build a system capable of charging a 72V battery stack. As noted above,
this was accomplished. It was demonstrated that the circuitry is able to deliver 3-4A of constant
charging current to the batteries. This overall functionality is a result of the successful adherence to
design requirements of the subsystems.

The triac was demonstrated to perform its desired function of acting as a variable AC-DC transformer.
This circuit successfully transforms the 120Vrms wall voltage to a usable DC voltage that is 3V above the
output of the following buck converter. The buck converter circuitry was demonstrated to meet its
requirements as well. A desired current can be programmed within a given voltage range. The buck
converter will attempt to output this current, resulting in a matching of the desired current or a
maximum voltage condition during which the voltage is held at its maximum limit. This constitutes a
successful demonstration of a Constant Current — Constant Voltage charging algorithm.

In addition to the successful demonstration of the primary design requirement, this project also
successfully met many secondary requirements. A user-friendly interface was implemented. Also, the

34

process of attaching the generator to the back of the motorcycle was no small feat. All of these add to
the overall success in meeting design requirements.

4 USERS MANUAL

4.1 HOW TO CHARGE THE MOTORCYCLE

Hybrid’s Angels have designed this motorcycle to charge from a standard 120VAC wall outlet. Simply
plug the cord into the nearest outlet and let the vehicle charge for 7 hours to ensure maximum energy
storage. When the bike has been charged, remove the cord from the wall outlet and bring it around to
the mounted generator. Plug the cord into the generator outlet.

4.2 HOW TO OPERATE THE MOTORCYCLE

4.2.1 HOW TO PREPARE THE MOTORCYCLE FOR USE

XP4400E

UL socKET O
Youruerer @ s SRSUT

o — Y g B2,

v

Figure 4.2.1: Generator

Make sure microcontroller battery is connected.

4.2.1.1 HYBRID MODE

35

The generator must be started first and allowed to warm up for a period of a few minutes with no load
attached. To do so, close the choke all the way and turn the key to the start position. When the motor
starts, slowly adjust the choke to the open position to obtain the maximum running speed. Allow the
generator to run for a few minutes. Then flip the circuit breaker switch located on the right hand side of
the plastic casing in front of the rider to begin charging the batteries.

The motorcycle is then ready to ride. Insert the key into the ignition located under the main display.
Turn it right to the “on” position and observe the motor-controller. This will be a grey box located under
the charging circuitry and between the batteries. Wait approximately 20 seconds for a red LED to light
up on the top of the motor-controller before mounting the vehicle and pushing off of the kickstand.

4.2.2 HOW TO RIDE THE MOTORCYCLE

Mount the motorcycle with one leg over the seat. Do not let the motorcycle lean too far to either side
lest it become unbalanced and fall. The motor is operated primarily with the throttle found on the right
handle and the brake found on the left handle. The brake mechanism is regenerative so when braking,
take extra care to start very early before the intended stop point.

There is also an auxiliary foot-brake located underneath the right foot. Simply depress the pedal to
brake the motorcycle.

Figure 4.2.2: Foot-Brake located under the right foot

4.2.3 HOW TO OPERATE THE USER INTERFACE
The Hybrid’s Angels have designed, programmed, and installed a fully-functional user interface on the
motorcycle which provides a wealth of data about key performance statistics. This interface is navigated

36

by the bi-directional switches on each handle. On the left handle, the (left) switch moves up a given
menu and the (right) switch moves down a given menu. On the right handle, the (right) switch selects a
menu and the (left) switch moves back to the previous menu. When the ignition key is turned on, the
LCD screen first displays the message “Hybrid’s Angles, Revision 4/30/2009”. It then reverts to the main
menu screen where the user can scroll between the following options: System Status, Battery Voltage,
Current Info, and Temp Sensors.

Figure 4.2.3(b): Right Handlebar

37

4.2.3.1 HOW TO READ BATTERY VOLTAGE

When the “Battery Voltage” menu is selected, the user is taken to a screen that displays the sensed
voltage on each of the six batteries on the stack. This voltage displayed for each battery is not the
voltage on each specific battery, but instead is the voltage on the stack up to that battery. For instance,
if Battery 1 had a voltage of 12.3V and Battery 2 had a voltage of 12.5V, then the displayed voltage on
the User Interface for Battery 2 would be 24.8V.

Figure 4.2.3.1: Displaying Battery Voltage

4.2.3.2 HOW TO READ BATTERY CURRENT

"The Current Info menu displays information about the current going through the batteries and also the
current being drawn from the wall outlet. This is very important when determining whether the current
is close to tripping a circuit breaker or whether it is about to exceed the physical limits of our
components.

38

NEUTRAL

50
1] ,55
mph0 e 70

Figure 4.2.3.2: Current

4.2.3.3 HOW TO READ BATTERY TEMPERATURE

In the Temp Sensors menu, six temperatures are displayed. Each of these temperatures indicates the
temperature of a battery. The sensors were mounted directly onto the batteries and they constantly
monitor the amount of heat that they are dissipating. This is useful when performing analysis about the
efficiency of our system.

39

NEUTRAL HIGH BEAM

55
/ 60

L2, 10
7

o

80

Figure 4.2.3.3: Battery Temperatures

4.2.3.4 SYSTEM STATUS

When “System Status” is selected, the LCD screen will display “Start Generator. Instant SOC” followed by

a percentage. This percentage is an estimation of the instantaneous state of charge on the batteries. It

will additionally give other status updates on the system.

40

Figure 4.2.3.4: System Status

5 CONCLUSIONS

Overall, the Hybrid’s Angels believe that their final design was successful. As the primary goal was to
charge the 72V battery stack, the team has met the major design challenge presented in the original
problem statement from September 2008. In designing this solution, the Hybrid’s Angels were able to
break down and divide a much more complex challenge into many smaller, more understandable
subsystems. Additionally, the design incorporated many additional other features such as an updated
user interface and the successful mounting of a large generator to the rear of the motorcycle. Although
the team was not able to fully meet the elaborate goals outlines in the original project proposal at the
beginning of the design process, overall the final status of the project can be considered a success. The
Hybrid’s Angels were able to convert an electric motorcycle to a hybrid.

6 APPENDICIES

6.1 HARDWARE SCHEMATICS

41

6.1.1 CHARGING CIRCUITRY

Er

EH

Figure 6.1.1: Charging Circuitry Schematic

42

|6.1.2 CONTROL CIRCUITRY

[|

BEEE

|
[l LRI

43

6.2 SOFTWARE LISTINGS

6.2.1 TRIAC CIRCUIT MICROCONTROLLER

/***

* This is a routine to test the basic functions
* of the board used in 330/340 in 05-06.

* It does the following:

* COunts up and down on the LED's twice

* Writes a message to the LCD

* runs an 57600 a terminal program which

* echoes character to the screen and to the LCD
*
*

**/

#include <system.h>
#include "EESD.h"

#pragma DATA CONFIG1H, OSC HS 1H //10 mhz

#pragma DATA _CONFIG2H, WDT OFF 2H

#pragma DATA CONFIG4L, LVP OFF 4L & _XINST OFF_ 4L
#pragma DATA CONFIG3H, _MCLRE ON 3H

#pragma CLOCK_FREQ 10000000

#define min val 1000
#define max_val 9000

void modulation (void) ;

unsigned int dim on;

unsigned int dim off;

unsigned int val = 1800;
unsigned char mode; // the mode
unsigned short tmr0 reg@TMROL;

volatile bit fire@PORTC.0 = 1;
long temp;
long temp2;
long avg=0;
long avg2=0;
long des_volt = 7500;
long prev _volt = 0;
unsigned int data;
unsigned int data2;
int counter = 0;
int dat _count = 0;
int flag =0;

void interrupt (void)

// zero crossing interrupt

// zero crossing interrupt

if (intcon.INTOIF)
//fire = 1;
dim on = val;
dim off = 44702 + dim on + 1000;
dim on = 65535 - dim_on;
intcon.INTOIF = 0;

44

mode = 0;
tOcon = 0x8f;
tmr0_reg = dim on;

// timer 0 expired
if (intcon.TMROIF)

if (mode == 0)

{
fire = 0;
tOcon = 0x8f;
tmr0_reg = dim off;
mode = 1;

else

fire = 1;
tOcon = 0x0f;

}

intcon.TMROIF = O;

}

void main (void)

trisb = 0x01;
portb = 0x00;

trisc.0 = 0;
trisc.1l = 0;

// set up timer and interrupts

tOcon = 0x0f; // timer 0 off, 8 bit, instruction clock, prescaler off
intcon = 0xFO;

intcon2 = 0x85; // pullups off, int0 falling edge

rcon.IPEN = 0; // disable priority levels

adconl = 0x03;

val = min val; // select value between 1700 and 20833.333/2 (10400)
//dim off = 65535-val;

//dim on = 20830 - 2*val;

//dim on = 65535 - dim on;

//dim on = dim on + wval;

SPI bat_ init () ;
while (1)

modulation () ;
//val = 3300;

}

void modulation ()

AD sample(0,1,3,data);
AD sample(1,1,3,data2);
counter++;

avg = data + avg;

avg2 = data2 + avg2;

if (counter >=50)

while (1)

//LCD_setpos (0,0) ;
//LCD_dec (data) ;
data = avg/counter;
if (data <= 22)

AD sample(0,1,3,data);
dat count++;

if (dat_count >= 3)

val = min val;

dat_count = 0;
break;
!
1
else
{
break;

}

if (data <= 40)

{
data = 40;
//data = 22;
temp = (long)data;
temp = temp * 500 / 29 * 1000 / 4096;
if (temp <= 1000)

counter++;
if (counter >=5)

val = min val;

counter = 0;
1
else
{1
1
else
{ .
if (des_volt >= temp)
val++;
!
else
{
val--;

/*1f (des _volt >= temp && des _volt > prev volt)
val++;

else if (des_volt >= temp && des_volt < prev volt)
val++;

?1se if (des _volt < temp && des volt < prev volt)

if ((temp - des _volt) >= 250)

//val
//val

val/2;
val - val/10;

46

val--;

!
else
{
!

else if (des_volt < temp && des volt > prev_volt)

val--;

val--;
ilse {}=*/

if (val >= max val)

{

val = max val;
else if (val <= min_ val)

val = min val;

}

else

{
}
}

prev_volt = temp;

val = val;

data2 avg2/counter + 25;

temp2 = (long)data2 *500/39%1000/4096;
if (temp2 <= 7000)
{
des_volt = 7200;
!
else if (temp2 >= 9000)
{
des_volt = 9200;
!
else
{
des volt = temp2 + 300;
//des_volt = 8000;
avg2 = 0;
avg = 0;
counter = 0;

//des_volt = 8200;

if (des_volt > 9000 && temp2 >= 9100)

{
}

val = min val;

6.2.2 BUCK CONVERTER MICROCONTROLLER

/***

* This is a routine to test the basic functions
* of the board used in 330/340 in 05-06.

