
EE 41440, University of Notre Dame
Forest Fire Prediction

Final Report

May 8, 2023

Authors:
Joseph Canfield
Verlee Richey

Kailee Saunders
Ed Stifter

Mitchell Turner

R. M. Schafer 1 EE Senior Design



1. Table of Contents

2. Introduction

3. Detailed System Requirements

4. Detailed Project Description
4.1. System Theory of Operation
4.2. System Block Diagram
4.3. Subsystem 1: On-board Sensors
4.4. Subsystem 2: Anemometer
4.5. Subsystem 3: Wind Vane
4.6. Subsystem 4: LoRa Communication
4.7. Subsystem 5: Power System
4.8. Subsystem 6: Enclosure
4.9. Subsystem 7: Receiver
4.10. Subsystem 8: Web Server

5. System Integration Testing
5.1. Testing
5.2. Meeting Requirements

6. User Manual
6.1. Remote Station
6.2. Receiver
6.3. Web Server
6.4. Troubleshooting

7. To-Market Design Decisions

8. Conclusions

9. Appendices
9.1. Board Designs

9.1.1. Remote Station
9.1.2. Receiver

9.2. Schematics
9.2.1. Remote Station
9.2.2. Receiver

9.3. Code
9.3.1. Remote Station
9.3.2. Receiver
9.3.3. Risk Decision Code

9.4. Components and Datasheets
9.5 Programming with PlatformIO

R. M. Schafer 2 EE Senior Design



2. Introduction

The Great Fire of 1910 took out more than three million acres across Idaho and

Montana. It killed 84 people and injured many more. Luckily, there was enough warning

for most of the women and children to escape. While these great fires are devastating to

the land and its people, forest fires are nature’s way of clearing out the dead leaves and

branches that can overtake the forest floors. Over the last century, people have

misconstrued this importance, and the public tends to see forest fires as an inherently

bad thing. The result has been a buildup of underbrush that is now more prone to

catching fire than before. Along the West Coast and the Inland Northwest specifically,

wildfires have become fairly out of control over the last few years. This is mostly due to

the forest mismanagement previously mentioned. People have been trying to prevent

fires despite them being natural to large forest environments. In these regions, the

forest undergrowth, consisting of bushes, grass, and small trees, has been able to grow

in the absence of frequent fires, increasing the probability of huge forest fires that can

cover upwards of 300,000 acres. With this buildup, forest fires become more dangerous

and more likely. Therefore, there needs to be a way to warn people of potential danger,

as they did leading up to the Great Fire of 1910.

To begin thinking about how to warn the public, one must first think about the

conditions necessary for a forest fire to occur. First and foremost, forest fires require a

dry environment and an ignition source. The probability of ignition largely depends on

humidity and temperature. Some ignitions are naturally occurring, such as a lightning

strike, but most ignitions are caused by humans, such as campfires and cigarettes.

Once there is an ignition source, the probability the fire will spread is dependent on

R. M. Schafer 3 EE Senior Design



temperature, humidity, and wind speed. The current measurements as well as trends

are both important for calculating this probability. While the factors are relatively

straightforward, the main cause of danger in regard to forest fires is the lack of

detection. Those that live in nearby areas and would be in danger due to fires need to

be given ample notice to protect themselves and their property. Keeping track of trends

can also help advise firefighters as to when to perform a controlled burn. While forest

fires are natural and healthy for foliage, they can also cause a lot of damage if they

become uncontrolled. This is why early predictions are necessary.

Our proposed solution comes in the form of many weather stations placed

around high risk areas, i.e. areas where forest fires are most prevalent. These sensors

send signals to a centralized station that analyzes the information. A probability

calculation is done that correlates temperature and humidity measurements with ignition

probability and also overall trends that are correlated with large fires. Obtaining the

parameters for this calculation is accomplished by sensing the key indicators of an

environment and conditions that will likely cause a forest fire, keeping everyone ahead

of the curve. Each weather station will have the capabilities to measure temperature, air

pressure, humidity, wind speed, and wind direction. The weather station communicates

with the receiver at the centralized station over LoRa. LoRa is a public frequency band

at about 915 mHz that was chosen due to its extensive documentation and popularity

among hobbyists. In practice, government frequencies can be used as agencies like the

US Forest Service will likely be the biggest customer for our product. We also only have

one weather station for the project demo, but in reality many would be needed to predict

forest fires across a region.

R. M. Schafer 4 EE Senior Design



The weather station itself is built atop a PVC pipe structure, since the station will

need to be high enough to be out of reach of animals and clear of large trees or other

structures that could interfere with measurements. The wind vane and anemometer are

exposed to the elements atop arms connected to the center station. The rest of the

sensors are encased in a ventilated enclosure to protect them. The entire station will be

solar charged to avoid frequent maintenance.

The weather station we designed can accurately detect temperature, relative

humidity, air pressure, and wind speed up to two decimal places of precision as well as

wind direction in all eight cardinal and ordinal directions. While working on the project,

we realized that wind direction and air pressure were actually insignificant factors in

forest fire probabilities. That being said, having the measurements can still be insightful.

Wind direction in particular can help residents determine the likelihood of the fire

heading towards their region next. Air pressure can also be an indicator of changing

weather patterns, with high pressure usually indicating stable weather conditions. Our

design successfully measures, communicates, and reports to our webpage, so it meets

all our expectations in that sense. Originally, we wanted to include an alert system that

would notify the appropriate residents if a forest fire became likely, but the cost of a

system like this didn’t make sense for our demonstration. Despite not having an alert

system, the website still displays the likelihood of a forest fire occurring as well as

current and historical data. This still allows residents to be aware of current forest fire

risk. That being said, the alert system is something that should be implemented in a

further iteration of the product.

