

Bowman Creek
__

Senior Design Project

Galen Harden, Frank Kuhny, Fernando Lozano

5/7/14

2

TABLE OF CONTENTS
3 Introduction 3

4 System Requirements 5

5 Detailed Project Description 6
 5.1 System Theory of Operation 6
 5.2 System Block Diagram 7
 5.3 Power Electronics 7
 5.4 Wireless Network 9
 5.5 Sensor Subsystem 16

6 System Integration Testing 17
 6.1 Testing 17
 6.2 Design Requirements Met 18

7 User’s Guide 18
 7.1 Setup 18
 7.2 Installation 19
 7.3 How to tell if the device is working 20
 7.4 Troubleshooting 20

8 To-Market Design Changes 21

9 Conclusions 22

10 Appendices 22
 10.1 Relevant parts or component data sheets 22
 10.2 Complete Hardware Schematics 24
 10.3 Complete Software Listing 31

3

3 Introduction

 As a part of an initiative presented by Gary Gilot, the Bowman Creek restoration
is an important step for South Bend. The initiative seeks to improve the overall quality of
the watershed particularly by lowering pollutants and creating a livable environment for
aquatic life to thrive in. The goal is to reclaim the creek and to transform its heavily
urbanized form into one that is not only beautiful but also environmentally safe and
sound. With this is mind some of the improvements that must be made are centered in
the underground and piped paths of the creek. The creek must not only be clean-flowing
above ground but also throughout if the overall impact of a cleaner and healthy
watershed is expected.
 We seek to solve the problems of the drastic change in flow rate due to
obstructions caused by backflow in the underground sewer portions of the creek. The
water flow rate as it is now is not well regulated and this leads to issues such a dry
creek-bed when there is a lack of rain and also flooding during heavy rain periods. The
flow must be monitored so that regulation systems including valves can appropriately
allow a reasonable rate of water flow to not only prevent damage in the piping but also
to have the creek have a steady flow throughout all its portions. With these sensors
some other issues come to light, like powering such devices throughout the piping
systems, whether they are to be independently powered or tied to the grid and whether
the source of power is to be renewable or not as to maintain environmental goals. Along
with that came the problem of the sizing of the sensing equipment which must not
obstruct the flow of water whatsoever. Also the equipment had to have some protection
from water so to not have chance of failure due to damage to the equipment.
 In order to monitor the water depths designed and build what will be a compact,
affordable, and durable solution to the aforementioned problems. We planned to use
solar panels as the primary power source to maintain the self-dependence of the
sensors and batteries as a back-up power source which will help in cases of emergency
as well as with maintenance. The unit will have a protective shell to prevent water
damage. RF receivers and transmitters will allow communication between one sensory
unit and a neighboring one. The two adjacent sensors will have their water levels
compared to decide if cleanup or is necessary.
 The overall system is separated into the sensing and communicating between
sensors. The sensing subsystem will be controlled through the microcontroller to sense
the pressure of the water through a pressure transducer and from the pressure
determine the depth of the water, if there is an obstacle the pressure and water depth
will drop the change due to the obstruction. This will then notify that there is there is an
obstruction on the terminal. Though, this is done through the communication subsystem
by comparing it to the different water level from the other sensor. As it is compared, if
the difference amongst both sensors is a large discrepancy this will be displayed on the
terminal for which action should be taken up afterwards. The communication system will
be RF to allow the communication between sensors for a decent range within the
subterranean setup of pressure sensors.
 The other crucial system for the project is the powering system. The system will
be powered through replaceable rechargeable batteries which will in turn be charged by
the solar panel if that is the path we take. The enclosure will allow access to replace the

4

batteries when necessary. The power will be monitored and if the batteries are too low it
will indicate need to replace or that charging will need to take place. Also the batteries
will have a charge monitoring and protection circuit so as to have the batteries have
longer life with more cycles.
 The design overall met our teams expectations with the issues that arose in the
process. Due to the expense of the pressure sensors rather than the original ultrasonic
sensor, the feasibility of creating another sensor to compare the two levels did not work
out so some of the intended comparison system could not make it into the final design.
The sensing system was particularly more accurate than the expected ultrasonic sensor
that had been tested in the past, also it took the approach of relying on the actual water
level data to determine the condition that the creek was in. The other route of having the
ultrasonic sensor would have been more likely to fail due to water damage from
proximity or get a false reading if there was anything that may stick out above the water.
The sensor was robust and strong enough to withstand way beyond the needs of the
Bowman Creek which would assure use that it would be prepared for the worst and best
case scenarios.
 Then comes our communication the communication went through several stages
in the process with just a simple RF transceiver then we attempted to find a way for the
EmNet communications to be integrated into the larger Bowman Creek system, and
then finally our final 900 MHz RF communication. We abandoned the EmNet path due
to the fact that it would require proprietary circuits and software to enable us to use
them in our system this would have been too expensive and would have not proven to
be that helpful for our purposes. And so after refining which method we would use to
communicate between our sensors we decided upon using the terminals to monitor our
water levels. This would allow us to display our readings on a computer nearby and
have room to build upon rather than having the level on an LCD because we’d want
access to the data without having to enter the creek. It also ended up letting us know
where the levels came from as they were forwarded along through the use of each
device id.
 The power system turned out a bit better than expected, it went from a crude
solar to cell to sensor, to a more refined system to monitor the batteries through
charging and allowed a range of voltage inputs to supply our rechargeable batteries.
This allowed us to be able to charge the battery not only more efficiently but also quite
safe in an array of situations that may present themselves in the process. This allows us
to make sure that we can make the most out of the cells for the longest periods
possible. The power draws was minimal due to our setup of awake and sleep cycles
because the sensor did not need to sense always this was a portion of the design to
help out the power. The batteries took quite some time to lose charge with the setup
done this way, which is useful when the South Bend sun is not cooperating to charge
the batteries.
 Overall, even though the overall design changed the final product turned out to
be a bit better than expected in performing the tasks that were planned as parts of the
subsystems.

5

4 System Requirements

Requirement Description Result

General Purpose Must be able to communicate with the user to
monitor the water depths between points

Completed

User Implementation Must be able to operate on its own once installed Completed

Expected Life of
Product

Must be able to withstand water, periods without
sunlight, and long battery life

Completed

Cost System prototype must be within $500 budget to
design and produce

Completed

SUBSYSTEM REQUIREMENTS

Power

General -Must be able to provide rated power to each necessary
subsystem (microcontroller, communication, and
pressure transducer)
-Must monitor battery charge while charging/discharging
-Must be able to have variable voltage at input

Completed

Completed
Completed

Send/Receiv
e Module

General -Send depth and location data to other devices in network;
receive similar input from other devices

Completed

 Power -Peak power draw must be limited, should enter low power
mode when not transmitting/receiving

Completed

 Distance -Must be able to transmit over sizable distances
underground in order to minimize number of devices

Completed

 Software -Synchronize timing with other devices to transfer data Completed

Pressure
Sensor

6

Power

 General - Must be able to withstand worst case pressures in
Bowman Creek

- Must be well insulated protected from water
- Must

Completed
Completed

5 Detailed Project Description

5.1 System Theory of Operation

 The entire system all works together from the power subsystem, then to the
sensing, then to the process of communication. The charger has a 9 volt solar panel
attached to the power circuit which is already programmed to monitor the charge of the
two 3.7 Volt Lithium Ion cells, therefore a total of 7.4 Volts. There are two LEDs that will
indicate whether the batteries themselves are charging or not. From this the voltage of
the battery is dropped to 5 Volts by a 5 volt regulator which will serve as the source for
the pressure transducer and the main microcontroller board. The microcontroller takes
the 5 Volts and drops it to 3.3 Volts from a 3.3 volt regulator to power the PIC that is the
brains of interpreting the water level and then sending measurement the to the next
sensor in the network. The sensor output is an analog signal so we use an analog to
digital converter and scale to determine the water depth from the pressure measured by
the pressure transducer. Once this is done the programmed PIC sends the level to the
next sensor along the network with a device id to identify it with the sensor in the
network that it is reading. All these levels are accessed by the main microcontroller that
is connected to a computer through a mini USB connection. The levels are displayed on
the terminal through putty as the measurements are forward amongst the sensors in the
network. The sensing only occurs every 5 minutes, but 16 seconds to demonstrate,
because the water is not expected to change so quickly. This occurs through a cycle of
awaking and sleeping that occurs throughout the entire process.