47

It do

*
* COunts up and down on the LED's twice

* Writes a message to the LCD

* runs an 57600 a terminal program which

* echoes character to the screen and to the LCD
*

*

**/

#include
#include
#pragma
#pragma
#pragma
#pragma
#pragma
#define

void set

//Basi

trisc.1l = 0; //set CCP2 to output

//pr2 controls the frequency

es the following:

<system.h>

"EESD.h"

DATA CONFIG1H, OSC HS 1H //10 mhz

DATA _CONFIG2H, _WDT OFF 2H

DATA CONFIG4L, LVP OFF 4L & XINST OFF 4L
DATA _CONFIG3H, _MCLRE ON 3H

CLOCK_FREQ 10000000

max current 3250

_pwm(int freq , int duty)

c PWM module

pr2 = freq;

ccpr2l.7 = duty.9;
ccpr2l.6 = duty.8;
ccpr2l.5 = duty.7;
ccpr2l.4 = duty.6;
ccpr2l.3 = duty.5;
ccpr2l.2 = duty.4;
ccpr2l.1l = duty.3;
ccpr2l.0 = duty.2;

//ccpr2l and bits 4 and 5 control the duty cycle

CccC
cc

t2con

ccp2con = 0xc; // 00001100 to set to PWM mode

}

p2con.5 = duty.1l;
p2con.4 = duty.O;

= 0x6; //turn timer 2 on and set prescale to 16

volatile bit LRMOS@PORTC.O0;

void mai

n (void)

int duty = 10;

int freqg = 5;
unsigned int data;
unsigned int data2;
long conv;

long conv2;

long current;

long des volt

5000;

long h volt =

0;
long 1 volt = des volt;

int count;
long avg;

(110)

int lmoscount = 0;
trisc.0 = 0;
SPI bat_ init () ;
//LCD_init () ;
LRMOS = 0;
while (1)
AD sample(0,1,3,data) ;
//data = 0;
if (data <= 10)
data = -40;
data = data + 40;

conv = (long)data * 500 * 1000 / 39 / 4096;
if (conv >= (des_volt+0))

duty++;
else if (conv < (des_volt - 0))
{
duty--;
!
else
{}

if (duty <= 4)
duty = 4;

else if (duty > 1023)
duty = 1023;

else

if (conv > h volt)

h volt = conv;

}

if (conv < 1 volt)

1 volt = conv;

}

AD sample(2,1,3,data2);
avg = avg + data2;
count++;

if (count >= 100)

data2 = avg/count;
if (data <= 8)

data = 8;
1
data2 = data2 - 8;
conv2 = (long)data2 * 5000 /4096;

conv2 2506 - conv2;

conv2*10
convz -

conv2
conv2

if (conv2 >= max

{

des_volt =
}
else
{

des_volt =

if (conv2 >= max

des volt =

}

else

{

}

if (des_volt »>=
des_volt =

else if (des_vol
des volt =

}

count = 0;

avg = 0;

}

set pwm(freq, duty);

00/40;
500;

__current)

des_volt - 5;

des_volt + 5;
_current + 1000)

des volt - 50;

8000)
8000;
t <= 6500)

6500;

6.2.3 CONTROL CIRCUIT MICROCONTROLLER

/*********************************

* This is a routine to test the b
* of the board used in 330/340 in
* It does the following:

* COunts up and down on the LED'
* Writes a message to the LCD
* runs an 57600 a terminal pro
* echoes character to the screen
*
*

khkhkkkhkhkkhkhkkhkhkkhkhkkkhhkkkhkkkhkkkhkkk*x*

#include <system.h>
#include "EESD.h"

#pragma DATA CONFIG1H, OSC_HS 1H
#pragma DATA CONFIG2H, WDT_OFF 2
#pragma DATA CONFIG4L, _LVP OFF 4
#pragma DATA CONFIG3H, MCLRE ON

khkkhkkkhkhkkhkhkkhkhkkhkhkk*k

asic functions
05-06.

s twice

gram which
and to the LCD

*****************/

//10 mhz
H
L & XINST OFF 4L
3H

50

#pragma CLOCK_FREQ 10000000

unsigned short tmr0 reg@TMROL;
bool check voltage = 1;

void interrupt (void)

//if (intcon.1==1) //high priority external interrupt
/74
//intcon.1 = 0; //reset external interrupt flag
//}
if (intcon.2==1) //tmr0 low priority interrupt, once every second
tmr0 _reg = 0x6769; //put initial value into register so interrupts
at 1 sec
intcon.2 = 0; //reset tmr0 interrupt flag
check voltage = 1;
//1if (intcon3.0 == 1) //low priority external interrupt
/74
// critical flag = 1;
// intcon3.0 = 0; //reset external low priority interrupt flag
/1}

}

void main (void)

//int 3 = 0;

rcon.7 = 1; //enables priority levels on interrupts

intcon = 0xB0O; //set preferences for treatment of interrupts
//intcon3.6 = 0; //set INT1 as a low priority interrupt
//intcon3.3 = 1; //INT1l enabled

intcon3 = 0x08;

adconl = 0x0f; //set preferences for tmr0 interrupt

tOcon = 0x85; //set preferences for tmr0 interrupt

SPI init () ;
LCD _init () ;
INTRO() ;
while (1)
{
//intcon3.0 = critical();
//if (critical flag == 1)
/74
// critical flag = 0;
// break;
//}
//critical () ;
if (check voltage == 1)
{
sample all() ;
check voltage = 0;
else

check menu() ;
//test () ;

51

6.2.4 EESDLIB.C (FUNCTION LISTING)

#include <system.h>
#include "EESD.h"

battery bat[7]; // struct for battery information

currents cur[3]; // struct for current information; Current 1 = motor current;
Current 2 = battery current

unsigned int index = 1; //index for battery information (vals 1-6)
unsigned int cur_index = 1; //index for current information (vals 1-2)
deb debounce[5];

option menu menu; //Globally Defining Menu data

int charg status; //0 refers to a non-charging state

int gen status; // 0 refers to the generator being off

int soc; // 0 refers to completely discharged; 100 refers to completely
charged

int crit status;

int crit count[20];

void LCD_init (void)
trisd = trisd & O0x0f; //Top 4 pins configured for output
trise = trise & 0xf8; //Bottom 3 pins configured for output
adconl |= 0xO0f; // port E digital mode

delay ms (40) ;

LCD_icmd(0x30) ; /* 8 Bit mode */

delay ms(5); // DH - min delay here of 4.1 ms

LCD _icmd(0x30) ; /* 8 Bit mode */

LCD _icmd(0x30) ; /* 8 Bit mode */

LCD _icmd(0x20) ; /* 4-BIT Mode */

LCD cmd(0x28); /* Function Set: 4-bit,2-1line,5X7 */

LCD _cmd(0x0C) ; /* Display on, Cursor off */

LCD _cmd(0x06) ; /* Entry mode: INC addr, NO SHIFT display */
LCD _cmd(0x01); /* Clear Display */

delay ms(20);

/***

* LCD cmd - Write ASCII character to LCD peripheral *
* configured as a 4 bit interface *
***/

void LCD_char (char data)

char dsave;

dsave = latd;

LCD DATA = (data & OxFO) | (LCD DATA & OxOF); /* Write HI nibble
word to LCD */

write data;

LCD DATA = ((data << 4) & O0xFO0) | (LCD DATA & OxOF); /* Write LO nibble
word to LCD */

write data;

delay ms (1) ;

latd = dsave;

/***

* LCD icmd - Write control word to LCD peripheral *
***/

52

void LCD_icmd(char data)

char dsave;

dsave = portd;

LCD DATA = data | (LCD_DATA & OxOF) ;
write cmd;

delay ms (1) ;
portd = dsave;
return;

}

/***

* LCD _cmd - Write control word to LCD peripheral *
* configured as a 4 bit interface *
**/

void LCD_ cmd (char data)

char dsave;

dsave = portd;

LCD DATA = (data & O0xFO) | (LCD DATA & O0xOF);
word to LCD */

write cmd;

LCD DATA = ((data << 4) & O0xFO) | (LCD DATA & OxOF);

word to LCD */
write cmd;
if (data < 0x03) delay ms(20); else delay ms(1);
portd = dsave;
return;

/* set the cursor position */

void LCD_setpos (char line, char pos)

LCD _cmd (0x80 + line * 0x40 + pos);
return;

/**********************
* routine to clear display screen

**/

void LCD_clear (void)

LCD _cmd(0x01); /* Clear Display */
delay ms(20) ;
return;

/********************************

* Display char in HEX - format *
********************************/

void LCD_hex (char data)

char n;

n = ((data >> 4) & O0xO0F) + 0x30;
if (n > 0x39) n = n+7;

LCD char(n) ;

n = (data & O0xO0F) + 0x30;

if (n > 0x39) n = n+7;

LCD char(n) ;

return;