R. M. Schafer 5 EE Senior Design



3. Detailed System Requirements

Our design consists of a weather station, a receiver, a web server, and a website.

The weather station is the physical component that will actually be placed in the field. It

records all the data and sends it to the receiver. The receiver then receives the data

over LoRa and repackages it to send it to the web server over WiFi. The web server

then interprets the data. In an actual implementation, the receiver would receive data

from multiple weather stations and send it all to the server to be analyzed together.

Then, this information is displayed on a website. The website features current

measurements, weather trends, and a forest fire probability indicator.

The portion of the design in the field is the weather station. It needs to be able to

detect surface temperature, air pressure, wind speed, wind direction, and relative

humidity. These measurements need to be accurate to the two decimal places. The

sensors for temperature, pressure, and humidity must be encased in a weatherproof

enclosure with ample ventilation so as not to obscure measurements. The anemometer

for wind speed and the wind vane for wind direction must be attached on the outer parts

of the station so they are exposed to the elements. Therefore, these aspects must be

weatherproof in their own right. The weather station must also have the capability to

communicate over LoRa with the receiver. The weather station itself must have the

capabilities to be solar powered.

To elaborate on the necessary enclosure, the station will be mostly encased in a

waterproof enclosure and must be able to withstand temperatures consistent with

electronic devices; i.e. -20 degrees to 80 degrees Celsius. In order to accurately detect

R. M. Schafer 6 EE Senior Design



wind measurements, the device must be elevated in a large clearing. It will be installed

atop a structure similar to those used in other weather detection devices. Ideally, the

enclosure containing the sensors will be installed at least 33 feet high and at least 50

feet away from any tall vegetation. For the purpose of our project, we will only make the

top of the structure where the station will be connected. In order to protect animals and

the environment, the design is minimalistic and takes up as little space as possible.

The station will need to be solar-powered to ensure long-lasting life. Since the

station will be installed in the middle of a forest, it is important for it to be

self-sustainable. The battery and associated regulation will need to be capable of

supplying 3.3V.

As previously stated in the introduction, we will be using LoRa frequency ranges

for communication with the receiver rather than the government frequencies that would

likely be used in actual implementation. For wireless communication, only one device

will need to be supported as there is only one device detecting data. For future

applications, multiple devices will need to be supported, but we will not focus on that for

the scope of this project. We deemed an acceptable range to be 500 meters based on

other field research. The weather station will use this communication to send the data to

the receiver. The receiver will then use WiFi to send that data over to the web server.

The web server will then analyze the data collected by the device and compare it to

trends in the environment. The server will be referencing a table that contains

information on the likelihood of forest fires. It will use the current measurements, trends,

and database to make a prediction on the likelihood of a forest fire. In a real application,

it would also have access to the locations of the weather stations. The web server will

R. M. Schafer 7 EE Senior Design



then automatically upload the analysis to a website that can be accessed by people

both inside and outside the communication range of the device.

Finally, the website will allow viewers to look at current statistics and trends over

hours, days, or months. It will also feature a warning to the probability of a forest fire as

well as resources for forest fire protection.

4. Detailed Project Description

4.1. System Theory of Operation

The system works by measuring weather data at a remote weather

station, namely temperature, wind speed, wind direction, relative humidity, and air

pressure. The wind speed is measured via a reed switch and the direction is

measured using hall effect sensors. The temperature, humidity, and pressure are

measured by two on-board sensors. This data is then sent via LoRa to a receiver

at a centralized station. The receiver repackages the data and sends it over Wifi

to the web server. The web server analyzes the data against a table that predicts

forest fire trends and displays it to a website. The website shows current

statistics, historic trends, and the likelihood of a forest fire occurring.

R. M. Schafer 8 EE Senior Design



4.2. System Block Diagram

Figure 1. System Block Diagram

Figure 1 is a flowchart that outlines the major subsystems and how they

integrate with each other. The yellow blocks are representative of the field

components and the red blocks are representative of the local components. The

three major systems are the weather station, the receiver, and the web server. A

solar panel charges a battery, which powers the station. The station reads in data

from the sensors, interprets it, and sends the data via LoRa to a receiver at a

centralized location. The data is repackaged and sent over WiFi to a web server.

R. M. Schafer 9 EE Senior Design



A table look-up system is used to estimate the risk of a forest fire based on

previous research done by Texas A&M university. This information is then

uploaded to a website that is available to the public.

4.3. Subsystem 1: On-board Sensors

One major subsystem of the weather station is the onboard sensors.

These sensors must accurately detect temperature, humidity, and air pressure to

the second decimal place. These sensors must be able to withstand

temperatures consistent with electronic devices; i.e. -20 degrees to 80 degrees

Celsius. These sensors will be encased in an enclosure, so there is no

requirement for them to be weatherproofed. We aimed to find smaller sensors, so

both the board and the enclosure sizes could be minimized. This also helped to

minimize our cost. Since a real world application would require several weather

stations across a region, it was important to make them cost effective. With the

ESP32 microcontroller we chose, we needed the sensors to communicate

through an I2C interface. Therefore, another requirement for the sensors was

that they had a native I2C interface. The overall function of this system is to

accurately detect all temperature, pressure, and humidity measurements.

R. M. Schafer 10 EE Senior
Design



Figure 2. Schematic for Pressure Sensor

Figure 3. Schematic for Temperature and Humidity Sensor

R. M. Schafer 11 EE Senior
Design



Figures 2 and 3 show the schematics for the on-board sensors. The

capacitors on the voltage sources are the bypass capacitors. In the board design,

the capacitors are placed right next to their respective sensors because of the

nature of bypass capacitors. While not pictured in the above schematics, the I2C

interface includes pull-up resistors for its appropriate function.