7

5.2 System Block Diagram

5.3 Detailed Design/Operation of Subsystem 1 – Power

 The requirements for the power circuitry were that it must be able to provide
rated power to each necessary subsystem (microcontroller, communication, and

Pressure Sensor Solar Panel

Battery

Control

Signal

Data

out

Low Power Mode

Control Code

Sensor Control

Read Data

Log Distance

Send Depth Data

Pressure Sensor

Receive Depth Data

Power

Microcontroller

Send/Receive Module

Bowman Creek
__

Senior Design Project

Galen Harden, Frank Kuhny, Fernando Lozano

5/7/14

8

pressure transducer), that it must monitor battery charge while charging/discharging,
and that it must be able to have variable voltage at input.
 It was decided that because the entire system would be enclosed and placed
underground where the Bowman Creek needed to be monitored. In order to limit the
need of human manipulation of the sensor it was decided to use a 9 volt solar panel to
charge a system of batteries, two 3.7 volt Lithium Ion cells, a total of 7.4V at 2Ah which
would then supply the power to the needed components as the pressure transducer and
the main microcontroller. We decided to also allow a 2.1mm DC input for the input not
only to allow testing without sunlight, but to allow another way of charging if need be.
The input voltage is then used by the central component, the bq24650 Synchronous
Switch-Mode Battery Charge Controller. The bq24650 is a highly integrated switch-
mode battery charge controller that provides input voltage regulation, which reduces
charge current when input voltage falls below a programmed level. When the input is
powered by a solar panel, the input regulation loop lowers the charge current so that the
solar panel can provide maximum power output. The bq24650 offers a constant-
frequency synchronous PWM controller with high accuracy current and voltage
regulation, charge preconditioning, charge termination, and charge status monitoring.
The LEDs on the board indicate whether the batteries are being charged or not, first on
charging second, second on done charging, otherwise there is a fault. The bq24650
charges the battery in three phases: pre-conditioning, constant current and constant
voltage. Charge is terminated when the current reaches 1/10 of the fast charge rate.
The pre-charge timer is fixed at 30 minutes. The bq24650 automatically restarts the
charge cycle if the battery voltage falls below an internal threshold and enters a low
quiescent current sleep mode when the input voltage falls below the battery voltage.
There also exists an internal battery detection logic. Once the device has powered up, a
6-mA discharge current is applied to the SRN terminal. If the battery voltage falls below
the LOWV threshold within 1 second, the discharge source is turned off, and the
charger is turned on at low charge current. If the battery voltage gets up above the
recharge threshold within 500ms, there is no battery present and the cycle restarts. If
either the 500ms or 1 second timer time out before the respective thresholds are hit, a
battery is detected and a charge cycle is initiated. We set the charge current with a
current sensing resistor of 20mΩ to have a charge current of 2A. The bq24650, then
has a buck converter to drop the output to our desired voltage of 7.4 Volts.
 From the charging system we charge our 7.4 V battery, here we have pins to
check the voltage while testing as well as to make sure the voltage is around this value
to make sure everything is working according to expectations. From this the voltage of
the battery is dropped to 5 Volts by a 5 volt regulator which will serve as the source for
the pressure transducer and the main microcontroller board this is connected via crimp
pins to a 2.1 mm DC input jack on the main board. The microcontroller takes the 5 Volts
and drops it to 3.3 Volts from a 3.3 volt regulator to power the PIC that is the brains of
interpreting the water level and then sending measurement the to the next sensor in the
network.
 To test the functionality of the charging system took various readings with a
voltmeter across most of the components to be assured the entire system was working
as in the input voltage, that output for the battery and the output to the board. This was
definitely an extensive process of checking components and fixing any errors that

9

existed. The charging was checked after the batteries were drained with a low load for a
while to see if charging was occurring or not even besides seeing the LEDs.

5.4 Detailed Design/Operation of Subsystem 2 – Wireless Network

Subsystem requirements: Send/Receive Module

General Send depth and location data to other devices in network;
receive similar input from other devices

Power Peak power draw must be limited, should enter low power
mode when not transmitting/receiving

Distance Must be able to transmit over sizable distances
underground in order to minimize number of devices

Software Synchronize timing with other devices to transfer data

The communication system was largely successful in fulfilling the requirements
that were set out for it. Each device is capable of sending the depth of water that it
measures to the other devices in the system, and the other devices are able to receive
and interpret the sent data. Peak power draw was set to the maximum transmit power
allowed by the transceiver for maximum range, but this power draw is not excessive (we
were unable to measure the power draw of the transceiver because of the integrated
nature of the device, but the current specifications are listed in the attached datasheet).
Additionally, the transceiver is put to sleep by the software when the microcontroller
goes to sleep, significantly lowering the power draw. The devices will transmit over a
reasonable (but not impressive) distance of about 200 feet in buildings, which we
thought would be comparable to their performance in the underground sections of
Bowman Creek. Alternatively, if the devices can be mounted such that the link between
them has few obstacles and is relatively line of sight, their transmit distance will be
increased significantly. Finally, the devices are able to synchronize their sleep cycles in
order to allow extended periods of time without powering the wireless receiver, greatly
increasing the power efficiency of the transmit/receive module.

Subsystem Design and Operation

Each of the devices contains a wireless daughterboard, which is connected to
the main device board and microcontroller by a 2x5 right angle connector. The wireless
daughterboard is designed around the AT86RF212, a 700/800/900 MHz band wireless
transceiver produced by Atmel. We chose to use the 900 MHz band rather than the
more common 2.4 GHz band for wireless communication in order to take advantage of
the greater range of communication that is allows, and to maintain a high level of
similarity with the EmNet system upon which this system is based. The 2.4GHz band
allows higher data rates, but a high data rate was not critical in this application, and
would have required extra power, which was at a premium in our design.
Communication between the microcontroller and the wireless daughterboard is by SPI,
with additional pins for reset, sleep, and interrupt flagging. The schematic and board
design are included in the appendix.

10

 The wireless communication in the network is structured according to the
standards set out in IEE 802.15.4. The microcontroller initiates a write to the ATRF212
frame buffer, where it then writes the message to be sent. Upon finishing this write, the
microcontroller sends the transmit command, and the ATRF212 begins the transmit
sequence. It first sends the preamble sequence, which consists of 5 octets which serve
as the synchronization header. This header is generated automatically by the
ATRF212. The message that was previously written to the frame buffer is then sent.
This is referred to as the payload, and is what will be written to the receiving frame
buffer of any receiving devices. The payload consists of the following components:

 PHR – between 1 and 127, signifying the length of the message to be sent (18
bytes for these devices)

 FCF – the frame control field, which signifies the format of the following message

 Sequence number – indicates the device that the message originates from

 Addressing fields – 8 bytes for these devices, containing in order the destination
PAN ID, the destination address, the source PAN ID, and the source address.

 IEEE 802.15.4 allows a security header to follow the addressing fields, but this
was deemed unnecessary for this application, as the data being transmitted is
publically available, and transmission is highly power consuming

 MAC Service Data Unit – the user specified data, which contains an additional 32
bit header with the intent of screening out unwanted messages, as well as two
bytes containing the voltage level measured on the pressure sensor.

 FCS – the frame check sequence, which includes a checksum for the message
for transmit/receive error screening

The devices are designed to self-organize into a partially connected mesh network,
where each node (device) will connect to all other devices within its range. This
network topology was deemed the most practical for this application, as a fully
connected mesh would require that each node would be able to connect to every other
node in the network. While this topology offers better redundancy and resilience to
error, it was impractical to transmit wirelessly over the total length of the network, which
could be miles between the most distant nodes. Since the network will exist along
Bowman Creek (forming a long and thin network), a daisy chain structure was
considered, but the high dependency of the chain on the integrity of each device (i.e. if
one device was to fail, no devices beyond that device would be accessible) made it less
attractive. The partially connected mesh allowed flexibility in the construction of the
network, since if one device fails, the next device in the line may still be able to maintain
connection in the network. It should be noted, however, that if the devices are placed
such that the distance between them is close to the range of transmission that they
allow, the network will default to a daisy chain topology. Additionally, this type of
network will allow new devices to be added in between existing devices without
modifying those that are already in place, rather than requiring that new devices be
added to the end of the line.

11

Software Description

12

The individual devices are controlled by the central microcontroller, which acts
according to the software flowchart. Descriptions of the actions taken by the software
for each box in the flowchart are provided below.

Microcontroller Setup – Upon turning on the device, the microcontroller moves
into the initial setup phase. It first sets all interrupt settings and sets up the SPI and
UART for interfacing with the wireless transceiver and computer terminal. It sets all of
the appropriate pins to the necessary input/output and analog/digital state, sets up the
watchdog timer (without enabling it) and timer 1, and sets up the analog to digital
converter (ADC).