/* Write HI nibble

/* Write LO nibble

53

/********************************

* Display unsigned short in HEX - format *
********************************/

¥oid LCD_hex (unsigned short data)
char n;
n = ((data >> 12) & 0xO0F) + 0x30;
if (n > 0x39) n = n+7;
LCD_char(n) ;
n = ((data >> 8) & O0xO0F) + 0x30;
if (n > 0x39) n = n+7;
LCD_char(n) ;
n = ((data >> 4) & O0xO0F) + 0x30;
if (n > 0x39) n = n+7;
LCD_char(n) ;
n = (data & O0xO0F) + 0x30;
if (n > 0x39) n = n+7;
LCD_char(n) ;
return;

/********************************

* Display short in HEX - format *
********************************/

void LCD_hex (short data)

char n;
n = ((data >> 12) & 0xO0F) + 0x30;
if (n > 0x39) n = n+7;

LCD char(n) ;

n = ((data >> 8) & OxO0F) + 0x30;
if (n > 0x39) n = n+7;

LCD char(n) ;

n = ((data >> 4) & OxOF) + 0x30;

if (n > 0x39) n = n+7;
LCD char(n) ;

n = (data & O0xOF) + 0x30;
if (n > 0x39) n = n+7;
LCD char(n) ;

return;

/********************************

* Display low nibble in HEX - format *
********************************/

void LCD nib(char data)

char n;

n = (data & 0xO0F) + 0x30;
if (n > 0x39) n = n+7;
LCD_char(n) ;

return;

}

/********************************

* Display byte in binary - format *
********************************/

void LCD bin(char data)

char n;

char temp;

temp =0x80;

for(n=1; n<=8; ++n)

if (temp & data)
LCD_char (0x31) ;

else
LCD char (0x30) ;
temp = temp >> 1;

return;

/********************************

* Display unsigned short in binary - format *
********************************/

void LCD_bin(unsigned short data)

char n;

unsigned short temp;
temp =0x8000;

for(n=1; n<=16; ++n)

if (temp & data)
LCD_char (0x31) ;
else
LCD char (0x30) ;
temp = temp >> 1;

}

void LCD_dec (short dat)

unsigned short val; // ascii results
unsigned short temp;

unsigned short div;

unsigned short data;

char 1i;

char digit;

data = dat; // make it unsigned

div = 10000;

for(i=0; i <= 4; ++1) // get all 5 digits
val = data/div; // get most signif. digit
LCD char(val + '0'); // print digit
data -= val * div; // what we’ve printed
div=div/10; // adjust divisor

return;

}

void LCD_dec (unsigned short dat)

unsigned short val; // ascii results
unsigned short temp;

unsigned short div;

unsigned short data;

char 1i;

char digit;

data = dat; // make it unsigned

div = 10000;

for(i=0; 1 <= 4; ++1i) // get all 5 digits
val = data/div; // get most signif. digit
LCD char(val + '0'"); // print digit
data -= val * div; // what we’ve printed
div=div/10; // adjust divisor

return;

/**********************************

* Display byte as decimal number *
**********************************/

void LCD_dec (char data)

LCD char(((data /100) & 255) + 0x30);
data = data % 100;

LCD _char(((data / 10) & 255) + 0x30);
LCD char(((data % 10) & 255) + 0x30);
return;

}
/*
* display char as a signed int

* x/
void LCD_int (char data)

char val; // ascii results
char temp;

char div;

char i;

bool dozero;

dozero = false;

div = 100;

if (data == 0) // always print 0

LCD char('0'");
return;

/*
* adjust for sign
* */
if (data & 10000000b)

LCD_char('-");
data = ~data + 1;

for(i=0; i <= 2; ++1) // get all 3 digits

{
val = data/div; // get most signif. digit
if(val != 0 || dozero)

LCD char(val + '0'); // print digit
dozero = true;

temp = val * div; // subtract off
data = data - temp; // what we’ve printed
div=div/10; // adjust divisor

}
/*
* display unsigned short as a signed int

* x/
void LCD_int (short dat)

short wval; // ascii results
short temp;

short div;

char i;

unsigned short data;

bool dozero;

dozero = false;

data = dat;

if (dat == 0) // always print O

56

LCD char('0'");
return;

div = 10000;

/*
* adjust for sign
* */
if (dat < 0)
LCD char('-");
data = ~data + 1;
for(i=0; i <= 4; ++1) // get all 3 digits
{
val = data/div; // get most signif. digit
if(val != 0 || dozero)
LCD char(val + '0'); // print digit
dozero = true;
data -= val*div; // subtract off what we’ve printed
div=div/10; // adjust divisor

}
}

void LCD printf(const char* text)

char 1 = 0;

while(text[i] != 0)
LCD_char(text[i++]);
return;

}

void INTRO (void)

const char* 11;
const char* 12;

menu.position = 1; // initialization of menu variables
menu.active program = 0; // initialization of menu variables
menu.active loc = 0; //Top
crit_status = 0;
11 = "Hybrid's Angels";
12 = "Revision: 04/29/09";
LCD_setpos(0,0) ;
LCD_printf (11);
LCD setpos(1,0);
LCD printf (12);
for (int i = 0; i<=20; i++)
delay ms (200) ;
LCD_cmd (0x18); // shift display left
LCD _clear () ;

void LCD Voltage (int segl, int seg2)
int i = 0;

int j = 0;
int stpos = 12;

digits

if (segl == 6)

seg2 = 1;
else
{

seg2 = segl+l;
}

LCD_setpos (0, 0) ;

LCD printf ("Battery ");
LCD_setpos(0,8) ;

LCD char('0' + segl);
LCD_setpos(0,9);

LCD char(':');
LCD_setpos (0,10) ;

LCD char(' ');
LCD_setpos(0,11) ;
LCD_char (' ');

for (j = 0; j<=5; j++) //Displays voltage while taking out insignificant

%f (3 == 0 || §J == 1)
if (bat[segl] .volt[j] == '0")
{
if (j == 1)
{
if (bat[segl] .volt[0] == '0'")
LCD_setpos (0, stpos+5-3) ;
LCD_char (' ');
}
else
{
LCD_setpos (0, stpos+0) ;
LCD_char (bat [segl] .volt [0]);
LCD_setpos (0, stpos+1) ;
LCD_char (bat [segl] .volt[1]);
i = 2;
}
}
else
{ .
LCD_setpos (0, stpos+5-3) ;
LCD char(' ');
}
else
{ .
LCD_setpos (0, stpos+i) ;
LCD_char (bat [segl] .volt[j]);
i4+4;
}
}
else
{ .
LCD_setpos (0, stpos+1) ;
LCD_char (bat [segl] .volt [j]);
i+4+4;
}
}

58

if (bat[segl] .volt[0] == '0'")
if (bat[segl] .volt[1l] == '0"')

LCD_setpos (0, stpos+4) ;
LCD_char(' ');
LCD setpos (0, stpos+5) ;
LCD _char('Vv');
LCD_setpos (0, stpos+6) ;

LCD char(' ');
LCD_setpos (0, stpos+7) ;
LCD_char(' ');
else
{
LCD setpos (0, stpos+5) ;
LCD_char (' ');
LCD_setpos (0, stpos+6) ;
LCD char('v');
LCD_setpos (0, stpos+7) ;
LCD_char(' ');
!
!
else
{
LCD_setpos (0, stpos+6) ;
LCD_char(' ');
LCD setpos (0, stpos+7) ;
} LCD _char('V');

LCD_setpos(1,0);

LCD _printf ("Battery ");
LCD setpos(1,8);

LCD _char('0' + seg2);
LCD_setpos(1,9);

LCD char(':");
LCD_setpos(1,10);
LCD_char (' ');

LCD setpos(1,11);
LCD_char (' ');

i = 0;

for (j = 0; j<=5; j++) //Displays voltage while taking out insignificant
digits

SRR
if (bat[seg2].volt[j] == '0")
if (§ == 1)
{
if (bat[seg2].volt[0] == '0")
LCD_setpos (1, stpos+5-7) ;
LCD char(' ');
1
else
{

LCD_setpos (1, stpos+0) ;
LCD char (bat [seg2] .volt [0]) ;
LCD_setpos (1, stpos+1) ;
LCD_char (bat [seg2] .volt [1]);

59

1
1
else
LCD_setpos (1, stpos+5-3);
LCD_char (' ');
1
1
else
{ .
LCD_setpos (1, stpos+i);
LCD char (bat [seg2] .volt[j]);
i4+4;
1
1
else
{ .
LCD_setpos (1, stpos+i);
LCD_char (bat [seg2] .volt [j]);
i4+;
1
1
if (bat[seg2] .volt[0] == '0")
if (bat[seg2].volt[1l] == '0")
LCD_setpos (1, stpos+4) ;
LCD char(' ');
LCD_setpos (1, stpos+5);
LCD char('V');
LCD_setpos (1, stpos+6) ;
LCD_char (' ');
LCD setpos (1, stpos+7);
LCD char(' ');
}
else
{
LCD_setpos (1, stpos+5);
LCD_char (' ');
LCD_setpos (1, stpos+6) ;
LCD char('V');
LCD setpos (1, stpos+7);
LCD char(' ');
1
1
else
{
LCD _setpos (1, stpos+6) ;
LCD char(' ');
LCD_setpos (1, stpos+7);
LCD char('V');
1

}

void LCD_ Temp (int segl, int seg2)
int i = 0;
int j = 0;
int stpos = 12;

if (segl == 6)

digits

seg2

Il
'_l

else

seg2 segl+l;

LCD setpos(0,0) ;

LCD printf ("Battery ");
LCD_setpos(0,8) ;

LCD char('0' + segl);
LCD_setpos(0,9);

LCD char(':');
LCD_setpos (0,10) ;

LCD char(' ');
LCD_setpos(0,11) ;
LCD_char (' ');

for (j = 0; j<=5; j++) //Displays voltage while taking out insignificant

%f (3 == 0 || §J == 1)
if (bat[segl] .temp[j] == '0")
if (3 == 1)
{
if (bat[segl] .temp[0] == '0'")
LCD_setpos (0, stpos+5-3) ;
LCD_char (' ');
else
{
LCD setpos (0, stpos+0) ;
LCD_char (bat [segl] .temp[0]) ;
LCD_setpos (0, stpos+1) ;
LCD_char (bat [segl] .temp[1]) ;
i = 2;
1
else
{ .
LCD setpos (0, stpos+5-3) ;
LCD char(' ');
!
1
else
{ .
LCD setpos (0, stpos+1) ;
LCD_char (bat [segl] .temp[]j]) ;
i4+4;
!
!
else
{ .
LCD_setpos (0, stpos+1) ;
LCD_char (bat [segl] .temp[j]) ;
i+4+4;
!
!
if (bat[segl] .temp[0] == '0")