We chose these specific sensors because of their native I2C interface and

for being cost effective. As previously stated, it was important to minimize the

costs of this design to make real world application economically feasible. We

chose to use an I2C interface because it is easy to connect multiple sensors and

eases the programming required. An I2C interface was also compatible with the

ESP32 that we were already familiar with, making this type of interface an easy

choice.

We were not able to test our subsystems individually due to the nature of

our project. The sensors were too small to reasonably test them without

assembling them onto our board. As the sensors themselves were not all that

complex, we decided it was best to wait until we could get our board printed and

assembled to begin any testing. Once the board was assembled, we used the

serial monitor on VsCode to ensure the sensors were working properly.

R. M. Schafer 12 EE Senior
Design



4.4. Subsystem 2: Anemometer

Figure 4. Anemometer Solidworks Design

The second major subsystem is the anemometer. The main requirement

for this subsystem is that it accurately detects wind speeds. We decided to

design our own anemometer instead of buying one off the shelf to increase the

complexity of our project.

As the wind blows, the air is caught in the cups and causes the fixture to

spin. The number of rotations per minute is measured using a reed switch and a

magnet affixed to the spinning portion of the anemometer. The reed switch

closes the circuit every time the magnet passes over it, allowing the ESP32 to

R. M. Schafer 13 EE Senior
Design



detect each rotation. The number of rotations per minute is then converted to

miles per hour using a multiplier we determined by measuring the diameter of the

anemometer.

We chose to use a reed switch rather than a hall-effect sensor because of

its simplicity. Hall effect sensors would add complexity to our code and circuit

design because they require that we interpret analog values rather than digital

ones. We knew that hall-effect sensors were unavoidable for the wind vane, so to

reduce the number of analog inputs we would need, a reed switch made the

most sense.

We 3D printed the anemometer with holes in the bottom to leave space for

a small magnet to be glued into its bottom. There was also space in the bottom of

it for a ball bearing, which was press fitted in. We then press-fit into the bearing a

wooden dowel that was glued to the container for the anemometer. In the

container wall was a reed switch with two long wires going to the board back in

the main enclosure.

Our script averages the frequency of the magnet passing the read switch

over 10 seconds. This time is then converted to revolutions per minute, which is

then multiplied by the radius of the anemometer and 2π radians (one whole

rotation). Finally, this speed is converted to miles per hour which is sent to the

receiver and website. One end of the reed switch is pulled low, with the other end

connected to an analog input on the ESP32. When the magnet passes the reed

switch, the analog input pin will read low and use this interval time for the

R. M. Schafer 14 EE Senior
Design



calculations mentioned above. The code for this system is interrupt driven, only

operating if the magnet rotates over the reed switch.

4.5. Subsystem 3: Wind Vane

Figure 5. Wind Vane Solidworks Design

The wind vane is required to give wind direction. This data is recorded via

hall effect sensors, which give a strength of magnetic field, which for our

purposes is a measure of how close a group of magnets in the direction of the tip

of the wind vane is to each to a group of four hall effect sensors. It operates

similarly to the anemometer with a ball bearing and the wooden dowel, with the

R. M. Schafer 15 EE Senior
Design



difference being in the type of sensor used and the amount of signals that are

being sent back to the board. We accidentally had some pins on the board that

were supposed to be analog for the wind vane signals, but instead were digital

pins. This caused some issues and required a workaround to include an external

ESP32 to be used for analog to digital conversion, with the analog outputs being

sent to our main board. These signals are then used to determine which direction

the magnet and coincidentally the wind vane are pointed, with two high signals

giving cardinal directions (N,E,S,W), and one signal being higher than others by

a factor of two giving ordinal directions, (NW, NE, SW, SE). This was tested and

a northern direction was labeled on the whole system to be set up with a

compass. A breadboard mockup of the electronics inside the windvane is shown

in Figure 6.

Figure 6. Wind Vane Breadboard Design

R. M. Schafer 16 EE Senior
Design



A group of magnets is drilled into the top of the wind vane, with the four hall

effect sensors soldered inside the bottom wind vane assembly on protoboards.

Each hall effect sensor is orientated on the ordinal directions. The hall effect

sensors return magnetic field strength (south pole) through an analog signal of

0-4096 to the ESP32. If any hall effect sensor reads above 2000, the ordinal

direction of the given hall effect sensor is sent to the receiver. Each cardinal

direction was calibrated by changing the thresholds of two hall effect sensors.

For example, if the northwest sensor and southwest sensor both read above 800,

the direction west would be transmitted to the receiver from the weatherstation.

4.6. Subsystem 4: LoRa Communication

Because our weather station will be placed in remote locations, we

needed a way to communicate with it wirelessly over moderate distances while

conserving battery power. We opted to use the LoRa protocol because it best fit

this requirement. Other options like Bluetooth, WiFi, and LTE were either too

limited in range or required additional supporting infrastructure to operate.

LoRa operates on an unlicensed band at 915 MHz so there is no need for

government approval to use it. The principle selling point of LoRa is that it uses a

very narrow bandwidth to communicate. This means that the noise in the signal

is very small, so the transmit power can also be very small. In the case of a

battery operated circuit, this lower power usage is essential. Because of the

R. M. Schafer 17 EE Senior
Design



narrow bandwidth, LoRa data rates are much lower than other protocols, but our

application did not require high throughput so this was a non-issue.