Wireless Transceiver Setup – After completing the microcontroller setup, the
software sets up the wireless transceiver via SPI. The state diagram for this setup and
the operation of the transceiver in general is shown below. It first moves into the
TRX_OFF state, sets the communication channel (channel 8, 920 MHz), sets the device
addresses, and enables the appropriate transceiver interrupts.

13

Active State (Receive Messages) – This is the default state for the state
machine, which loops continuously. This state sets the wireless transceiver in the
RX_ON state and checks the frame buffer for messages. If a message is in the frame
buffer, it stores it in the array “payload,” which is then accessible to other functions in
the software.

Does time=Device_ID – Each device is programmed with a unique device ID
(stored in the variable device_ID), which is the only difference between the devices
(except for device 0, which is discussed later). Each device also keeps time with the
timer Timer1 on the microcontroller. The timer is set to trigger an interrupt and
increment the global time every time that it reaches its maximum value. If the time is
equal to the device ID of an individual device, that device will branch into the
measurement tree of the flowchart (discussed below). All other devices will continue
downwards to the next decision.

Does time=sleep_time – When the time reaches the time that has been
designated as the sleep time, the device will enter the sleep tree. The sleep time is
changed by the software according to the messages that the device has received in
order to allow scaling of the network. The sleep time is always set to three greater than
the greatest device number that has sent a message over the network. This means that
some energy is wasted during each cycle waiting for new messages, but new devices
will be added to the network seamlessly, as any number of devices can be added, and
sleep time will be incremented as needed. This system avoids waiting with the
transceiver on for too long, which causes a high power draw, while also avoiding setting
limits on the number of nodes in the network or worse, requiring alteration to already
installed devices.

Read received message – This state checks the payload array and makes a
number of decisions accordingly (listed below). It also begins the forwarding tree of the
device.

 Do the addresses match? – The software checks the relevant words of the
payload array for address matching and to make sure that the 32 bit header is identical
to what is expected from devices on this network. If all of the correct addresses and
header sequence is read, the forwarding tree continues, otherwise, the state returns to
receiving messages.

 Has this message been seen? – The software checks if this device has already
forwarded this packet. A large array (receivedPackets) has all bits cleared when the
time is reset after each sleep cycle. Following this, the software sets the bit with index
equal to the device’s ID, and then sets the bit for the device ID of each packet that it
receives. This ensures that no time or power is wasted forwarding packets that have
already been seen (and forwarded) by this device. There was a conscious choice made
during the design to not specify any other requirements for forwarding. Conceivably,
one could only forward packets to devices upstream of this one (e.g. higher sequence
number), or some similar criteria, but we wanted to be able to receive all of the data in

14

the network from any point along the network. Additionally, this allows new devices to
be placed anywhere along the creek, regardless of their ID (though the user must never
program devices with IDs in a non-sequential way, as devices with an ID more than
three greater than the highest existing device on the network will be ignored until the
empty space is filled)

Forward message – The device then forwards the entire message as it was
received. To do this, the message is rewritten to the frame buffer and the transceiver is
put into the state TX_ON until the message is sent.

 Was the message from device 0? – The message is still stored in the payload
array, so the software checks which device it originated from. If the message was
originally sent by device 0, the global time is set to 0, synchronizing the time across the
network (to within the necessary limits). The device then returns to the Active State to
receive messages. This part of the code is different for device 0, as it does not receive
its own messages. Instead of resetting the time upon receiving a signal, device 0 resets
its own clock. After waking up from sleep, device 0 waits for ten more increments of the
global time, and then resets its own clock to time 0. It then sends out its message,
which acts as the synchronization signal for the entire network. In this way, all of the
devices are synchronized to the clock of device 0.

 Measurement tree – The device measures the water pressure, converts the
measured pressure to a depth, and displays the measured value. It then sends the
measured pressure to the other devices. This is described in more detail in the
measurement subsystem.

 Put wireless transceiver to sleep – The device sends the appropriate commands
to change the state of the wireless transceiver chip into the TRX_OFF state, and then
into the SLEEP state. This significantly reduces the power draw of the wireless
transceiver by disabling all functions and communication (except by the wake up trigger
pin).

 Put microcontroller to sleep – The software then puts the microcontroller to sleep.
To do this, the watchdog timer (WDT) is serviced and then enabled, and then the
assembly instruction “wait” is sent to the microcontroller. It should be noted that devices
which have been newly added to the network will not go to sleep, and instead will
remain awake until they receive the synchronization message from device zero. This is
necessary in order to make sure that new devices are not added out of synchronization
with the network, and will always connect themselves if they are in range.

 Sleep for 5 minutes – The microcontroller will enter sleep mode when the “wait”
instruction is given. While it is in this state, the microcontroller disables most of its
modules and significantly lowers its power consumption. The main oscillator (the fast
RC onboard oscillator) is turned off, and only the low power oscillator (LPRC) remains
on. The LPRC runs the WDT, which is set to wait for 262144 milliseconds (about 4.4
minutes) before waking up the microcontroller.

15

 Wake up the microcontroller – Upon reaching its maximum value, the watchdog
timer wakes up the microcontroller, and the code resumes from where the “wait”
command was asserted.

 Wake wireless transceiver up – Following waking up the microcontroller, the
software wakes up the wireless transceiver by sending the commands to wake it up
from the sleep state, and then to place it in the TRX_OFF state, from which it will be
able to enter the RX_ON state when the device returns to the active state.

Subsystem Testing

The wireless communication subsystem was tested extensively in order to
ensure that it would operate continuously without interruption, without requiring any
input from the user. In the initial phases of testing, communication was established
between devices operating at 2.4 GHz, as these were readily available and very similar
to the 900 MHz devices. Two devices were provided by professor Schafer, one of
which was configured to receive all messages, and one was configured to constantly
send a stream of messages. The sending code was tested first, sending a single
packet to the receiving device. The receiving code was written separately and tested
with the provided transmit module. Upon receiving the message, the code would output
the message to the computer terminal. The final testing done with the 2.4 GHz boards
was a rudimentary forwarding scheme, which would receive a message from the
transmit board, switch into transmit mode, and send the message (with some alteration)
to the receive board, which would then output both the original and the altered
messages to the computer terminal.

Following the testing on the 2.4 GHz boards, the 900 MHz boards were constructed.
These were initially tested with the same code that the 2.4 GHz were tested with. As
the main project code progressed, one device was set up with the pure receive and
output code, while the project code was tested on two other devices. This setup
allowed all of the messages sent over the network to be viewed in one place, which was
important, because each device was supposed to receive and forward each message
only once. If one or multiple devices forwarded messages without displaying them, it
could lead to excessive crowding of the network and power usage. Once the devices
were forwarding properly, without repeating messages unnecessarily, the code was
tested for long periods of time. Whenever the code stopped executing, it was analyzed
to find the source of the problem, and then modified to prevent this stoppage. Once the
backbone of the code worked without any problems, minor changes were made, and it
was confirmed that they worked properly by outputting to the terminal when the
associated code had executed.

The sleep function was written and tested once the transmit/receive functionality
was established. The transmit/receive code includes a global time that constantly
increments and is displayed to the board LEDs, so it was easy to test when the board
was sleeping, as this time would stop for the amount of time specified in the watchdog
timer setup, then resume where it had taken off.

16

5.5 Detailed Operation of Sensor Subsystem
The purpose of this subsystem is to be able to accurately detect the level of water up to
a certain depth. The design requirements for this subsystem were to be able to be
powered by the main board that we were using and to measure water depth accurately
enough as well as to a certain depth of water. Through discussions throughout the
semester, we figured that being able to measure any depth up to about 30 feet would be
adequate for the final design. This would accommodate the sensor being placed at the
bottom of the creek in times of flooding.

For the actual sensor, we chose to use the Honeywell PX2AN1XX030PAAAX pressure
transducer. A pressure transducer measures a pressure from its environment and
converts that into an analog voltage on the output pin of the sensor. We chose this
sensor for our system because it fit all of the requirements that we needed. It is
powered by 5V which is perfect for the main board we were using. It also measures up
to 30 PSI which is approximately 28 feet of water, just under our desired value, but very
close nonetheless and definitely the closest we could come to the desired value.