61

digits

if (bat[segl] .temp[1l] == '0'")
LCD_setpos (0, stpos+4) ;
LCD_char (' ');
LCD setpos (0, stpos+5) ;
LCD_char('F');
LCD_setpos (0, stpos+6) ;
LCD_char (' ');
LCD_setpos (0, stpos+7) ;
LCD_char (' ');
1
else
{
LCD setpos (0, stpos+5) ;
LCD char(' ');
LCD_setpos (0, stpos+6) ;
LCD char('F');
LCD_setpos (0, stpos+7) ;
LCD_char (' ');
!
1
else
{
LCD_setpos (0, stpos+6) ;
LCD_char (' ');
LCD setpos (0, stpos+7) ;
LCD_char('F');
1
LCD_setpos(1,0);
LCD printf ("Battery ");

LCD setpos(1,8);
LCD _char('0' + seg2);
LCD setpos(1,9);

//Displays voltage while taking out

(bat [seg2] .temp[0]

== 10")
LCD_setpos (1, stpos+5-7) ;
LCD char(' ');

LCD_setpos(1,stpos+0) ;
LCD_char (bat [seg2] .temp [0]) ;
LCD_setpos (1, stpos+1) ;
LCD_char (bat [seg2] .temp[1]) ;

LCD char(':');
LCD_setpos(1,10);
LCD_char (' ');
LCD_setpos(1,11);
LCD char(' ');
i = 0;
for (J = 0; j<:5,‘ j++)
SRR
if (bat[seg2] .temp[j] ==
{
if (§ == 1)
{ .
if
{
}
else
{
i=2;
}
}

insignificant

62

else

{
LCD_setpos (1, stpos+5-3);
LCD_char (' ');
1
1
else
{ .
LCD_setpos (1, stpos+i);
LCD_char (bat [seg2] .temp[j]) ;
i4+4;
1
1
else
{ .
LCD_setpos (1, stpos+i);
LCD char (bat [seg2] .temp[]j]) ;
i4+;
}
1
if (bat[seg2] .temp[0] == '0'")
if (bat[seg2] .temp[l] == '0'")
LCD_setpos (1, stpos+4) ;
LCD char(' ');
LCD_setpos (1, stpos+5) ;
LCD char('F');
LCD_setpos (1, stpos+6) ;
LCD_char (' ');
LCD setpos (1, stpos+7);
LCD char(' ');
1
else
{
LCD_setpos (1, stpos+5);
LCD_char (' ');
LCD_setpos (1, stpos+6) ;
LCD char('F');
LCD setpos (1, stpos+7);
LCD char(' ');
1
1
else
{
LCD_setpos (1, stpos+6) ;
LCD char(' ');
LCD_setpos (1, stpos+7);
LCD char('F');
1
1
void LCD_Current ()
int i = 0;
int j = 0;

int stpos

11;

LCD_setpos(0,0) ;
LCD printf ("Motor: ")

cur_ index

1;

63

else

j<=6; j++) //Displays voltage while taking out insignificant

=0l 3==0
if (cur[cur_ index].current[j] == '0')
if (j == 1)
{ if (cur[cur_index].current[0] == '0")
LCD_setpos (0, stpos+6-3) ;
//LCD_char (' ');
else

LCD setpos (0, stpos+0) ;

LCD_char (cur [cur_ index] .current [0]) ;
LCD_setpos (0, stpos+1) ;

LCD char (cur[cur_ index] .current[1]) ;
i = 2;

else
LCD setpos (0, stpos+6-3) ;
//LCD_char (' ');
else
LCD setpos (0, stpos+1) ;

LCD_char (cur [cur_ index] .current [j]);
i4+4;

LCD_setpos (0, stpos+1) ;
LCD_char (cur [cur_index] .current[j]);

i++4;
1
!
if (cur[cur_ index].current[0] == '0')
if (curlcur_ index].current[1l] == '0')
LCD_setpos (0, stpos+5) ;
LCD_char (' ');
LCD_setpos (0, stpos+6) ;
LCD char('A');
LCD setpos (0, stpos+7) ;
LCD char(' ');
LCD_setpos (0, stpos+8) ;
LCD_char (' ');
1
else

LCD_setpos (0, stpos+6) ;
LCD_char (' ');
LCD setpos (0, stpos+7) ;
LCD_char('A');
LCD_setpos (0, stpos+8) ;

64

digits

LCD_char(' ');

else

LCD_setpos (0, stpos+7) ;
LCD_char(' ');
LCD setpos (0, stpos+8) ;
LCD_char('A');

}

LCD_setpos(1,0);
LCD_printf ("Battery: ") ;

cur_index = 2;

i=0;
for (j = 0; j<=6; j++) //Displays voltage while taking out insignificant
%f (§ == 0 || §J == 1)
if (curlcur index] .current[j] == '0')
{
if (j == 1)
{
if (cur[cur_ index].current[0] == '0')
LCD setpos(1l,stpos+6-J) ;
//LCD_char (' ');
}
else
{
LCD_setpos (1, stpos+0) ;
LCD char (cur[cur_ index] .current [0]) ;
LCD_setpos (1, stpos+1) ;
LCD_char (cur [cur_index] .current[1]) ;
i = 2;
}
}
else
{ .
LCD_setpos (1, stpos+6-3) ;
//LCD_char(' ');
}
}
else
{ .
LCD_setpos (1, stpos+1i) ;
LCD_char (cur [cur_index] .current[j]);
14+;
}
}
else
{ .
LCD_setpos (1, stpos+i) ;
LCD_char (cur [cur_ index] .current [j]);
14+4;
}
}
if (curlcur_ index].current[0] == '0"')
if (cur[cur_index] .current[1l] == '0')

65

LCD setpos (1, stpos+5) ;
LCD _char (' ');
LCD_setpos(1l,stpos+6) ;
LCD char('A'");
LCD setpos(1l,stpos+7) ;

LCD_char (' ');
LCD setpos (1, stpos+8);
LCD char(' ');

}

else

{

LCD_setpos(1l,stpos+6) ;
LCD char(' ');
LCD_setpos (1, stpos+7) ;
LCD_char('A');
LCD setpos (1, stpos+8) ;
LCD_char (' ');

else

LCD_setpos (1, stpos+7);
LCD char(' ');
LCD_setpos (1, stpos+8);
LCD char('A');

1

cur_index = 1;

}

void relay init(void)
trisa.2
trisa.4
trisb.7 = 0

1
1

volatile bit relay@PORTB.7 = 0;

L o o S S o R

/ AN\
/ SPI Section of the Program \\
AN\

//**

~

void SPI_init (void)

{

// Prepare SSPSTAT (SPI status register)

sspstat.7 = 0; // SMP sample time, 1 samples at end of data output
time

sspstat.6 = 1; // SPI Clock Select, transmit on transition from

active to idle
sspconl = 0x20;

// Prepare RC3,RC4,RC5 for SPI use

trisc.3 = 0; // SCLK, SPI mode
trisc.4 = 1; // SDO (serial data out), SPI mode
trisc.5 = 0; // SDI (serial data in), SPI mode

//Initialize SPI (CS!)

trisb.2 = 0; // (CS!) for A/D Converter #1; set B2 as output
volatile bit b2high@PORTB.2 = 1; //Set B2 high

trisb.3 = 0; // (CS!) for A/D Converter #2; set B3 as output
volatile bit b3high@PORTB.3 = 1; //Set B3 high

trisb.4 = 0; // (CS!) for A/D Converter #2; set B4 as output

66

volatile bit b4high@PORTB. 4

void SPI_bat_ init (void)

{

= 1; //Set

// Prepare SSPSTAT (SPI status register)

sspstat.7 = 0;

time

sspstat.6 = 1;

active to idle

sspconl = 0x20;

// SMP sample time,

// SPI Clock Select,

// Prepare RC3,RC4,RC5 for SPI use
// SCLK, SPI mode

trisc.3 = 0;
trisc.4 = 1;
trisc.5 = 0;

//Initialize
trisb.4 = 0;
volatile bit

//Initialize
trisd.1l = 1;
trisd.0 = 0;

}

void SPI_CS(char micro,

// By default,
// select pins high.