Another benefit of LoRa for this application is that it is well-supported in

the Arduino/ESP32 ecosystem. We chose the ubiquitous RFM96 transceiver

because there were several available libraries to interface with it from the ESP32,

and because all of the LoRa modules in the lab were based on the same

transceiver. This made testing code before our board was built possible.

Once the boards were built, we tested the communication between them

at various distances. We demonstrated that communication still worked at about

100 yards, which was our target distance for a demo. Signal strength was still

quite strong at that distance, so the station could be placed even farther without

any changes to the monopole antenna design.

4.7. Subsystem 5: Power System

The power system on the remote station was required to provide 3.3V to

the board from a solar panel and lithium-ion battery. We also opted to design the

circuit from scratch, so prebuilt solar controllers or battery chargers were not an

option.

The first stage of the power system is the solar charge controller. There

are numerous options on the market for solar charging, but many of them did not

fulfill all of our requirements. We needed an IC that would handle not only

charging the battery but also providing power to the circuit in cases where the

solar panel is generating enough energy to run the circuit. Many options on the

R. M. Schafer 18 EE Senior
Design



market do not have this load-switching capability. After much research, we

decided on the BQ24210 from Texas Instruments. It had all of the features we

required in addition to having thermal protection for our battery with the use of an

external thermistor. It required several passive components, including several

capacitors, resistors, and indicator LEDs. The datasheet specified a

recommended board layout that we followed closely when designing our board.

The second stage of the power system is our switching regulator. Because

this device is battery powered, we wanted to avoid using a linear regulator for a

few reasons. First, linear regulators waste significantly more power than

comparable switching ones. This not only puts pressure on our solar panel to

keep up to replenish the wasted power, but also creates unnecessary heat in the

enclosure. Second, there is a distinct possibility that our battery voltage drops

below our desired supply voltage if its charge level diminishes. We want our

weather station to work even if there are a few cloudy days, so this problem

made a linear regulator a non-starter. There was also the issue of dropout

voltage on most linear regulators we looked at. Single cell lithium-ion batteries

have a voltage of 3.7V, and our board supply voltage was 3.3V. Most regulators

that we looked at had a dropout voltage close to 1V, which meant that even in

ideal conditions we would not have sufficient voltage to regulate properly. Special

low-dropout regulators were expensive and hard to find, in addition to oftentimes

having dropout voltages very close to our absolute maximum desired dropout.

R. M. Schafer 19 EE Senior
Design



The switching regulator IC we chose is the TP63030 from Texas

Instruments. Its sibling, the TP63031, was our ideal choice because it is

programmed at 3.3V off the shelf, but due to extremely limited availability we

opted to go with the TP63030 instead. It is a variable regulator, so we had to

design a resistor network to set the output voltage appropriately. Because the

resistors we used did not perfectly match their labeled values, our actual voltage

(3.41V) strayed slightly from the desired 3.3V, but was well within the margins

acceptable for each of our sensors and the ESP32. We followed the layout

recommendations given in the datasheet very closely given that the frequencies

that switching regulators operate at make layout important. We also followed the

datasheet’s recommendation on type and size of the supporting capacitors and

inductors.

The final choice we made was our solar panel. We opted for a 6V, 2W

solar panel for a few reasons. First, the prices of solar panels we found were very

similar for different wattages, i.e. the 1W and 2W panels were close in price. We

decided that we could take advantage of this price difference to introduce some

margin into our power supply. Second, we wanted a panel that was rated for

outdoor use. Some panels we looked at were not rated for prolonged exposure to

the elements without some external protection. Finally, our solar controller was

rated for an input voltage between 3.5V and 18V. There were several panels we

evaluated early on in the design process that had voltages lower than this

threshold, so once we nailed down our charge controller we were able to narrow

R. M. Schafer 20 EE Senior
Design



down our panel options. After all of this consideration, we landed on a panel from

a company called Voltaic that fulfilled all of our requirements. Figure 7 below

shows the solar panel on top of the enclosure in our outdoor testing environment.

Figure 7. Solar Panel on the Enclosure

4.8. Subsystem 6: Enclosure

The enclosure had to house all of the weather station’s components and

keep them safe from rain while still allowing the sensors to collect data about the

R. M. Schafer 21 EE Senior
Design



current weather conditions. For this reason, we decided to use an enclosure that

was sealed at the top and sides and that had ventilation at the bottom.

We chose a premade waterproof enclosure to fulfill these requirements for

a few reasons. First, the cost of most premade units we looked at was

significantly lower than a comparable 3D printed one even without the

consideration of the time it would take to design the enclosure. Second, the

off-the-shelf item gave us confidence that our enclosure would actually be

waterproof without extensive testing on our part. This allowed us to focus our

time on other essential features of the project.

The enclosure we ultimately decided on was a waterproof junction box

from LeMotech. It is IP65 rated, so we could be sure that it would be waterproof.

It is made out of plastic rated to be outdoors in sunlight all day, which beats out

the materials we had access to in the EIH. It has several cutouts on the side that

are sealed with rubber grommets, which made it easy for us to connect our solar

panel and antenna externally without much concern for water ingress. We added

several holes to the bottom of the enclosure for ventilation so that our sensors

would get accurate readings as seen in Figure 8. Because the circuitry in the

enclosure does not put out measurable heat due to its low power usage, our

concern was chiefly that the sensors be exposed to outside air for accurate

readings, not that the enclosure would overheat. Further, for the purposes of

predicting forest fires, the temperature sensor only needs to read surface

temperature, not air temperature.