The sensor has three pins on it: one power pin, one output pin, and a pin to connect to
ground. The connector that is used is a Delphi Metri-Pack 150 which just allows easier
connection to the three pins to other wires. We put a silicon coating around the
connection to the wires to make them waterproof to the water that would inevitably
touching them otherwise since the entire sensor would be immersed in water and would
be shorted if this were not present. For our testing purposes also, we connected wires
that were about 7-8 feet long so they would be able to reach from our board all the way
down the PVC pipe we used as a water column.

17

The above circuit is the depiction of the connection from the sensor to the board. We
experienced some amount of difficulty with the voltage drop we were trying to achieve.
When we originally designed this circuit, we were expecting a voltage drop of 1/3 of the
sensor output voltage because of the voltage divider we had designed. We had not
thought about the fact that the connection to the board would put some sort of load on
the overall circuit. Instead of a 1/3 drop, the actual drop was approximately a 60% drop.
We thought about putting a common collector between the voltage divider and board to
isolate the voltage, but the current gain would have been too high for the
microprocessor we were using. Instead, we just kept this circuit which helped lower the
voltage to a point that was accessible for our greater design.

6 System Integration Testing

6.1 Testing
The main part of the testing of the subsystems together involved getting the sensor to
output the correct data to the terminal window we had set up. Originally, the code we
had written was outputting negative numbers for depth which obviously was not correct
since the lowest reading that should exist should be a depth of zero meters.

The bulk of what we had to do to best integrate them was calibrating the sensor within
the program. This involved setting up the correct equation based on the particular
sensor we had. The first problem that arose was that the voltage the sensor was
outputting was too high and had to be scaled down. We did this by creating a voltage
divider so that the output voltage from the sensor would be multiplied by 2/3. While the
configuration we had did not put exactly 2/3 the output voltage into the input pin on the
main board, we were able to scale it within the program.

Because we were having difficulty with getting this voltage to be linear in scale, we
thought of creating a common collector circuit where the input would be 2/3 of the
voltage of the output pin of the sensor (done by the voltage divider) and the output pin
of the common collector circuit would be the input to the pin on the board. This would
have correctly isolated. We decided to not go with this because the current gain would
have been too high with the board we were using. Instead, we figured out that the input
to the pin would scale approximately linearly with the voltage divider we were using.
Therefore, we only had to correctly program the board to calculate the depth. The
equation we ended up using was depth = ((30*(voltage / 432 * 5 - 0.5)/4) - 13.905) *
74/3; where “depth” is the calculated depth and “voltage” is the input voltage based from
the sensor. The rest of the numbers are correction factors for atmospheric pressure
and for the scaling of the sensor.

Once we had the correct scaling, all we had to do was output the value of the voltage to
the terminal which was relatively easy. There was little to no issue with integrating the

18

battery charging circuit to the main board as the design for this system was robust and
accounted for connecting it already.

6.2 Testing Met Design Requirements
The testing that we did on the system did meet the design requirements laid out to us.
We were able to correctly measure the water to within 1-1.5 inches of the actual depth.
Since this was the main purpose of the project, sensing water depth, being able to
accurately do this was a great success. We were able to attain every depth from the
sensor that we could achieve. Given the constraints of our testing system, the PVC
pipe we used as a column of water only went up to four and a half feet. We attained a
reading at every single inch within this column though from having the sensor
completely out of the water to having the sensor at the very bottom of the column when
it was completely filled. We achieved this both before demonstration day and on
demonstration day.

We were also able to successfully send data along the line of sensors using ZigBee
communications. When our sensor read in data to board 00 from the sensor we had
working, it successfully sent it down the line of sensor. We set this up to first test just
sending it from board 00 to board 01, and it worked. We then set up board 01 to send
data it received from board 00 to board 02 which it successfully did. Our system was
not designed to send data from every board to every board. The coding of our boards
allowed this not to happen, so we were excited to see the system work. We thought it
would be no problem to send data along any arbitrary number of points as well.

Finally, the testing of our battery subsystem proved to meet our design requirements.
We were able to demonstrate a gain in voltage all the way up to the expected value
when the system had been charging for a long time. We were not able to test it using a
solar cell, but the battery we had hooked up to our lithium-ion cells showed a gain in
voltage across the cells after a great deal of charging. We were able to test that there
was voltage across the solar cell we were planning on using, so there would be no
problem with charging it if the solar cell were actually implemented into the overall
system instead of the battery. The lithium-ion cells also did successfully power the
sensor system once we had everything hooked up and working.

7 User’s Manual

7.1 Setup
The setup of this device is relatively simple. If the device has been provided with the
device number already set, not setup is needed. If not, the device will need to be
programmed with a device number. To do this, follow these steps:

1. Plug the device into a computer via the micro USB port on the device.
2. Plug the PicKit 3 programmer into the computer via the mini USB connector on the

PicKit.

19

3. Attach the Pickit 3 programmer to the device programmer pins on the top left as
shown below.

The PicKit 3 programmer attached to the device board. Image courtesy of R. Michael Schafer

4. Open MPLAB X IDE on the computer.
5. Open the project “CommProject8”
6. Under Source Files, open the c file mainComm8.c
7. Edit the device_ID variable to the desired device ID. Note that in order for the

network to function properly, there must be no gaps in device IDs present in the
network.

8. Press the button “Make and Program Device Main Project”
9. Repeat for each device to be programmed, incrementing device IDs

7.2 Installation
Installation of the device should be completed as follows for normal devices:

1. Find a suitable place for the device to be installed. This should be at the lowest

point in the creek, so that any water in the creek will be measured.
2. Connect the solar panel to the device and place it somewhere where it is able to

gather as much sunlight as possible
3. Press the reset button on the device. If it has been programmed properly, it will

begin counting up in binary on the onboard LEDs. This should continue for a minute
or so, and then stop. It will resume counting after the specified sleep time has
passed, and shortly thereafter reset to a count of zero.

4. Once these steps have been completed, the device should be connected to the
network.

If you want to read data from the network, follow these steps:

1. Connect your device to a computer via the micro USB port.
2. Open a terminal (with a program such as Putty) connected to the appropriate COM

port, with the speed set to 57600
3. If the device is connected to the network, it will display measurements and

messages that it receives

20

7.3 How to tell if the device is working
If the device is working and connected to the network, it will count up in binary on the
onboard LEDs, and if it is connected to a computer, it will output to the terminal
whenever it receives messages.

7.4 Troubleshooting

Device LEDs are not counting. The device may be out of battery.
Connect it to a working power source.

Device LEDs do not pause counting. The device is not connected to the
network. There may be a number of
reasons for this.

 Device 0 is not sending the
synchronization message.

 This device is out of communication
range with the other devices. Move
it closer or place more devices in
between

One device on the network does not send
data about the water level

It may be out of range or power.

Measured water level varies slightly
between measurements.

This is normal, the device will only
measure with an accuracy of about ±1 inch

Devices beyond a certain point do not
connect to the network.

The network employs message forwarding
to deliver messages. If the distance
between two devices is very great, no
messages from beyond that gap will be
delivered.

8 To-Market Design Changes
The first change that would be made to the overall system would be the acquisition of a
better sensor. The sensor that we were using was pretty much the only one we could
find that fit within the budget the design constraints we had to deal with. There were
other sensor that could have been much more accurate for a lot more money, up to the
thousands of dollars, but obviously we did not have the budget for that. With the sensor
that we got for our final design, we were able to measure depths accurately to the inch,
but we were not able to do much beyond that. Given a more accurate sensor and a
board that could accommodate this greater accuracy, we could have been able to
measure depths to a much greater precision.

The other major design change that would be needed before this product could go out
to market would be involving the sensor system. We actually got a lot of questions
about this during our presentation. In its current state, our overall system simply
outputs the reading to a terminal from the one sensor that we have. It can output this
data to any number of terminals based on the number of boards that we have sending
data to one another. Beyond that, we do not have any analytical capabilities for the
data we are sensing. It would have been difficult since the data we would be receiving

21

would be need to be compared with other data, and since we only had one sensor we
had nothing with which to compare that data.

If our product were to go out to market though, we would need to implement some sort
of central data dump where every five minutes when the sensors woke up, all the data
along the entire line of sensors would be dumped into some sort of central computer
where the data from board 00 would be compared to that of board 01, board 01 would
be compared to board 02, etc. This way, if there were a certain amount of discrepancy
between any two points within the line, some sort of error could be sent to a technician
and people could be dispatched to see if there were a blockage in the creek of any
sorts.

The lithium-ion cells were the final part of the system that might need to be changed
before the final product could be sent out to market. The ones that we used to not have
the best current rating and are rather dangerous. Lithium-ion cells in general are
flammable, and we would not want anything to be possibly flammable and dangerous,
especially in an area where we are trying to preserve the habitat. We would need to
look into safer cells for this to be possible. The charging PCB we designed might also
need to be slightly changed to accommodate these changes in batteries should this
change be made for the market.

