THE NOTRE DAME ROCKETRY TEAM

Payload Senior Design Proposal

Darrell Adams, Annalise Arroyo, Holden Brown, Eric Dollinger, Wesley Garrison

November 5th, 2019

Introduction

- Support the Notre Dame Rocket Team's electrical design for the 2019-2020 NASA Student Launch competition payload
- Design for the rover
 - Communications
 - Controls
 - Power
 - Software
- Rover will retrieve a simulated ice sample

Problem Description

- NASA project outline
 - Autonomously exit the rocket after safe landing
 - Travel to one of 5 sample locations
 - Collect 10 mL of sample
 - Move 10 ft. away from the sample area
- Special Considerations
 - All UAVs must abide by FAA regulation and registration
 - All communications must abide by FCC regulations
 - Launch fields often wet

Proposed Solution

- Mechanical Design
 - Eccentric crank design to better traverse corn fields
 - Deployment mechanism to remove the nosecone
- Electrical Design
 - "Satellite" UAV gathers GPS info for Rover
 - Rover autonomously deploys, travels and collects sample
 - Sensors used to control and monitor direction, speed, traction, and power delivery to motors
 - Manual control system for emergencies and baseline competition operation

Proposed Flow Diagram

Demonstrated Features

- Power Distribution
- Radio Communication
- Manual Control (Bluetooth/Radio)
- Directional Control
- Traction Control
- Sample Retrieval
- Associated Software Algorithm Testing
- Vehicle Integration- Retention and Deployment

Available Technologies

- PIC32 Microcontroller
 - GPS
 - Accelerometer
 - Magnetometer
 - Motors & Encoders
 - Radio modules
 - Bluetooth modules
- Power Distribution components

8

Conclusions

- Accelerated schedule for NDRT
- Interdisciplinary Team Experience
- Integration with NDRT
- NASA Technical Reviews
- Industry exposure