R. M. Schafer 22 EE Senior
Design



Figure 8. Enclosure with Ventilation

The wind vane and anemometer were attached to the main enclosure

using PVC pipes. We needed to set both sensors away from the main enclosure

so that they had clearance to spin freely, and PVC pipe is widely available and

low cost so it was a natural choice to connect them. The anemometer is secured

to the PVC using superglue. The wires come from the bottom of the anemometer

through the PVC pipe and up into the main enclosure where they are connected

to the main board. Similarly, the wind vane is secured to its PVC pipe using a

combination of superglue to hold it in place and caulk to seal it. The caulk was

necessary only on the wind vane because of its larger bottom hole. The wires

from the wind vane are fed through the pipes up to the main enclosure where

they connect to the main board.

The final part of the enclosure is a vertical piece of PVC pipe used to

elevate the station off of the ground. This pipe is hammered into the ground until

R. M. Schafer 23 EE Senior
Design



it is solidly seated, and then the rest of the enclosure can be affixed to it. We

chose to raise the station off of the ground so that there was no risk of it being

affected by debris, water, or critters on the ground. In a real application, the

station would be placed even higher than we did for our demo to ensure accurate

readings.

4.9. Subsystem 7: Receiver

The receiver was used to bridge the remote weather station and the web

server. Its requirements were simple: it had to receive data from the remote

station using the LoRa protocol and upload the received data to the web server

using HTTP.

To achieve this, we designed and built a board based on the

ESP32-C3-WROOM, the same WiFi-enabled microcontroller that we used on the

remote weather station. This choice made sense because the chip has WiFi

capability and can interface directly with our RFM96 LoRa module. In addition, it

allowed us to reuse the knowledge we gained from designing the remote station

to make the design process for this board smoother. Our rationale for choosing

the LoRa module is outlined in Section 4.6.

R. M. Schafer 24 EE Senior
Design



Figure 9. Schematic for Receiver

Because most of the functionality of the receiver is handled by the ESP32

and the LoRa module, there is very little else present on the board. We added

the required supporting components to program the ESP32: pullup resistors on

the strapping pins IO2 and IO8, buttons on the enable and strapping pin IO9, and

a few bypass capacitors. We also included a 5V to 3.3V linear regulator so that

we could power the board with a standard USB power supply. This choice was

motivated by the ubiquity of 5V USB power supplies, and the fact that the

receiver will likely be placed near the web server that to which it will be uploading

data (which means there are likely available USB ports and power outlets

R. M. Schafer 25 EE Senior
Design



around), so there was no need to devise a battery system like on the remote

station.

The code running on the receiver is equally simple. We used the LoRa

library to interface with our LoRa module. The receiver will constantly listen for

LoRa data until it receives a packet. Upon receiving the packet, the receiver will

create an HTTP POST request with the appropriate headers and include the

received LoRa packet as the POST data. For debugging purposes, we send

some logging output using serial, but in the everyday operation of the receiver

this data does not need to be viewed.

4.10. Subsystem 8: Web Server

The web server was used as the central processing hub of the project. All

data collected in the field is uploaded to the web server to be logged and

processed. The web server also generates an interactive dashboard showing the

current likelihood of a forest fire, the most recent conditions measured, and a

graph of historical values collected by the station.

The server is written in Python with a framework called Flask. Flask is a

library that makes generating web servers in Python convenient by providing

several functions to quickly map URLs to python functions. We chose it to save

time and effort writing boilerplate for our web server so that we could instead

focus on writing the logic that actually drove our project.

R. M. Schafer 26 EE Senior
Design



Figure 10. Block diagram for web server.

In our web server, there were a few URLs (commonly called routes) mapped to

specific purposes:

1. / (base route)

This is the URL of the base website. The web server will respond to this

URL with the interactive dashboard.

2. /submit

This route is where sensor data is submitted. The receiver uses HTTP

POST requests to upload the data it receives from the weather station

here, and then the web server will parse and store that data into a

database.

R. M. Schafer 27 EE Senior
Design



3. /historical

This route is used to retrieve historical data from the database. It accepts

a parameter for how much data to retrieve so that a user can choose

whether to show 1 hour, 6 hours, 1 day, 1 week, 1 month, or 6 months of

data.

4. /latest

This route is used to retrieve the latest sensor readings from the database.

5. /prediction

This route is used to compute and then retrieve a likelihood prediction

based on the conditions measured. In order to estimate the likelihood of a

large forest fire, three different probabilities are calculated: the probability

a small fire will ignite, the conditional probability a large fire will occur

given a small fire has occurred, and the unconditional probability a large

fire will occur. The probability of a small fire ignition (for example from

lightning or a cigarette) increases with higher temperatures and lower

humidity. This calculation was guided by research done by Texas A&M1.

The conditional probability a large fire will occur given the ignition of a

small fire increases with higher wind speeds, higher temperatures

(particularly when higher than the location’s monthly average), lower

humidity, and more severe drought conditions. After estimating these

1 “Reference Fuel Moisture Adjustment Table.” Texas A&M AgriLife,
https://agrilife.org/rxburn/weather-fuel/reference-fuel-moisture-adjustment-table-2/.

R. M. Schafer 28 EE Senior
Design



probabilities, the unconditional probability of a large fire occurring is

calculated by multiplying the ignition probability and the conditional

probability. This value is then assigned to a prediction which can be one of

Very Low, Low, Moderate, High, Very High, or Extreme.

The dashboard itself was written by hand using HTML, CSS, and

Javascript. The dashboard will poll the web server for new data every ten

seconds (which is the time between sensor readings) and display new data when

it is received. The graph widget is provided by a Javascript library called d3.js.