9 Conclusions
Overall the final product for our Senior Design Project turned out well. We were able to
implement well the system requirements that were laid out to us in the project. When
we talked with Gary Gilot at the project presentation, he seemed pleased with what we
were able to come up with as our final implementation of the design. Had we been able
to communicate better with EmNet from the beginning of the semester, we might have
been able to go a little bit farther with the project with ideas such as piggybacking our
sensor onto their communication system. This was not viable because they wanted us
to buy their product for a couple hundred dollars though, so we went with what we could
do. We were able to sense well with the sensor we bought and had the power
management and communication systems working as best they could. Given another
year (and possibly more funds) we would be able to make a finalized device with most if
not all of the ideas that were in the To-Market Design Changes Section.

10 Appendices

10.1 Relevant parts or component data sheets

Honeywell Heavy Duty Pressure Transducer PX2AN1XX030PAAAX
http://media.digikey.com/pdf/Data%20Sheets/Honeywell%20Sensing%20&%20Control
%20PDFs/PX2_Series_DS~.pdf

AT86RF212 Wireless Transceiver

http://media.digikey.com/pdf/Data%20Sheets/Honeywell%20Sensing%20&%20Control%20PDFs/PX2_Series_DS~.pdf
http://media.digikey.com/pdf/Data%20Sheets/Honeywell%20Sensing%20&%20Control%20PDFs/PX2_Series_DS~.pdf

22

http://www.atmel.com/images/doc8168.pdf

Balun/Filter combination 863-928 MHz (0805)
http://www.johansontechnology.com/images/stories/ip/balun-
filters/Balun_Filter_Combo_0896FB15A0100_Prelim.pdf

916 MHz Chip Antenna
https://www.linxtechnologies.com/resources/data-guides/ant-xxx-chp-x.pdf

PIC32MX795f512h Microcontroller
http://ww1.microchip.com/downloads/en/DeviceDoc/61156H.pdf

BQ24650 Sychronous Switch-Mode Battery Charge Controller
http://www.ti.com/lit/ds/symlink/bq24650.pdf

http://www.atmel.com/images/doc8168.pdf
http://www.johansontechnology.com/images/stories/ip/balun-filters/Balun_Filter_Combo_0896FB15A0100_Prelim.pdf
http://www.johansontechnology.com/images/stories/ip/balun-filters/Balun_Filter_Combo_0896FB15A0100_Prelim.pdf
https://www.linxtechnologies.com/resources/data-guides/ant-xxx-chp-x.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/61156H.pdf
http://www.ti.com/lit/ds/symlink/bq24650.pdf

23

10.2 Complete Hardware Schematics

24

25

26

27

28

29

30

10.3 Complete Software Listing

/*

 * File: mainComm8BK.c

 * Author: Galen

 *

 * Created on April 20, 2014, 9:40 PM

 */

#include <stdio.h>

#include <stdlib.h>

#include <xc.h>

#include "configbitsrev8.h"

#include <plib.h>

#include <sys/attribs.h>

/*

 *

 */

int time = 0;

int maxTime = 968,sleepTime = 1000;

int waterLevel;

void __ISR(_TIMER_1_VECTOR, IPL6AUTO) Timer1Hand(void) {

 INTClearFlag(INT_T1);

 IFS0bits.T1IF = 0;

 time++;

 LATE = 0xFF - time;

 if (time == sleepTime){

 // write SLEEP

putu(10);putu(13);putu(83);putu(76);putu(69);putu(69);putu(80);

 putu(10);putu(13);

 atrf_sleep();

 WDTCONSET = 0x01; // service WDT

 WDTCONSET = 0x8000; // enable WDT

 asm volatile("wait");

31

 time = maxTime-10;

 WDTCONCLR = 0x8000; // disable WDT

 atrf_wake();

 // write WAKE UP

putu(10);putu(13);putu(87);putu(65);putu(75);putu(69);putu(32);p

utu(85);putu(80);

 waterLevel = measure_Pressure();

 }

 /*

 INTClearFlag(INT_T1);

 IFS0bits.T1IF = 0;

 time++;

 if (time < 10){

 LATE = LATE - 0x1;

 }

 if (time == 20){

 time = 0;

 }*/

}

int * receive_Loop(){

 int

IRQdata,rData,PHR,FCF1,FCF0,seq,addr0,addr1,pan0,pan1,word;

 char dispChar[10];

 static int payload[127];

 int i = 0;

 // Begin receiving signals

 // Send RX_ON command

 // command write to TRX_STATE

 // write 0x06 (state change to RX_ON)

 atrf_SPI(0xC2,0x06);

 // command read from IRQ_STATUS

 // send empty byte, store status in IRQdata

 IRQdata = atrf_SPI(0x8F,0x00);

 //LATE = IRQdata; // show IRQ_STATUS on LED array

 // Check for address match

32

 if ((IRQdata & 0x20) == (0x20)){

 putu(10);

 putu(13);

 //putu(0x6D); // put m if addresses match

 }

 // Check for RX frame end and output frame

 if ((IRQdata & 0x08) == (0x08)){

 //putu(0x65); // put e if end of transmission reached

 LATBbits.LATB12 = 0; // set chip select to 0

(active)

 rData = do_SPI(0x20); // command read from frame

buffer

 payload[0] = do_SPI(0x00); // send empty byte, store

PHR in PHR

 payload[1] = do_SPI(0x00); // send empty byte, store

FCF1

 payload[2] = do_SPI(0x00); // send empty byte, store

FCF0

 payload[3] = do_SPI(0x00); // get sequence number

 payload[4] = do_SPI(0x00); // get address0 (lower 8

bits)

 payload[5] = do_SPI(0x00); // get address1 (upper 8

bits)

 payload[6] = do_SPI(0x00); // get pan0 (lower 8 bits)

 payload[7] = do_SPI(0x00); // get pan1 (upper 8 bits)

 payload[8] = do_SPI(0x00); // get address0 (lower 8

bits)

 payload[9] = do_SPI(0x00); // get address1 (upper 8

bits)

 payload[10] = do_SPI(0x00); // get pan0 (lower 8 bits)

 payload[11] = do_SPI(0x00); // get pan1 (upper 8 bits)

 i=0;

 while (i<(payload[0]-11)){

///////////////////////////////

 payload[i+12] = do_SPI(0x00); // get next word

 i++;

 }

 LATBbits.LATB12 = 1; // set chip select to 1

(inactive)

33

 }

 return (payload);

}

int main(int argc, char** argv) {

 // see if code is running

 TRISE = 0x0;

 LATE = 0xFF;

 int i=0, device_ID=2, packetSent=0;

 int *payload;

 int maxDevices=device_ID;

 // Set up initial settings for SPI, UART, Timer1, stuff

 pic_SPI_setup();

 // Set up AT86RF212 state, addresses, channel

 atrf_setup();

 int receivedPackets[1000] = {0,0,0,0,0,0,0,0,0,0};

 receivedPackets[device_ID] = 1;

 while(1){

 if ((time == (3*device_ID)) && (!packetSent)){

 //

 // do measurement here? (if it is fast)

 //

 send_measurement(device_ID,waterLevel);

 packetSent = 1;

 }

 else {

34

 payload = receive_Loop();

 int received = 0;

 for(i=0;i<sizeof(receivedPackets);i++){

 if (receivedPackets[payload[3]]){

 received = 1;

 //LATE = payload[3];

 }

 }

 // ((FCF0 & 0x33) != 0)

 // && (payload[3] != 0x88)

 // (payload[3] != oldseq) &&

 // && (payload[12] == 0x23) && (payload[13] ==

0x57) && (payload[14] == 0x11) && (payload[15] == 0x13)

 // this condition requires that things be addressed

in a certain way

 if ((payload[0] > 0) && ((payload[2] & 0x08) ==

0x08) && (!received) && (payload[12] == 0x23) && (payload[13] ==

0x57) && (payload[14] == 0x11) && (payload[15] == 0x13)){

 // mark this packet as received

 receivedPackets[payload[3]] = 1;

 //oldseq = payload[3];

 // Format and print received data

 receive_Print(payload);

 // Write to frame buffer

 write_frame_buffer(payload);

 // Send Payload

 send_Payload(payload);

 // if data is from device 0, synchronize time,

reset sent/received

 // && (oldseq != 0)

 if ((payload[3] == 0) && (time != 0)){

 //putu(122);