// SDO
// SDI

SPI (CS!)
// (Cst!)

b4high@PORTB.4 = 1;

State Signals
//Initializes
//Initializes

char

// at any given time.

unsigned char cs_delay = 1;

switch (micro)

case 1:

volatile bit AD conv1@PORTB.2
volatile bit AD conv2@PORTB.3
volatile bit AD conv3@PORTB.4 = 1

// device
// device
// device

= 1, selects
= 2, selects
= 3, selects

switch (device)

case 1:
AD convl = choice;
break;
case 2:
AD conv2 = choice;
break;
case 3:
AD _conv3 =
break;

}

delay us(cs_delay);

void SPI_send(char data)

A/D

(serial data out),
(serial data in),

for A/D Converter #1;
//Set B4 high

B4 high

SPI mode

1 samples at end of data output

transmit on transition from

SPI mode

set B4 as output

input signal from control circuit
output signal to control circuit

device, bool choice)

1
1

’
7
I

choice;

// Allow for

every time this function is called,
Only one pin can be set low

A/D converter #1
A/D converter #2
converter #3

set all chip

(only one device selected)

ICS setup time

67

sspconl.7 = 0;

volatile bit spi bf@SSPSTAT = 0x0f;

nop () ;

nop () ;

nop () ;

sspbuf = data; // write input data to SSPBUF
while (!spi bf) {}

nop () ;

delay us (1) ;

**\\

/
/ Analog to Digital Channel Select A\

//**\\

~

void AD sample (char channel, char micro, char device, unsigned int &data)
unsigned char FIRST bit = 6;
unsigned char SECOND bit = 0;
unsigned char THIRD bit = 0;

data = 0;
switch (channel)

case 0:
break;

case 1:
SECOND bit.6 = 1;
break;

case 2:
SECOND bit.7 = 1;
break;

case 3:
SECOND bit.7 = 1;
SECOND bit.6 = 1;
break;

case 4:
FIRST bit.0
break;

case 5:
FIRST bit.0 = 1;
SECOND bit.6 = 1;

Il
'_l

break;
case 6:
FIRST bit.0 = 1;
SECOND bit.7 = 1;
break;
case 7:
FIRST bit.0 = 1;
SECOND bit.7 = 1;
SECOND_bit.G = 1;
break;
SPI_CS(micro, device, 0); // Select the A/D converter
SPI send(FIRST bit); // Send the first 8 bits
SPI_send (SECOND bit) ; // Send the second 8 bits
data.ll = sspbuf.3; // Read SSPBUF data into result
variable
data.1l0 = sspbuf.2; // Read SSPBUF data into result
variable
data.9 = sspbuf.l; // Read SSPBUF data into result
variable

68

data.8 = sspbuf.o0;
variable

SPI_send (THIRD bit) ;

/*data.7 = sspbuf.7;
variable

data.6 = sspbuf.6;
variable

data.5 = sspbuf.5;
variable

data.4 = sspbuf.4;
variable

data.3 = sspbuf.3;
variable

data.2 = sspbuf.2;
variable

data.l = sspbuf.l;
variable

data.0 = sspbuf.o0;
variable

*/

data = data + sspbuf;
//delay us(5) ;

SPI CS(micro, device, 1);
//delay us(5) ;

}

//**

Battery Analysis Section
//**

//

void bat volt convert (void)

// Read

// Read
// Read
// Read
// Read
// Read
// Read
// Read

// Read

SSPBUF

SSPBUF

SSPBUF

SSPBUF

SSPBUF

SSPBUF

SSPBUF

SSPBUF

SSPBUF

data

data

data

data

data

data

data

data

data

into

into
into
into
into
into
into
into

into

// Finished with channel

\\
\\
\\

long conv[7];

long temp[7];

long dataval;

unsigned int i = 0;

long dec = 100; // will indicate number of decimal places; i
decimals

long opamp num = 39;

long opamp den = 1000;

battery work;
//index = 3; // testing the function call

if (bat[index] .data

work.data = 2;

>= 4095)

else if (bat[index] .data >=10)
work.data = bat[index] .data -10;

!

else

{
work.data = 0;

1

dataval = (long)work.data;

conv[i] = dataval*5*dec*opamp den/opamp num/4096;

before dividing

work.voltage = conv[i];

bat [index] .volt _val = conv[i];

for (char d=0;d<=6;d++)

// always multiply

result

result

result

result

result

result

result

result

result

.e. 100 => 2

69

if (d > 5)

{

work.volt[6] = O;

?1se if (d!=2)
temp [d] = conv[d];
conv[d] = conv[d] - (int) (convI[d]/10)*10;
work.volt [5-d] = '0' + (int)conv[d];
conv[d+1] = templ[d]/10;

else

work.volt [5-d] = '.';
conv [d+1] = convI[d];

bat [index] = work;

}

void bat temp convert (void)

long conv[7];

long temp (7] ;

long dataval;

long conv_val = 100; // 10 mV/degree C

unsigned int i = 0;

long dec = 100; // will indicate number of decimal places; i.e. 100 => 2
decimals

if (bat[index].temp data >= 4095)
bat [index] .temp data = 2;

else if (bat[index].temp data >=10)

bat [index] .temp data bat [index] .temp data - 2;
else

bat [index] .temp data = 0;

dataval = (long)bat[index].temp data;

conv[i] = dataval*(9*dec)*conv_val/4096+3200; // always multiply before
dividing

bat [index] .temperature = conv[i];

bat [index] .temp val = conv[i];

for (char d=0;d<=6;d++)
if (d > 5)
bat [index] .temp[6] = 0;

else if (d!=2)

temp [d] = conv[d];
conv[d] = conv[d] - (int) (conv[d]/10)*10;
bat [index] .temp [5-d] = '0' + (int)conv[d];
} conv[d+1] = templ[d]/10;
else

70

bat [index] .temp [5-d]

conv [d+1l] = conv[d];
1
!
1
void ind sample (void)
unsigned int z = 0;

int count = 0;
long temp = 0;

unsigned int helper = 0;

int pos;

temp = 0;

helper = 0;

pos = index - 1;
while (1)

AD sample(pos,1,1,helper);
if (helper << 30)

AD sample(pos,1,1,helper);

Z++;
!
else
{
Z++;

if (z >=2)

z = 0;
break;

}

bat [index] .data = helper;

bat volt convert ()

while (1)

{

7

AD sample (pos,1,2,helper) ;
if (helper << 30)

AD sample(pos,1,2,helper) ;

Z4++;
!
else
{
Z++;

break;

bat [index] .temp data = helper;

bat temp convert ()

}

/*void critical (void)

’

71

if (bat[6] .voltage >= 9000)

crit status = 8;
crit count [8] ++;

else if (bat[6] .voltage <= 6500)

crit status = 7;
crit _count [7]++;

else if ((batl[é].voltage - bat[5] .voltage) <= 1000)

crit_status = 6;
crit count [6] ++;

else if ((bat[5].voltage - bat[4] .voltage) <= 1000)

crit status = 5;
crit count [5] ++;

else if ((bat[4].voltage - bat[3].voltage) <= 1000)

crit status = 4;
crit count [4] ++;

else if ((bat[3].voltage - bat[2] .voltage) <= 1000)

crit_status = 3;
crit count [3]++;

else if ((bat[2] .voltage - bat[l].voltage) <= 1000)

crit status = 2;
crit _count [2] ++;

else if ((bat[l].voltage) <= 1000)

crit status = 1;
crit count [1]++;

crit_status = 0;
if (crit_status != 0 && crit count[crit status] >= 60000)
crit count [status] = 0;

menu.active program = 5;
b/
void sample all (void)

index = 1;
ind sample () ;
index = 2;
ind sample() ;
index = 3;
ind sample() ;
index = 4;
ind sample () ;
index = 5;
ind sample() ;
index = 6;

ind sample () ;
index = 1;
current sample () ;

}

void current sample (void)

int z = 0;
unsigned int helper = 0;

while (1) // sample motor current

AD sample(6,1,1,helper);
if (cur([l] .data << 30)

AD sample(6,1,1,helper);

Z++;
!
else
{
Z++;

if (z >=2)

z = 0;
break;
} 1
cur index = 1;
cur [cur_index] .data = helper;
current convert () ;
helper = 0;

while (1) // sample battery current

AD sample(7,1,1,helper);
if (cur[l] .data << 30)

AD sample(7,1,1,helper);
Z4+;

else

break;

}

cur_index = 2;

cur [cur_ index] .data = helper;
current convert () ;

helper = 0;

cur index = 1;

}

void current convert (void)

long conv[7];
long temp[7];
long dataval;
long conv_val = 400; // 40 mV/A

unsigned int i = 0;

long dec = 1000; // will indicate number of decimal places; i.e. 100 =>

2 decimals
long def cur = 2500; // Voltage at OA (2.5V)

dataval = (long)cur[cur index].data;
conv[i] = dataval*dec/819;

conv[i] = def cur - convl[i];

conv([i] = conv[i]*1000/40;

cur [cur_index] .current val = conv[i];
cur [cur_index] .cur val = conv[i];

for (char d=0;d<=6;d++)

%f (d1=3)
temp [d] = conv[d];
conv[d] = conv[d] - (int) (conv[d]/10)*10;
cur [cur_index] .current[6-d] = '0' + (int)convI[d];
conv[d+1] = templ[d]/10;

cur [cur_index] .current[6-d] = '.';
conv [d+1] = conv[d];

}

int check soc(void)

long batévolt;

batévolt = bat[6] .voltage;
long min_volt 6500;

long max volt 9000;

int percent;

if (charg status == 1)
percent = 101;
else
if (batévolt <= 6500)
percent = 0O;
else if (batévolt >= 9000)
percent = 100;
}
else

{
}

//percent = 30;
return percent;

percent = (percent - min volt)*100/(max volt - min_volt);

}

//**\\

74

//

//**

User Interface Section

void check ui(option menu &menu)

{

int j = 1;

unsigned int data;
int def level = 2000;
deb test[5];

for (j = 1; j <=4; j++)

debounce [j] .prev = debounce[j].status;
debounce [j] .status = 0;

}

AD sample(0,1,3,data);
debounce[1] .data[0] =
AD sample(1,1,3,data);
debounce [2] .data[0] =
AD sample(2,1,3,data);
debounce [3] .data[0] =
AD sample(3,1,3,data);
debounce[4] .data[0] =

delay ms(20) ;

AD sample(0,1,3,data);
debounce[1] .datal[l] =
AD sample(1,1,3,data);
debounce [2] .data[1l] =
AD sample(2,1,3,data);
debounce [3] .data[l] =
AD sample(3,1,3,data);
debounce [4] .datal[l] =

if (debounce[l] .data[0] >= def level && debounce([l] .datal[1]

// Sample Up
data;

// Sample Down
data;

// Sample Back
data;

// Sample Return
data;

// 2nd Sample Up
data;

// 2nd Sample Down
data;

// 2nd Sample Back
data;

// 2nd Sample Return
data;

debounce [1l] .status = 1;

if (debounce[l] .prev ==

{

if (menu.active

{

loc == 0)

\\
\\

1 && debounce[l] .status ==

else

menu.active loc = 0;
menu.position--;
if (menu.position == 0)

menu.position = menu.total;

else

menu.position--;

menu.active loc = 0;
if (menu.position == 0)
menu.position = menu.total;

else

>=def level)