The buttons above and below the graph that allow selection of the displayed data

type and the duration of data were written separately by our group. Clicking a

button will send a request to the web server to obtain the data type and duration

specified, and will then generate an updated chart with the new data.

We chose to write the website by hand (instead of using a site generator

or a larger web framework like React) because we had only a few pieces of

functionality that all existed on a single page. Tools that aid in website generation

are mostly helpful in keeping things consistent across several different pages, but

would only add overhead in our project. Our approach kept our website small,

focused, and easy to modify for people who might not be familiar with more

complex web design tools.

R. M. Schafer 29 EE Senior
Design



5. System Integration Testing

5.1. Integration Testing

Due to the nature of our project, we were not able to test the subsystems

before they were integrated. Therefore, our integration testing included some

subsystem testing as well. To ensure the sensors were reading properly and

communicating with the ESP32 microcontroller, we logged their output on the

serial bus and then monitored the serial output. Since we were receiving data

that matched with what we expected, we knew the on-board sensors were

working as expected. To test wind speed, we hand spun the anemometer to

emulate wind speeds while inside a lab. For direction, we used a compass

alongside our wind vane to make sure the directions were matching up as

expected. When the website was complete, it was easy to re-verify these

measurements. For the forest fire probability, we manipulated the code to force

high temperatures and low humidities in order for a higher likelihood to display.

With the conditions in South Bend and in the lab, it was impossible to get a high

likelihood authentically, so these modifications were necessary to ensure that the

decision code was working.

5.2. Demonstrated Requirements

We knew the integrated system was working together when the website

displayed accurate weather measurements from the sensors. This meant that the

sensors were accurately making measurements, the receiver was getting all the

R. M. Schafer 30 EE Senior
Design



information from the station, the web server was analyzing the data as expected,

and the website was displaying it properly. We made sure that the website was

updating at the appropriate interval to determine whether the entire system was

working properly.

6. User Manual

The weather station consists of three separate systems that communicate to

produce the full working system: the remote weather station, the receiver, and the web

server. The remote weather station and the receiver are both programmed already, and

require very little setup. The web server requires that users download and run software,

and some configuration is required.

6.1. Remote Station

To set up the remote weather station, a user must first find a suitable

location to place it. Ideally, the station would be placed in an open field so that

measurements reflect the actual conditions of the area. The station is powered

by sunlight, so the location should get at least occasional sunlight. Locations with

frequent shade are not ideal. After the location is chosen, the user can install the

station by inserting the vertical pipe solidly into the ground and then affixing the

actual station to that pipe. Once placed into the ground, the station is ready to

transmit.

R. M. Schafer 31 EE Senior
Design



6.2. Receiver

To set up the receiver, the user should obtain a 5V USB power adapter,

commonly used to charge phones and other small electronic devices. Once the

device is powered up, it will begin receiving messages from the weather station

and transmitting them to the web server using the local WiFi network. The

receiver will need to be reprogrammed with the WiFi credentials and the IP

address of the web server when used outside of the lab. Information on

reprogramming the device can be found in Appendix 9.5: Programming with

PlatformIO. Ensure that the antenna on the receiver is perfectly vertical. The

device can then be connected to power and placed somewhere where it will not

be tampered with.

6.3. Web Server

With the transmitter and receiver in place, the web server can be set up.

Most of the software can be downloaded from the team website in a zip archive

and extracted into a directory of the user’s choice. Not included in that zip archive

is the database to store the collected data (so that users will have a fresh one).

The database must be created from scratch with sqlite3, which comes

standard on most operating systems. The following command should be used

exactly to create the database in the same directory as the other files:

> sqlite3 weather_data.db

R. M. Schafer 32 EE Senior
Design



This will start the sqlite3 interactive prompt, which can be used to create the table

needed to store the data. Enter the following SQL command to create the table

according to the structure the web server expects:

CREATE TABLE weather_data (
id INTEGER PRIMARY KEY,
timestamp TEXT,
temperature REAL,
humidity REAL,
pressure REAL,
wind_speed REAL,
wind_direction TEXT

);

The final step before starting the web server is to install the single Python

dependency: Flask. Flask is a Python library that aids in creating web servers. It

can be installed with the following command:

> pip install flask

The web server can then be started by invoking the app.py script using a

modern (>=3.9.0) Python installation as follows:

> python3 app.py

On Windows, the command will be simply

> python app.py

Upon running the server, the terminal will begin to show a few log

messages. One of these will be the IP address and port that the server is open

at. Copying and pasting this full address (it should look something like

R. M. Schafer 33 EE Senior
Design



http://xxx.xx.xx.xxx:3000) into the address bar of a web browser will bring up the

website which displays real-time data from the weather station.

If the setup is working properly, the website should update every ten

seconds with new data. The user can see when the site was last updated by

looking at the text under the “Current Statistics” heading.

6.4. Troubleshooting

If the website is not updating with new readings every ten seconds, there

are a few things to troubleshoot. Ensure that the receiver is in range of the WiFi

network. We have found through basic testing that the WiFi connection range on

the receiver is somewhere between 50 and 75 feet from the wireless access

point. If the receiver is in range of the access point and still not receiving data,

check that its antenna matches the orientation of the antenna on the weather

station. Typically this means the antenna should be perfectly vertical. If that still

does not work, ensure that the weather station has power. Open the lid of the

station and check that the green LED is lit. This indicates that the battery is

supplying power to the board. Further, ensure that the red LED is lit when the

station is in sunlight. This means that the battery is charging.

If all of those checks do not work, make sure that the IP address

programmed into the receiver matches the IP address that the web server is

running at, and that the WiFi credentials programmed into the receiver are

correct.