 //putu(10);

 //putu(13);

 packetSent = 0;

 for (i=0;i<sizeof(receivedPackets);i++){

 receivedPackets[i] = 0; // clear

received packets

35

 }

 receivedPackets[device_ID] = 1;

 time = 0;

 }

 if (payload[3] > maxDevices){

 maxDevices = payload[3];

 }

 }

 }

 sleepTime = 3*(maxDevices+3);

 }

 //IFS2bits.U6RXIF = 0;

 return (EXIT_SUCCESS);

}

int do_SPI(int sendData) {

 IFS1bits.SPI4RXIF = 0;

 SPI4BUF = sendData;

 while(!IFS1bits.SPI4RXIF){}

 return SPI4BUF;

}

int atrf_SPI(int command,int what){

 int rData;

 LATBbits.LATB12 = 0; // set chip select to 0 (active)

 rData = do_SPI(command); // command write/read to

register/frame buffer

 rData = do_SPI(what); // write state/data

 LATBbits.LATB12 = 1; // set chip select to 1 (inactive)

 return(rData);

}

int pic_SPI_setup(){

 int rData;

 // Set up UART stuff

 serial_init(57600UL);

 set_output_device(1);

36

 //INTClearFlag(INT_T2);

 //INTSetVectorPriority(INT_T2, 2);

 IFS2bits.U6RXIF = 0;

 IPC12bits.U6IP = 1;

 IPC12bits.U6IS = 1;

 IEC2bits.U6RXIE = 1;

 // Disable JTAG (on pins B10, B11, B12)

 DDPCONbits.JTAGEN = 0;

 //Set Pins to digital

 AD1PCFG = 0xFFFE;

 // set pins to output

 TRISBbits.TRISB8 = 0;

 TRISBbits.TRISB12 = 0;

 TRISBbits.TRISB10 = 0;

 TRISBbits.TRISB11 = 0;

 TRISBbits.TRISB14 = 0;

 TRISBbits.TRISB0 = 1;

 TRISDbits.TRISD0 = 1; // set IRQ pin to input

 LATBbits.LATB10 = 0; // set SLP_TR to low

 LATBbits.LATB11 = 0; // set RST/ to 0 (reset ATRF231)

 LATBbits.LATB12 = 1; // set chip select to 1 (active

low)

 //

 OSCCONbits.PBDIV1 = 0; // PBCLK is SYSCLK divided by 2

 OSCCONbits.PBDIV0 = 1;

 OSCCONbits.SLPEN = 1; // sleep when WAIT instruction is

given

 //WDTCONCLR = 0x0002; // disable WDT window mode

 //WDTCONSET = 0x8000; // Enable WDT

 // Set up Timer1

 T1CONbits.ON = 0; // timer is off

 T1CONbits.TCKPS = 0x03; // prescale by 256 (0x03)

 T1CONbits.TWDIS = 1;

 TMR1 = 0x0; // set timer value to 0

 PR1 = 0x2710; //

 IFS0bits.T1IF = 0; // clear T1 flag

 IPC1bits.T1IP = 0x06; // second highest priority

 IPC1bits.T1IS = 0x00; // lowest subpriority

 IEC0bits.T1IE = 1;

 T1CONbits.ON = 1; // turn timer on

37

 // Set up Watchdog Timer (WDT)

 OSCCONSET = 0x10; // Set power saving mode to sleep

 WDTCONCLR = 0x0002; // disable WDT window mode

 // Set up ADC

 IFS1SET = 0x02;

 IPC6bits.AD1IP = 1; // Priority

 IPC6bits.AD1IS = 1; // Subpriority

 //IEC1bits.AD1IE = 0;

 TRISBbits.TRISB0 = 1; // set AN0 to input (RB0)

 AD1CON1bits.SIDL = 1; // turn ADC off during sleep

 // AD1CON2bits.VCFG = 0x01; // add this and change many

things for vref version

 AD1CSSL = 0x0001; // only look at AN0

 AD1CON1bits.ASAM = 1; // automatic sampling

 // Set up SPI4

 IEC1CLR=0x0700; // disable all interrupts for SPI4

 SPI4CON = 0; // Stops and resets the SPI4.

 rData=SPI4BUF; // clears the receive buffer for SPI4

 SPI4CONbits.ENHBUF = 0; // do not use enhanced buffer mode

 IFS1CLR=0x0700; // clear any existing event for SPI4

 IPC8CLR=0x1f; // clear the priority for SPI4

 IPC8SET=0x0d; // Set IPL=3, Subpriority 1 for SPI4

 //IEC1SET=0x0700; // Enable RX, TX and Error interrupts for

SPI4

 SPI4BRG=0x1F; // use FPB/2 clock frequency

 SPI4STATCLR=0x40; // clear the Overflow

 SPI4CONbits.CKE = 1; // 0 in previous?

 SPI4CONbits.CKP = 0; // 1 in previous?

 SPI4CONbits.SMP = 1;

 SPI4CONbits.MSTEN = 1;

 SPI4CONbits.MODE32 = 0;

 SPI4CONbits.MODE16 = 0;

 SPI4CONbits.ON = 1;

 LATBbits.LATB11 = 1; // end reset of atrf 231

 rData=SPI4BUF; // clears the receive buffer

 // enable interrupts

 INTCONbits.MVEC = 1;

38

 asm("ei");

 return;

}

int atrf_setup(){

 int IRQdata;

 // set chip select to 0 (active)

 //LATBbits.LATB12 = 0;

 // send test SPI

 // rData = do_SPI(0x9C); // command read part number

 // rData = do_SPI(0x00); // send empty byte, store part no.

in rData

 // set chip select to 1 (inactive)

 //LATBbits.LATB12 = 1;

 // command write to TRX_STATE

 // write 0x08 (state change to TRX_OFF)

 atrf_SPI(0xC2,0x08);

 // command write to TRX_CTRL_1

 // write 0x24 (automatic checksum, monitor TRX_STATUS)

 atrf_SPI(0xC4,0x24);

 // command read from TRX_STATUS

 // send empty byte, store status in rData

 atrf_SPI(0x81,0x00);

 //LATE = rData; // set SPI return to LED array

 // command write to PHY_CC_CCA

 // write 0x28 (channel 8 (920 MHz), no CCA)

 atrf_SPI(0xC8,0x28);

 // Set Addresses

 // command write to SHORT_ADDR_0

 // write 0xCD (lower 8 bits)

 atrf_SPI(0xE0,0xCD);

 // command write to SHORT_ADDR_1

 // write 0xAB (upper 8 bits)

 atrf_SPI(0xE1,0xAB);

39

 // command write to PAN_ID_0

 // write 0xEF (lower 8 bits)

 atrf_SPI(0xE2,0xEF);

 // command write to PAN_ID_1

 // write 0xEF (upper 8 bits)

 atrf_SPI(0xE3,0xEF);

 // command write to TRX_STATE

 // write 0x09 (state change to PLL_ON)

 atrf_SPI(0xC2,0x09);

 // command read from TRX_STATUS

 // send empty byte, store status in rData

 atrf_SPI(0x81,0x00);

 //LATE = rData; // set SPI return to LED array

 // command read from IRQ_STATUS

 // send empty byte, store status in rData

 IRQdata = atrf_SPI(0x8F,0x00);

 //LATE = IRQdata; // show IRQ_STATUS on LED array

 // command write to IRQ_MASK

 // enable RX_START and TRX_END interrupts

 atrf_SPI(0xCE,0x6C);

 // End Initial Setup of AT86RF212

}

int receive_Print(int payload[127]){

 int PHR, FCF1, FCF0, addr0, addr1, pan0, pan1, seq, word;

 int voltageInt, pressureInt, depthInt, depth_cm;

 float voltage, pressure, depth;

 int i=0;

 char dispChar[10];

 putu(10);

 putu(13);

 PHR = payload[0];

 FCF1 = payload[1];

 FCF0 = payload[2];

 //LATE = FCF1;

 /*

40

 if ((FCF0 & 0x33) != 0){

 return;

 }

 */

 sprintf(dispChar, "%d", PHR-11);

 if (PHR-11 < 0x10){

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 if (PHR-11 < 0x100){

 dispChar[2] = dispChar[1];

 dispChar[1] = '0';

 }

 putu(dispChar[0]);

 putu(dispChar[1]);

 putu(dispChar[2]);

 putu(0x20);

 // display FCF first half (TYPE SFAP)

 for(i=0;i<8;i++){

 if ((FCF1 & (0b01<<i)) == (0x01<<i)){

 dispChar[i] = '1';