75

}

if (debounce([2] .data[0] >= def level && debounce[2] .data[l] >=def level)

debounce [2] .status = 1;
if (debounce[2] .prev == 1 && debounce[2] .status == 0)
{

if (menu.active loc == 0)

{

menu.position++;
menu.active loc = 1;
if (menu.position >> menu.total)

menu.position = 1;

else

else

menu.active_loc = 1;
menu.position++;
if (menu.position >> menu.total)

menu.position = 1;

else

}

if (debounce([3] .data[0] <= def level && debounce[3] .data[l] <=def level)
debounce [3] .status = 1;

if (debounce[3] .prev == 1 && debounce[3].status == 0) // Detect Back
menu.position = menu.active program;
menu.active program = 0;
menu.prev_program = 0;
menu.active loc = menu.prev_loc;

}

if (debounce([4] .data[0] <= def level && debounce[4] .datal[l] <=
def level)

debounce[4] .status = 1;

if (debounce[4] .prev == 1 && debounce([4].status == 0) // Detect
Enter/Return

%f (menu.prev_program == 0 && menu.active program == 0)
menu.prev_program = menu.active program;
menu.active program = menu.position;
menu.position = 1;
menu.prev_loc = menu.active loc;
menu.active loc = 0;

76

}

void main menu(void)
const char* menO "Main Menu';

const char* menl "1l) System Status "

const char* men2 "2) Battery Volt. "

const char* men3 "3) Current Info "

const char* men4 = "4) Temp. Sensors "

B)

menu.total = 4; // total number of options in this menu
switch (menu.position)

case 1:
%f (menu.active loc == 0)
LCD_setpos(0,0) ;
LCD_printf(menl)
LCD_setpos(1,0) ;
LCD_printf(men2)
LCD_setpos(menu.active_loc,19);
LCD_char('<');
LCD setpos (menu.active loc+1,19);
LCD_char (' ');

else

LCD_setpos(1,0);

LCD_printf(menl)

LCD_setpos(0,0) ;

LCD_printf(men4)
LCD_setpos(menu.active_loc,19);
LCD char('<');

LCD_setpos (menu.active loc-1,19);

LCD char(' ');
}
break;
case 2:
if (menu.active loc == 0)
{
LCD setpos 0);

(0
LCD_printf(men2)
LCD_setpos(1,0);
LCD pr1ntf(men3)

LCD setpos(menu active loc,19);
LCD char('<');
LCD_setpos(menu.active_loc+1,19);
LCD_char (' ');

else

LCD_setpos (0,0) ;

LCD_printf(menl)

LCD_setpos(1,0);

LCD_printf(men2)
LCD_setpos(menu.active_loc,19);
LCD _char('<');

LCD_setpos (menu.active loc-1,19);

} LCD_char(' ');
break;
case 3:

%f (menu.active loc == 0)
LCD_setpos(0,0) ;
LCD printf (men3) ;
LCD_setpos(1,0);
LCD_printf (men4) ;
LCD setpos (menu.active loc,19);
LCD _char('<');
LCD_setpos (menu.active loc+1,19);
LCD char(' ');

else

0,0);
men2) ;

LCD_setpos
LCD _printf
LCD setpos(1,0);

LCD_printf (men3) ;

LCD_setpos (menu.active loc,19);
LCD char('<");

LCD_setpos (menu.active loc-1,19);

~ e~ o~ —~

LCD_char (' ');
}
break;
case 4:
if (menu.active loc == 0)

{

LCD_setpos(0,0) ;

LCD printf (men4) ;
LCD_setpos(1,0);

LCD_printf (menl) ;

LCD setpos (menu.active loc,19);
LCD _char('<');

LCD_setpos (menu.active loc+1,19);
LCD char(' ');

else

0,0);
men3) ;

LCD_setpos
LCD printf
LCD setpos(1,0);

LCD_printf (men4) ;

LCD_setpos (menu.active loc,19);
LCD char('<");
LCD_setpos(menu.active loc-1,19);
LCD_char (' ');

—~ e~ o~ —~

break;

default:
menu.position = 1;
break;

}

void check menu(void)
{
check ui (menu) ;
switch (menu.active program)

case O:

main menu() ;
break;

case 1:

status_menu() ;

break;

case 2:

bv_menu () ;

break;

case 3:

current menu() ;

break;

case 4:

temp_menu () ;

break;

//case 5:
//error_menu () ;
//break;

default:
main menu() ;
break;

}

void bv_menu(void)
menu.total = 6; // total number of options in this menu
switch (menu.position)

case 1:
if (menu.active loc == 0)

LCD Voltage(1,2);

}

else

{
}

break;
case 2:
if (menu.active loc == 0)

{

LCD_Voltage (6,1);

LCD_Voltage(2,3);

LCD_Voltage(1,2);

}

break;
case 3:
if (menu.active loc == 0)

LCD_Voltage(3,4);

}

else

{
}

break;
case 4:
if (menu.active loc == 0)

{
}

LCD_Voltage(2,3);

LCD Voltage (4,5);

79

else

{
}

break;
case 5:
if (menu.active loc == 0)

LCD Voltage(3,4);

LCD Voltage(5,6);

else
LCD_Voltage (4,5);
break;
case 6:
if (menu.active loc == 0)

LCD_Voltage (6,1);
else

LCD_Voltage(5,6) ;

}

break;

default:
menu.position = 1;
break;

}

void status_menu(void)

const char* g0cO = "Start Generator "
const char* goff = "Generator Off ",
const char* soc_title = "Instant. SOC: ",
const char* charging = "Currently Charging ";
const char* viagen = "from the Generator ";
const char* viawall = "from the Wall ",
int soc offset = 15;

int temp[3];

int soc_stat[3];
soc = check soc();
if (charg status == 0)

LCD_setpos(1,0);

LCD printf (soc_title);
LCD_setpos(1,19);

LCD _char('%');

LCD setpos(1,18);

LCD char(' ');
soc_stat [0] = soc;
for (int 1 = 0; i <=2; i++)
temp[i] = soc_stat[i];
soc_stat[i] = soc_stat[i] - (soc_stat[i]/10)*10;
LCD_setpos(1l,soc_offset+i);
if (soc_stat[i] == 0 && i !=2)

LCD char(' ');

else
LCD_char('0' + soc_stat[il]l);

soc_stat[i+1] = temp[i]/10;

}
if (gen status == 0)
if (soc >= 66)

LCD_setpos(0,0) ;
LCD_printf (goff) ;

else

LCD_setpos(0,0) ;
LCD_printf (g0cO) ;

else
LCD_setpos(0,0) ;
LCD_printf (charging) ;
LCD setpos(1,0);
if (gen_status == 1)
LCD_printf (viagen) ;

else

LCD _printf (viawall) ;

}

void current menu(void)

LCD_Current () ;

}

void temp menu(void)
menu.total = 6; // total number of options in this menu

switch (menu.position)

{

case 1:
if (menu.active loc == 0)

LCD_Temp(1,2);

else
LCD Temp(6,1);
}
break;
case 2:
if (menu.active loc == 0)

{

81

LCD_Temp (2, 3) ;
else

LCD Temp(1,2);

}

break;

case 3:
if (menu.active loc == 0)

LCD Temp(3,4);
else

LCD _Temp (2, 3) ;

}

break;
case 4:
if (menu.active loc == 0)

LCD Temp(4,5) ;

}

else
{
LCD_Temp (3,4) ;
1
break;
case 5:
if (menu.active loc == 0)
LCD_Temp (5,6) ;
else
{
LCD Temp (4,5) ;
1
break;
case 6:
if (menu.active loc == 0)
LCD Temp(6,1);
!
else
{
LCD_Temp(5,6) ;
1
break;
default:
menu.position = 1;
break;

}

/*void error menu(void)

const char* error = "Error Found. Code:
const char* msg;

LCD_setpos(0,0) ;

LCD printf (error) ;

LCD_setpos(0,19) ;

LCD_char('0'+crit status);

switch(crit status)

I

82

case 0:
msg =
break;
case 1:
msg =
break;
case 2:
msg = "<10
break;
case 3:
msg = "<10
break;
case 4:
msg = "<10
break;
case 5:
msg = "<10
break;
case 6:
msg = "<10
break;
case 7:
msg = "<65
break;
case 8:
msg = ">90
break;
default:
msg =
break;

LCD_setpos(1,0) ;
LCD printf (msg) ;

}*/

void test (void)

//check_ui (menu
charg status
gen status =
status_menu() ;

6.3

NUMBER

18F46204P
TC1411NCPA-
ND
FFPF30UP20S
TU-ND
GBJ2502-FDI-
ND

620-1237-ND

) i
= 1;
1;

DESCRIPTION

Microcontroller

IC MOSFET DVR 1A HS

8DIP

"<10 V

"No errors found

on 12V Battery";

on

on

on

on

on

on

on

DIODE ULTRA FAST 200V

TO-220F

RECT BRIDGE GPP 25A

200V GBJ

IC HALL EFFECT SENSOR

MOD 5PIN

24V Battery";

36V Battery";

48V Battery";

60V Battery";

72V Battery";

Stack

Stack

"Unknown Error

CHARGING
BRD

REVELANT COMPONENT DATA SHEETS

CONTROL
BRD

DATA SHEET

http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&n
ame=PIC18F4620-I/P-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&n
ame=TC1411NCPA-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&n
ame=FFPF30UP20STU-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&n
ame=GBJ2502-FDI-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&n
ame=620-1237-ND

83

OPTOCOUPLER TRANS-

http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&n

4N35MFS-ND OuUT 6-DIP y ame=4N35MFS-ND
IC SENSOR PREC CENT http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&n
LM35DT-ND TEMP TO-220 y ame=LM35DT-ND
MC78TO5CTFS REGULATOR POS 5V 3A http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&n
-ND 4% T0220 y y ame=MC78TO5CTFS-ND
MCP3208- IC ADC 12BIT 2.7V 8CH http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&n
CI/P-ND SPI 16-DIP y y ame=MCP3208-CI/P-ND
GATE TRIAC ISOLATED http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&n
Q4015L5-ND 15.0A 400V y ame=Q4015L5-ND
IXTP26P20P- MOSFET P-CH 200V 26A http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&n
ND TO-220 y ame=IXTP26P20P-ND
296-1395-5- IC OPAMP GP 700KHZ http://search.digikey.com/scripts/DkSearch/dksus.dlI?Detail&n
ND DUAL 8DIP y y ame=296-1395-5-ND
6.4 PARTS LIST
6.4.1 CONTROL CIRCUIT