R. M. Schafer 34 EE Senior
Design



7. To-Market Design Decisions

There are numerous decisions that we made early in the design process that

turned out to be anywhere from completely wrong to somewhat impractical later in the

construction of the project.

The first, and perhaps most significant, design change we would make would be

the board. There were several issues relating to pin selection on the ESP32 which

meant that board traces had to be cut and rerouted. First, some of the strapping pins of

the ESP32 (IO2, IO8, and IO9) were connected to the LoRa module to be used as basic

digital IO. When designing the board, we did not foresee any issues because the

strapping pins can be used as regular IO after the boot process completes. After we got

the board built, though, we found that we could not put the ESP32 into programming

mode. This pointed to an issue with the strapping pins. After some troubleshooting, we

found that the LoRa module’s digital input pins defaulted to a pulled-down state at

startup, which meant that our strapping pins were always pulled low. To put the ESP32

into programming mode, however, we needed those strapping pins pulled high.

Obviously, this was a large issue for our board. To fix it, we had to cut the traces

connecting the strapping pins to the LoRa module. Luckily, our code did not use those

pins on the LoRa module anyway, so we didn’t need to reconnect them to other pins. If

we could redesign the board, we would choose different pins on the ESP32 to connect

to the LoRa module so that the strapping pins could be left isolated. One thing to note is

that even after reading the entire datasheet of our LoRa module, the input pins being

R. M. Schafer 35 EE Senior
Design



pulled low is not mentioned anywhere, so we do not think it was unreasonable to build

the board as we did. The issue could only be found through testing.

Another issue we had with the board was also related to pin selection. We

mistakenly assumed when designing the board that analog inputs were remappable.

The datasheet for the ESP32 mentions that GPIO is remappable for every pin, but we

missed the key detail that this is only for digital IO. Our wind vane required four analog

inputs because it was based on hall-effect sensor readings, but we did not assign it four

pins that were capable of doing analog readings. Furthermore, the pins on the ESP32

that are analog capable (of which there are 6) were all connected in ways that made it

prohibitive to reassign them without a complete redesign of the board.

For that reason, we had to find a way around using analog inputs on our board.

The solution we came up with was to use another ESP32. This ESP32 would do the

analog read, compute the direction of the wind, and then send a three bit digital signal

to the main ESP32 on our board. It increased the power draw of our station significantly

(from 20 mA to about 90 mA), but we had designed our power supply with enough

margin that this was not an issue.

In addition to connection changes, we decided during the board design phase to

change one of the sensors we had selected. One of our chief concerns when choosing

components was cost, and because of that we opted for a very small, low-cost pressure

sensor. When designing the board, we found that the sensor was so small that the pin

pitch was too narrow for our board house (OSH Park) to produce. We had to select a

new pressure sensor with a larger pitch that had the same features.

R. M. Schafer 36 EE Senior
Design



Another design decision we made for our demo, but that we would change in a

real product, is our enclosure system. We used a premade plastic enclosure from

LeMotech and various pieces of PVC pipe to house the wiring between our main board

and the wind vane and anemometer. We used caulk and superglue to connect and seal

the enclosure in various places. The result is good enough for a demo, but more care

would have to be taken in a commercial system to ensure protection from water ingress.

Additionally, the main enclosure should also be redesigned to have built in ventilation as

well as designed holes for the solar panel wiring and the antenna to come out of. In

addition to these practical design decisions, the to-market product will also need to be

more visually appealing than our design, with matching colors and higher quality

printers for the objects in order to make it appear professional.

More optimized 3-D prints for the anemometer and wind vane should be

implemented in order to guarantee smooth spinning as well as more precise

measurements. The wind vane in particular is not especially precise, giving only the 8

cardinal and ordinal directions. It might be useful in a commercial product to have a

more accurate reading on wind direction (perhaps showing direction in degrees) so that

fires can be accurately pinpointed and predicted. This could perhaps be achieved by

using more hall effect sensors in a larger ring so that the readings are more granular.

A new feature that would be too expensive and logistically challenging for our

demonstration is the alert system, which will need to be implemented into the to-market

product. There are numerous companies that offer SMS messaging services which

could be used to send text messages to affected parties.

R. M. Schafer 37 EE Senior
Design



Another change that would be made in a marketable design would be that the

station would have to be at least 33 feet in the air and 50 feet away from any tall

vegetation, in order for proper readings to be gathered.

8. Conclusion

We designed a remote weather station with the unique implementation of

monitoring for potential forest fires. With advanced detection, we hope to save lives and

protect nature. We combined the hardware component of the sensors for the collection

of data with a significant software component for the transmission and analysis of data.

The result is an implementable technology complete with an easy to understand website

that displays fire probability that will protect forest environments and the people who live

in them.

R. M. Schafer 38 EE Senior
Design



9. Appendices

9.1. Board Designs

9.1.1. Remote Station

9.1.2. Receiver

R. M. Schafer 39 EE Senior
Design



9.2. Schematics

9.2.1. Remote Station

9.2.2. Receiver

R. M. Schafer 40 EE Senior
Design



9.3. Code

9.3.1. Remote Station

#include <SPI.h>

#include <LoRa.h>

#include <Arduino.h>

#include <Wire.h>

#include <Adafruit_SHT31.h>

#include <Adafruit_DPS310.h>

// RFW9X pin mappings on LILYGO board

#define SCK 6

#define MISO 4

#define MOSI 5

#define SS 7

#define RST 0

#define DI0 -1

const int SCL_PIN = 3;

const int SDA_PIN = 2;

const int ANEM_PIN = 8;

const int WV0 = 1;

const int WV1 = 10;

const int WV2 = 18;