 }

 else {

 dispChar[i] = '0';

 }

 }

 putu(dispChar[3]);

 putu(dispChar[2]);

 putu(dispChar[1]);

 putu(dispChar[0]);

 putu(0x20);

 putu(dispChar[7]);

 putu(dispChar[6]);

 putu(dispChar[5]);

 putu(dispChar[4]);

 putu(0x20);

 // display FCF second half (DM SM)

 i = 0;

 for(i=0;i<8;i++){

 if ((FCF0 & (0b01<<i)) == (0x01<<i)){

41

 dispChar[i] = '1';

 }

 else {

 dispChar[i] = '0';

 }

 }

 putu(dispChar[3]);

 putu(dispChar[2]);

 putu(0x20);

 putu(dispChar[7]);

 putu(dispChar[6]);

 putu(0x20);

 // get and display sequence number

 seq = payload[3];

 sprintf(dispChar, "%x", seq);

 if (seq < 0x10){

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 putu(dispChar[0]);

 putu(dispChar[1]);

 if (seq>99){

 putu(dispChar[2]);

 }

 if (seq>999){

 putu(dispChar[3]);

 }

 putu(0x20);

 // get and display destination addresses

 addr0 = payload[4];

 addr1 = payload[5];

 sprintf(dispChar, "%x", addr1);

 if (addr1 < 0x10){

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 putu(dispChar[0]);

42

 putu(dispChar[1]);

 sprintf(dispChar, "%x", addr0);

 if (addr0 < 0x10){

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 putu(dispChar[0]);

 putu(dispChar[1]);

 putu(0x20);

 // get and display destination PAN addresses

 pan0 = payload[6];

 pan1 = payload[7];

 sprintf(dispChar, "%x", pan1);

 if (pan1 < 0x10){

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 putu(dispChar[0]);

 putu(dispChar[1]);

 sprintf(dispChar, "%x", pan0);

 if (pan0 < 0x10){

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 putu(dispChar[0]);

 putu(dispChar[1]);

 putu(0x20);

 // get and display source addresses

 addr0 = payload[8];

 addr1 = payload[9];

 sprintf(dispChar, "%x", addr1);

 if (addr1 < 0x10){

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 putu(dispChar[0]);

 putu(dispChar[1]);

 sprintf(dispChar, "%x", addr0);

 if (addr0 < 0x10){

43

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 putu(dispChar[0]);

 putu(dispChar[1]);

 putu(0x20);

 // get and display source PAN addresses

 pan0 = payload[10];

 pan1 = payload[11];

 sprintf(dispChar, "%x", pan1);

 if (pan1 < 0x10){

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 putu(dispChar[0]);

 putu(dispChar[1]);

 sprintf(dispChar, "%x", pan0);

 if (pan0 < 0x10){

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 putu(dispChar[0]);

 putu(dispChar[1]);

 putu(0x20);

 // set output first entry to length

 /// payload[0] = PHR-11;

///////////////////////////////

 /// LATE = payload[0];

 i=0;

 while (i<(payload[0]-11)){

///////////////////////////////

 word = payload[i+12];

 sprintf(dispChar, "%x", word);

 if (word < 0x10){

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 putu(dispChar[0]);

 putu(dispChar[1]);

 putu(0x20);

44

 i++;

 }

 LATBbits.LATB12 = 1; // set chip select to 1

(inactive)

 if (1){ //seq%10 == 1

 putu(10);

 putu(13);

 char legend[51] =

{'L','E','N','|','T','Y','P','E','|','S','F','A','P','|','D','M'

,'|','S','M','|','S','Q','|','D','P','A','N','|','D','A','D','D'

,'|','S','P','A','N','|','S','A','D','D','|','P','a','y','l','o'

,'a','d'};

 int i = 0;

 for (i = 0;i<sizeof(legend);i++)

 {

 putu(legend[i]);

 }

 putu(10);

 putu(13);

 }

/////////

 // Device (payload[3]) measured ((payload[16] << 8)

+ payload[17]) feet.

 sprintf(dispChar, "%d", payload[3]);

 if (payload[3] < 10){

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 char legend2[20] = {'D','e','v','i','c','e','

',dispChar[0],dispChar[1],' ','m','e','a','s','u','r','e','d','

'};

 i = 0;

 for (i = 0;i<sizeof(legend2);i++)

 {

 putu(legend2[i]);

 }

 voltage = (payload[16] << 8) + payload[17];

45

 depth = ((30*(voltage / 432 * 5 - 0.5)/4) - 13.905)

* 74/3;

 depthInt = depth;

 sprintf(dispChar, "%d", depthInt);

 // print depth

 if (depthInt < 0){

 putu(48);

 putu(46);

 putu(48);

 }

 else {

 putu(dispChar[0]);

 putu(46);

 putu(dispChar[1]);

 putu(dispChar[2]);

 putu(dispChar[3]);

 }

/*

 if (depth > 1000){

 putu(dispChar[0]);

 putu(dispChar[1]);

 putu(46);

 putu(dispChar[2]);

 }

 else if (depth > 100){

 putu(dispChar[0]);

 putu(46);

 putu(dispChar[1]);

 putu(dispChar[2]);

 }

 else if (depth < 0){

 putu(48);

 putu(46);

 putu(48);

 }

 else {

 putu(48);

 putu(46);

 putu(dispChar[0]);

 putu(dispChar[1]);

 }

*/

 // feet of water.

46

putu(32);putu(102);putu(101);putu(101);putu(116);putu(32);putu(1

11);putu(102);putu(32);putu(119);putu(97);putu(116);putu(101);pu

tu(114);putu(46);

 putu(10);putu(13);

}

int write_frame_buffer(int payload[127]) {

 int rData, IRQdata;

 int i=0;

 // command write to TRX_STATE

 // write 0x09 (state change to PLL_ON)

 atrf_SPI(0xC2,0x09);

 LATBbits.LATB12 = 0; // set chip select to 0 (active)

 rData = do_SPI(0x60); // command write to frame buffer

 rData = do_SPI(payload[0]); // send PHR (frame length) >=9

 rData = do_SPI(0x81); // FCF first half

 rData = do_SPI(0x88); // FCF second half

 rData = do_SPI(payload[3]); // Sequence #

 rData = do_SPI(0xFE); // Destination PAN

 rData = do_SPI(0xFE);

 rData = do_SPI(0xBA); // Destination Address

 rData = do_SPI(0xDC);

 rData = do_SPI(0x54); // Source PAN

 rData = do_SPI(0x76);

 rData = do_SPI(0x10); // Source Address

 rData = do_SPI(0x32);

 //rData = do_SPI(0x0E); // send 1

 //rData = do_SPI(0x0D); // send 2

 //rData = do_SPI(0x0C); // send 3

 //rData = do_SPI(0x0B); // send 4

 //rData = do_SPI(0x0A); // send 5

 //rData = do_SPI(0xAB); // send 6

 //rData = do_SPI(0xCD); // send 7

 //rData = do_SPI(0x0F); // send 6

 //rData = do_SPI(0x01); // send 7

 //rData = do_SPI(0x11); // send 8

 //sendCount++;

47

 // Send message content

 i=12;

 while (i<(payload[0])){

////////////////////////

 rData = do_SPI(payload[i]);

 i++;

 }

 LATBbits.LATB12 = 1; // set chip select to 1 (inactive)

 // command read from IRQ_STATUS

 // send empty byte, store status in IRQdata

 IRQdata = atrf_SPI(0x8F,0x00);

 //LATE = IRQdata; // show IRQ_STATUS on LED array

 // Check for frame buffer problems

 if ((IRQdata & 0x40) == (0x40)){

 putu(10);

 putu(13);

 putu(69);

 putu(82);

 putu(82);

 putu(79);

 putu(82);

 //putu(0x6D); // put m if addresses match

 }

}

int send_Payload(int payload[127]){

 int IRQdata;

 int endTX=0, i=0;

 char dispChar[10];

 int device_ID = payload[3];

 // command write to TRX_STATE

 // write 0x02 (send TX_START)

 atrf_SPI(0xC2,0x02);

 // Wait until transmission finishes

 while (!endTX){

 IRQdata = atrf_SPI(0x8F,0x00);

 if ((IRQdata & 0x08) == (0x08)){

 endTX = 1;

48

 }

 }

 //oldseq = payload[3];

 //putu(10);

 //putu(13);

 sprintf(dispChar, "%d", device_ID);

 if (device_ID < 10){

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 char legend[45] = {'F','o','w','a','r','d','e','d','