Part Value Device Package Library Sheet

12V-BAT PINHD-1X1 1X01 pinhead

12V-BAT-2 PINHD-1X1 1X01 pinhead

B PINHD-1X1 1X01 pinhead 1

BAT1 PINHD-1X1 1X01 pinhead 1

BAT2 PINHD-1X1 1X01 pinhead 1

BAT3 PINHD-1X1 1X01 pinhead 1

BAT4 PINHD-1X1 1X01 pinhead 1

BATS PINHD-1X1 1X01 pinhead 1

BAT6 PINHD-1X1 1X01 pinhead 1

BAT_VOLT EDGECONNECTOR-7 EDGECONNECTOR-7 EDGECONNECTOR lightning_riders 1

c1 22pf C-US025-024X044 C025-024X044 rcl 1

Cl1-A .1u C-US075-032X103 C075-032X103 rcl 1

c2 22pf C-US025-024X044 C025-024X044 rcl 1

C2-A .1lu C-US075-032X103 C075-032X103 rcl 1

c3 10uF C-US025-024X044 C025-024X044 rcl 1

C3-A .1u C-US075-032X103 C075-032X103 rcl 1

ca 10uF C-US025-024X044 C025-024X044 rcl 1

C4-A 1u C-US075-032X103 C075-032X103 rcl 1

c5 10uF C-US025-024X044 C025-024X044 rcl 1

C5-A .1lu C-US075-032X103 C075-032X103 rcl 1

C6 1mF C-US025-024X044 C025-024X044 rcl 1

C6-A .1u C-US075-032X103 C075-032X103 rcl 1

c7 1mF C-US025-024X044 C025-024X044 rcl 1

C7-A .1lu C-US075-032X103 C075-032X103 rcl 1

c8 1mF C-US025-024X044 C025-024X044 rcl 1

C8-A .1lu C-US075-032X103 C075-032X103 rcl 1

c9 du C-US050-035X075 C050-035X075 rcl 1

C9-A .1lu C-US075-032X103 C075-032X103 rcl 1

C10 10uF C-US025-024X044 C025-024X044 rcl 1

C10-A .1u C-US075-032X103 C075-032X103 rcl 1

Cl1-A .1u C-US075-032X103 C075-032X103 rcl 1

Cl12-A .1u C-US075-032X103 C075-032X103 rcl 1

C15 du C-US050-035X075 C050-035X075 rcl 1

84

Cle .1lu C-US050-035X075 C050-035X075 rcl 1
C17 .1u C-US050-035X075 C050-035X075 rcl 1
C18 .1u C-US050-035X075 C050-035X075 rcl 1
C19 .1u C-US050-035X075 C050-035X075 rcl 1
C20 .1u C-US050-035X075 C050-035X075 rcl 1
C21 .1u C-US050-035X075 C050-035X075 rcl 1
C22 .1u C-US050-035X075 C050-035X075 rcl 1

CHARGING MOLEX-34045-8 MOLEX-34045-8 MOLEX-34045-8 rmslib
CONTROLS MOLEX-6 MOLEX-6 MOLEX-6 lightning_riders 1

D PINHD-1X1 1X01 pinhead 1

D1 1N5400 1IN5400 D0201-15 diode 1

D2 1IN5400 1N5400 D0201-15 diode 1

E PINHD-1X1 1X01 pinhead 1

E1l PINHD-1X1 1X01 pinhead 1

E2 PINHD-1X1 1X01 pinhead 1

E3 PINHD-1X1 1X01 pinhead 1

E4 PINHD-1X1 1X01 pinhead 1

ES PINHD-1X1 1X01 pinhead 1
EX-SPEED MOLEX-6 MOLEX-6 MOLEX-6 lightning_riders 1
FUSE F2332 F2332 F2332 mylib 1

GENS PINHD-1X1 1X01 pinhead 1

GND PINHD-1X1 1X01 pinhead 1

GND-2 PINHD-1X1 1X01 pinhead 1

I-B PINHD-1X1 1X01 pinhead 1

I-M PINHD-1X1 1X01 pinhead 1

IC1-A OPAMP OPAMP OPAMP lightning_riders 1
IC1-C A/D A/D A/D lightning_riders 1

1C2 18F46204P 18F46204P DIL40 mylib 1
IC2-A OPAMP OPAMP OPAMP lightning_riders 1
IC2-C A/D A/D A/D lightning_riders 1

IC2-C1 A/D A/D A/D lightning_riders 1

IC3-A OPAMP OPAMP OPAMP lightning_riders 1
IC4-A OPAMP OPAMP OPAMP lightning_riders 1

IC5-A OPAMP OPAMP OPAMP lightning_riders 1
IC6-A OPAMP OPAMP OPAMP lightning_riders 1
JP5 PINHD-2X7 2X07 pinhead 1

JP6 JP1Q JP1 jumper 1

JP7 JP5Q JP5Q jumper 1

JP8 JP1Q JP1 jumper 1

LASTMOS PINHD-1X1 1X01 pinhead 1
LED1 .7 LED5MM LED5MM led 1

LED2 .7 LED5MM LED5MM led 1

MD TC1411N TC1411N-GOOD DIL8 mylib 1
MD1 TC1411N TC1411IN-GOOD DIL8 mylib 1
OKB PINHD-1X1 1X01 pinhead 1

OKT PINHD-1X1 1X01 pinhead 1

POWER IP2Q P2Q jumper 1

POWER-EX MOLEX-6 MOLEX-6 MOLEX-6 lightning_riders 1
Ql 32.768kHZ CRYSTALHC49U-V HC49U-V crystal 1
Q2 10MHz CRYSTALHC49U-V HC49U-V crystal 1

Q3 FQP50N06 FQP50NO6 TO220BV mylib 1
Q4 FQP50N06 FQP50NO6 TO220BV ~ mylib 1
R1 100 R-US_0207/7 0207/7 rel 1

R1-A 51k R-US_0207/10 0207/10 rcl 1

R2 1K R-US_0207/7 0207/7 rcl 1

R2-A 1k R-US_0207/10 0207/10 rcl 1

R3 1K R-US_0207/7 0207/7 rcl 1

85

R3-A
R4
R4-A
RS
R5-A
R6
R6-A
R7
R7-A
R8
R8-A
R9
R9-A
R10
R10-A
R11
R11-A
R12
R12-A
R13
R13-A
R14
R14-A
R15
R15-A
R16
R16-A
R17
R17-A
R18
R18-A
R19
R19-A
R19-A1
R19-A2
R19-A3
R19-A4
R19-A5
R19-A6
R19-A7
R19-A8
R20
R20-A
R21
R21-A
R22
R22-A
R23
R23-A
R24
R24-A
R25-A
R26
R26-A
R27
R27-A
R28-A

2k
270
4.02k
220
4.02k
220
2k
470
51k
150
1k
150
2k
470
4.02k
150
4.02k
470
2k
150
51k
470
1k
220
2k
220
4.02k
220
4.02k
470
2k
470
51k

250
1k
250
1k
250
1k
250
100

100

2k
220

4.02k
220

4.02k\
220

2k

51k
100

1k
470

2k

4.02k

R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rel
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rel
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rel
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rel
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rel
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rel
R-US_0207/10 0207/10 rcl
R-US_0207/7 0207/7 rcl
R-US_0207/10 0207/10 rcl
R-US_0207/10 0207/10 rcl

86

R29-A 4.02 R-US_0207/10 0207/10 rcl 1

R30-A 2k R-US_0207/10 0207/10 rcl 1
R31-A 51k R-US_0207/10 0207/10 rcl 1
R32-A 1k R-US_0207/10 0207/10 rcl

R33-A 2k R-US_0207/10 0207/10 rcl

R34-A 4.02k R-US_0207/10 0207/10 rcl 1
R35-A 4.02k R-US_0207/10 0207/10 rcl 1
R36-A 2k R-US_0207/10 0207/10 rcl 1
RELAY PINHD-1X1 1X01 pinhead 1

S PINHD-1X1 1X01 pinhead 1

s1 DT DT PBSWITCH mylib 1

svi MA10-1 MA10-1 con-Istb 1
SvV2 MA10-1 MA10-1 con-Istb 1
SV3 MA10-1 MA10-1 con-Istb 1
sv4 MA10-1 MA10-1 con-Istb 1

T1 PINHD-1X1 1X01 pinhead 1

T2 PINHD-1X1 1X01 pinhead 1

T3 PINHD-1X1 1X01 pinhead 1

T4 PINHD-1X1 1XO01 pinhead 1

T5 PINHD-1X1 1XO01 pinhead 1

T6 PINHD-1X1 1XO01 pinhead 1

TEMP1-2 MOLEX-6 MOLEX-6 MOLEX-6 lightning_riders 1
TEMP3-4 MOLEX-6 MOLEX-6 MOLEX-6 lightning_riders 1
TEMP5-6 MOLEX-6 MOLEX-6 MOLEX-6 lightning_riders 1

U PINHD-1X1 1X01 pinhead 1

US1 USD-SOCKETUSD USD-SOCKETUSD USD-SOCKET-PP SparkFun-3-2-07 1

Us2 MC78T05C MC78T05C TO220(V) mylib 1

US3 LD1585CV33 LD1585CV33 T0220(V) mylib 1

usa DS1305 DS1305 DIL16 mylib 1

uss 2N4401 2N4401 TO92-CBE mylib 1

US9 2N4401 2N4401 T0O92-CBE mylib 1

US11 2N4401 2N4401 TO92-CBE mylib 1

US12 2N4401 2N4401 TO92-CBE mylib 1

US15 2N4401 2N4401 TO92-CBE mylib 1

ZD1-A 15V 1N4728 D041Z10 diode 1

ZD1-A2 15V 1N4728 D0O41710 diode 1

ZD2-A 15V 1N4728 D041710 diode 1

ZD3-A 15V 1N4728 D0O41z10 diode 1

ZD4-A 15V 1N4728 D041z10 diode 1

ZD5-A 15V 1N4728 D041Z10 diode 1

ZD6-A 15V 1N4728 D0O41710 diode 1
6.4.2 CHARGING CIRCUIT

Part Value Device Package Library Sheet

72V PINHD-1X1 1X01 pinhead 1

BCV PINHD-1X1 1X01 pinhead 1

BE2 PINHD-1X1 1X01 pinhead 1

BE3 PINHD-1X1 1X01 pinhead 1

BE4 PINHD-1X1 1X01 pinhead 1

BES PINHD-1X1 1X01 pinhead 1

BE6 PINHD-1X1 1X01 pinhead 1

BEX MOLEX-6 MOLEX-6 MOLEX-6 lightning_riders 1
BS PINHD-1X1 1X01 pinhead 1

BUCK 4N35 4N35 DILO6 optocoupler 1
BUCK-MICRO 18F46204P 18F46204P DIL40 mylib
BU_USB JP5Q JP5Q jumper 1

C1 10uF C-US025-024X044 C025-024X044 rcl

C1-A du C-US075-032X103 C075-032X103 rcl 1
C1-Al1 du C-US075-032X103 C075-032X103 rcl 1
c2 10uF C-US025-024X044 C025-024X044 rcl

C2-A du C-US075-032X103 C075-032X103 rcl 1
C2-A1 .1lu C-US075-032X103 C075-032X103 rcl 1
c3 22pf C-US025-024X044 C025-024X044 rcl 1
c4 22pf C-US025-024X044 C025-024X044 rcl 1
C5 22pf C-US025-024X044 C025-024X044 rcl 1
(¢} 22pf C-US025-024X044 C025-024X044 rcl 1
c7 1u C-US050-035X075 C050-035X075 rcl 1
c8 1mF C-US025-024X044 C025-024X044 rcl 1
c9 1mF C-US025-024X044 C025-024X044 rcl 1
C10 1mF C-US025-024X044 C025-024X044 rcl 1
c11 1mF C-US025-024X044 C025-024X044 rcl 1
C12 1mF C-US025-024X044 C025-024X044 rcl 1
C13 1mF C-US025-024X044 C025-024X044 rcl 1
C15 du C-US050-035X075 C050-035X075 rcl 1
CpP1 PINHD-1X1 1X01 pinhead 1

cP2 PINHD-1X1 1X01 pinhead 1

D1 1N4004 1N4004 DO41-10 diode 1

D2 1IN5400 1N5400 D0201-15 diode 1

EX PINHD-1X1 1X01 pinhead 1

EX1 PINHD-1X1 1X01 pinhead 1

EX2 PINHD-1X1 1X01 pinhead 1

F1 PINHD-1X1 1X01 pinhead 1

F5 PINHD-1X1 1X01 pinhead 1

F52 PINHD-1X1 1X01 pinhead 1

FG PINHD-1X1 1X01 pinhead 1

FG1 PINHD-1X1 1X01 pinhead 1

FG2 PINHD-1X1 1X01 pinhead 1

1B PINHD-1X1 1X01 pinhead 1

IC1-A OPAMP OPAMP OPAMP lightning_riders 1
IC1-A1 OPAMP OPAMP OPAMP lightning_riders 1
IC2-C1 A/D A/D A/D lightning_riders 1
IC2-C2 A/D A/D A/D lightning_riders 1
J1 MTAOQ09-156 IX9MTA con-amp 1
JP1 JP1Q JP1 jumper 1
JP5 PINHD-2X2 2X02 pinhead 1
JP12 PINHD-2X4 2X04 pinhead 1
JP13 PINHD-2X2 2X02 pinhead 1
JP14 PINHD-2X3 2X03 pinhead 1
JP15 JP1Q JP1 jumper 1

L1 INDUCTOR INDUCTOR INDUCTOR lightning_riders 1
L2 INDUCTOR INDUCTOR INDUCTOR lightning_riders 1

LAST R
LR

MOTORSENSOR MOLEX-6 MOLEX-6 MOLEX-6 lightning_riders 1

OK5

4N35 4N35 DILO6 optocoupler 1
PINHD-1X1 1X01 pinhead 1

4N35 4N35 DILO6 optocoupler 1

Q1 10MHz CRYSTALHC49U-V HC49U-V crystal 1
Q2 10MHz CRYSTALHC49U-V HC49U-V crystal 1

R1 500 R-US_0207/10 0207/10 resistor 1
R1-A 68k R-US_0207/10 0207/10 rcl 1
R1-A1 68k R-US_0207/10 0207/10 rcl 1
R2 220 R-US_0207/10 0207/10 resistor 1
R2-A 1k R-US_0207/10 0207/10 rcl 1
R2-A1 1k R-US_0207/10 0207/10 rcl 1

R3 1000 R-US_0207/10 0207/10 resistor 1
R3-A 2k R-US_0207/10 0207/10 rcl 1
R3-A1 2k R-US_0207/10 0207/10 rcl 1
R4-A 4.02k R-US_0207/10 0207/10 rcl 1
R4-A1 4.02k R-US_0207/10 0207/10 rcl 1
R5 10000 R-US_0207/10 0207/10 resistor 1
R5-A 4.02k R-US_0207/10 0207/10 rcl 1
R5-A1 4.02k R-US_0207/10 0207/10 rcl 1
R6 100 R-US_0207/7 0207/7 rcl 1

R6-A 2k R-US_0207/10 0207/10 rcl 1
R6-A1 2k R-US_0207/10 0207/10 rcl 1

R7 1K R-US_0207/7 0207/7 rcl 1

R8 470 R-US_0207/7 0207/7 rcl 1

R9 100 R-US_0207/7 0207/7 rcl 1

R10 47000 R-US_0207/10 0207/10 resistor 1
R11 100 R-US_0207/7 0207/7 rcl 1

R12 470 R-US_0207/7 0207/7 rcl 1

R13 100 R-US_0207/7 0207/7 rcl 1

R14 1K R-US_0207/7 0207/7 rcl 1

R15 100 R-US_0207/7 0207/7 rcl 1

R16 470 R-US_0207/7 0207/7 rcl 1

R17 470 R-US_0207/7 0207/7 rcl 1

R18 470 R-US_0207/7 0207/7 rcl 1

R19 100 R-US_0207/7 0207/7 rcl 1

R20 470 R-US_0207/7 0207/7 rcl 1

R22 2.2k RESISTOR RESISTOR lightning_riders 1
R23 2.2k RESISTOR RESISTOR lightning_riders 1
R24 2.2k RESISTOR RESISTOR lightning_riders 1
R26 100 R-US_0207/7 0207/7 rcl 1

R27 470 R-US_0207/7 0207/7 rcl 1
RELAY PINHD-1X1 1X01 pinhead 1

S1 DT DT PBSWITCH mylib 1

S2 DT DT PBSWITCH mylib 1

Sv1 MA10-1 MA10-1 con-Istb 1

SvV2 MA10-1 MA10-1 con-Istb 1

SvV3 MA10-1 MA10-1 con-Istb 1

Sv4 MA10-1 MA10-1 con-Istb 1

SV5 MA10-1 MA10-1 con-Istb 1

Sv6 MA10-1 MA10-1 con-Istb 1

Sv7 MA10-1 MA10-1 con-Istb 1

Sv8 MA10-1 MA10-1 con-Istb 1

TCV PINHD-1X1 1X01 pinhead 1

TE2 PINHD-1X1 1X01 pinhead 1

TE3 PINHD-1X1 1X01 pinhead 1

TE4 PINHD-1X1 1X01 pinhead 1

TES PINHD-1X1 1X01 pinhead 1

TE6 PINHD-1X1 1X01 pinhead 1

TEX MOLEX-6 MOLEX-6 MOLEX-6 lightning_riders 1
TR4N35 4N35 4N35 DILO6 optocoupler 1
TRIAC-MICRO 18F46204P 18F46204P DIL40 mylib 1
TRMOC MOC3010M MOC3010M DILO6 optocoupler

TR_USB
TS
us1
us2
us3
usa
uss
use
us7
uss
us9
us1o
us11
us12
us13
us14
Us1s
usie
WALL
ZD1-A
ZD1-A2
ZD1-A3
ZD1-A4

JP5Q JP5Q jumper 1
PINHD-1X1 1X01 pinhead 1
IRF621PBF IRF621PBF TO220(B) mylib 1
IRF621PBF IRF621PBF TO220(B) mylib 1
F30UP20S F30UP20S TO220(X2) mylib 1
RELAY RELAY RELAY lightning_riders 1
F30UP20S F30UP20S TO220(X2) mylib 1
Q4015L5 Q4015L5 TO220(B) mylib 1
F30UP20S F30UP20S TO220(X2) mylib 1
GBJ2502-FDI-ND GBJ2502-FDI-ND GBJ mylib 1
CURRENT-SENSOR2 CURRENT-SENSOR2 CURRENT-SENSOR?2 lightning_riders 1
F30UP20S F30UP20S TO220(X2) mylib 1
GBJ2502-FDI-ND GBJ2502-FDI-ND GBJ mylib 1
MC78T05C MC78T05C TO220(V) mylib 1
MOLEX-34045-8 MOLEX-34045-8 MOLEX-34045-8 rmslib 1
2N4401 2N4401 TO92-CBE mylib 1
2N4401 2N4401 TO92-CBE mylib 1
MOLEX-6 MOLEX-6 MOLEX-6 lightning_riders 1
PINHD-1X1 1X01 pinhead 1

15V 1N4728 D041710 diode 1

15V 1N4728 D0O41710 diode 1

15V 1N4728 D0O41710 diode 1

15v 1N4728 D0O41710 diode 1

90