','p','a','c','k','e','t',' ','w','i','t','h',' ','s','e','q','

','n','u','m','b','e','r',':',' ',dispChar[0],dispChar[1],' '};

 i = 0;

 for (i=0;i<sizeof(legend);i++)

 {

 putu(legend[i]);

 }

 /*

 sprintf(dispChar, "%d", device_ID);

 if (device_ID < 10){

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 putu(dispChar[0]);

 putu(dispChar[1]);

 if (device_ID>99){

 putu(dispChar[2]);

 }

 if (device_ID>999){

 //putu(dispChar[3]);

 }*/

 //putu(10);

 //putu(13);

49

 //putu(10);

 //putu(13);

 /*

 char legend[29] = {'S','e','n','t','

','p','a','c','k','e','t',' ','n','u','m','b','e','r',':',' '};

 int l = 0;

 //for (l = 0;l<sizeof(legend);l++)

 //{

 // putu(legend[l]);

 //}

 while (l<sizeof(legend)){

 //putu(legend[l]);

 l++;

 }

 */

 /*

 sprintf(dispChar, "%d", payload[3]);

 if (payload[3] < 10){

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 putu(dispChar[0]);

 putu(dispChar[1]);

 if (payload[3]>99){

 putu(dispChar[2]);

 }

 if (payload[3]>999){

 //putu(dispChar[3]);

 }

 //putu(10);

 //putu(13);

 */

 return;

}

int send_measurement(int device_ID, int waterLevel){

 int rData, IRQdata;

 int i=0, endTX = 0;

50

 char dispChar[10];

 // command write to TRX_STATE

 // write 0x09 (state change to PLL_ON)

 atrf_SPI(0xC2,0x09);

 LATBbits.LATB12 = 0; // set chip select to 0 (active)

 rData = do_SPI(0x60); // command write to frame buffer

 rData = do_SPI(0x13); // send PHR (frame length) >=9

 rData = do_SPI(0x81); // FCF first half

 rData = do_SPI(0x88); // FCF second half

 rData = do_SPI(device_ID); // Sequence #

 rData = do_SPI(0xFE); // Destination PAN

 rData = do_SPI(0xFE);

 rData = do_SPI(0xBA); // Destination Address

 rData = do_SPI(0xDC);

 rData = do_SPI(0x54); // Source PAN

 rData = do_SPI(0x76);

 rData = do_SPI(0x10); // Source Address

 rData = do_SPI(0x32);

 rData = do_SPI(0x23);

 rData = do_SPI(0x57);

 rData = do_SPI(0x11);

 rData = do_SPI(0x13);

 rData = do_SPI((waterLevel >> 8) & 0x03);

 rData = do_SPI(waterLevel & 0xFF);

 //rData = do_SPI(0x0E); // send 1

 //rData = do_SPI(0x0D); // send 2

 //rData = do_SPI(0x0C); // send 3

 //rData = do_SPI(0x0B); // send 4

 //rData = do_SPI(0x0A); // send 5

 //rData = do_SPI(0xAB); // send 6

 //rData = do_SPI(0xCD); // send 7

 //rData = do_SPI(0x0F); // send 6

 //rData = do_SPI(0x01); // send 7

 //rData = do_SPI(0x11); // send 8

 //sendCount++;

 // Send message content

 //i=12;

 //while (i<(payload[0])){

////////////////////////

 // rData = do_SPI(payload[i]);

51

//

 // i++;

 //}

 LATBbits.LATB12 = 1; // set chip select to 1 (inactive)

 // command read from IRQ_STATUS

 // send empty byte, store status in IRQdata

 IRQdata = atrf_SPI(0x8F,0x00);

 //LATE = IRQdata; // show IRQ_STATUS on LED array

 // Check for frame buffer problems

 if ((IRQdata & 0x40) == (0x40)){

 putu(10);

 putu(13);

 putu(69);

 putu(82);

 putu(82);

 putu(79);

 putu(82);

 //putu(0x6D); // put m if addresses match

 }

 // command write to TRX_STATE

 // write 0x02 (send TX_START)

 atrf_SPI(0xC2,0x02);

 // Wait until transmission finishes

 while (!endTX){

 IRQdata = atrf_SPI(0x8F,0x00);

 if ((IRQdata & 0x08) == (0x08)){

 endTX = 1;

 }

 }

 //oldseq = payload[3];

 putu(10);

 putu(13);

52

 char legend[51] = {'S','e','n','t','

','p','a','c','k','e','t',' ','w','i','t','h',' ','s','e','q','

','n','u','m','b','e','r',':',' '};

 i = 0;

 for (i = 0;i<sizeof(legend);i++)

 {

 putu(legend[i]);

 }

 sprintf(dispChar, "%d", device_ID);

 if (device_ID < 10){

 dispChar[1] = dispChar[0];

 dispChar[0] = '0';

 }

 putu(dispChar[0]);

 putu(dispChar[1]);

 if (device_ID>99){

 putu(dispChar[2]);

 }

 if (device_ID>999){

 //putu(dispChar[3]);

 }

 //putu(10);

 //putu(13);

}

int atrf_sleep(){

 int stateChange = 1,rData;

 // command write to TRX_STATE

 // write 0x08 (state change to TRX_OFF)

 atrf_SPI(0xC2,0x08);

 while(stateChange){

 // command read from TRX_STATUS

 // send empty byte, store status in rData

 rData = atrf_SPI(0x81,0x00);

 // when state changes to TRX_OFF, exit loop

 if ((rData & 0x1F) == 0x08){

 stateChange = 0;

53

 }

 }

 // put atrf212 to sleep

 LATBbits.LATB10 = 1; // set SLP_TR to high

}

int atrf_wake(){

 int stateChange = 1,rData;

 // wake atrf212 up

 LATBbits.LATB10 = 0; // set SLP_TR to low

 while(stateChange){

 // command read from TRX_STATUS

 // send empty byte, store status in rData

 rData = atrf_SPI(0x81,0x00);

 // when state changes to TRX_OFF, exit loop

 if ((rData & 0x1F) == 0x08){

 stateChange = 0;

 }

 }

 // command write to TRX_STATE

 // write 0x09 (state change to PLL_ON)

 atrf_SPI(0xC2,0x09);

 while(stateChange){

 // command read from TRX_STATUS

 // send empty byte, store status in rData

 rData = atrf_SPI(0x81,0x00);

 // when state changes to TRX_OFF, exit loop

 if ((rData & 0x1F) == 0x09){

 stateChange = 0;

 }

 }

}

int measure_Pressure(){

 float voltage, pressure, depth, depth_cm;

 int voltageInt, pressureInt, depthInt;

54

 int i=0;

 char dispChar[10];

 AD1CON1bits.ON = 1; // turn ADC on

 i=0;

 voltage = 0;

 for(i=0;i<100;i++){

 AD1CON1SET = 0x0002; // start sampling ...

 delay_ms(10); // for 10 ms

 AD1CON1CLR = 0x0002; // start Converting

 while (!(AD1CON1 & 0x0001)){}// conversion done?

 voltage += ADC1BUF0; // yes then get ADC value

 }

 voltage = voltage/100;

 voltageInt = voltage;

 //voltage = voltage * 330 / 1023;

 //pressure = 30*(voltage)/2.66666;

 //depth = (pressure-1460) * 0.43351492;

 depth = ((30*(voltage / 432 * 5 - 0.5)/4) - 13.905) *

74/3;

 depthInt = depth;

 sprintf(dispChar, "%d", depthInt);

 putu(10);

 putu(13);

 char legend[51] = {'M','e','a','s','u','r','e','d',' '};

 i = 0;

 for (i = 0;i<sizeof(legend);i++)

 {

 putu(legend[i]);

 }

 if (depthInt < 0){

 putu(48);

 putu(46);

 putu(48);

 }

 else {

 putu(dispChar[0]);

 putu(46);

 putu(dispChar[1]);

55

 putu(dispChar[2]);

 putu(dispChar[3]);

 }

 //LATE = 0xFF - (voltageInt >> 2);

 // feet of water.

putu(32);putu(102);putu(101);putu(101);putu(116);putu(32);putu(1

11);putu(102);putu(32);putu(119);putu(97);putu(116);putu(101);pu

tu(114);putu(46);

 /*

 char legend2[20] = {'f','e','e','t',' ','o','f','

','w','a','t','e','r','.'};

 i = 0;

 for (i = 0;i<sizeof(legend2);i++)

 {

 putu(legend2[i]);

 }*/

 return voltageInt;

}