Adafruit_SHT31 sht30 = Adafruit_SHT31();

Adafruit_DPS310 dps310;

Adafruit_Sensor *dps_pressure =

dps310.getPressureSensor();

// Initialize wind speed variables

float wind_mps = 0;

R. M. Schafer 41 EE Senior
Design



float wind_mph = 0;

float rev_per_time = 0;

unsigned long firstMillis = 0;

unsigned long lastMillis = 0;

unsigned long lastIntTime = 0;

int rev_counter = 0;

void IRAM_ATTR windSpeedISR ()

{

unsigned long intTime = millis();

if(intTime - lastIntTime > 100)

{

if (rev_counter == 0)

firstMillis = millis();

rev_counter++;

lastMillis = millis();

}

lastIntTime = intTime;

}

/* Read temp and humidity data and display it */

void readAndDisplaySensor(void *param)

{

float humidity, temp;

char displayStr[50];

sensors_event_t pressure_event;

while (1) {

temp = sht30.readTemperature();

humidity = sht30.readHumidity();

if (dps310.pressureAvailable()) {

dps_pressure->getEvent(&pressure_event);

}

R. M. Schafer 42 EE Senior
Design



rev_per_time = 0;

if(rev_counter != 0)

rev_per_time = 1.0 / ((lastMillis - firstMillis)

/ rev_counter);

wind_mps = rev_per_time*1000*6.2831853*0.092; //

wind in meters/sec

wind_mph = wind_mps*2.237;

rev_counter = 0;

u_int8_t wv0 = digitalRead(WV0);

u_int8_t wv1 = digitalRead(WV1);

u_int8_t wv2 = digitalRead(WV2);

u_int8_t wdir = (wv0 << 2) + (wv1 << 1) + (wv2);

sprintf(displayStr, "temp: %.2f\nhum: %.2f\npres:

%.2f\nwspd: %.2f\nwdir: %d\n", temp, humidity,

pressure_event.pressure, wind_mph, wdir);

Serial.println(displayStr);

LoRa.beginPacket();

LoRa.print(displayStr);

LoRa.endPacket();

vTaskDelay(10000 / portTICK_PERIOD_MS);

}

}

/* Make sure the sensor can be found */

void findSensor()

{

/* Find the sensor */

Serial.println("Looking for SHT30...");

int retries = 0;

while (!sht30.begin(0x44) && retries < 10) {

R. M. Schafer 43 EE Senior
Design



Serial.println("Couldn't find SHT30");

retries++;

delay(500);

if (retries == 10)

while (1) delay(10);

}

Serial.println("Found SHT30 sensor");

Serial.println("Looking for DPS310...");

retries = 0;

while (!dps310.begin_I2C(0x76) && retries < 10) {

Serial.println("Couldn't find DPS310");

retries++;

delay(500);

if (retries == 10)

while (1) delay(10);

}

Serial.println("Found DPS310 sensor");

}

void setup() {

Serial.begin(115200);

Wire.begin(SDA_PIN, SCL_PIN); // set the correct scl

and sda pins on our board

SPI.begin(SCK,MISO,MOSI,SS);

LoRa.setPins(SS,RST,DI0);

if (!LoRa.begin(915e6)) {

Serial.println("Starting LoRa failed!");

while (1);

}

Serial.println("Started LoRa");

R. M. Schafer 44 EE Senior
Design



findSensor();

pinMode(ANEM_PIN, INPUT_PULLUP);

attachInterrupt(digitalPinToInterrupt(ANEM_PIN),

windSpeedISR, FALLING);

pinMode(WV0, INPUT_PULLDOWN);

pinMode(WV1, INPUT_PULLDOWN);

pinMode(WV2, INPUT_PULLDOWN);

xTaskCreate(readAndDisplaySensor, "display sensor

data", 16384, NULL, 1, NULL);

vTaskDelete(NULL);

}

void loop() {}

9.3.2. Receiver

#include <SPI.h>

#include <LoRa.h>

#include <Wifi.h>

#include <HTTPClient.h>

#include <Adafruit_SHT31.h>

#include <Adafruit_DPS310.h>

// RFW9X pin mappings on our base board

#define SCK 1

#define MISO 3

#define MOSI 2

#define SS 6

R. M. Schafer 45 EE Senior
Design



#define RST 0

#define DI0 -1

const char* ssid = "SDNet";

const char* pass = "CapstoneProject";

const char* url = "http://192.168.10.101:3000/submit";

char buf[1024];

void setup() {

Serial.begin(115200);

Serial.println("Initializing rx...");

WiFi.begin(ssid, pass);

SPI.begin(SCK, MISO, MOSI, SS);

LoRa.setPins(SS, RST, DI0);

if (!LoRa.begin(915E6)) {

Serial.println("Failure!");

while (1);

} else {

Serial.println("Success!");

}

}

void loop() {

// try to parse packet

int packetSize = LoRa.parsePacket();

if (packetSize) {

while (LoRa.available()) {

LoRa.readBytes(buf, packetSize);

R. M. Schafer 46 EE Senior
Design



}

if (WiFi.isConnected()) {

WiFiClient client;

HTTPClient http;

http.begin(client, url);

http.addHeader("Content-Type", "text/plain");

String data = String(buf);

data += String("rssi: ") +

String(LoRa.packetRssi());

int resCode = http.POST(data);

Serial.println("Uploaded data.");

}

}

}

9.4. Components and Datasheets

Purpose Model Datasheet

Solar Charge Controller TI BQ24210 https://www.ti.com/general/do
cs/suppproductinfo.tsp

Buck/Boost Converter TI TPS63030 https://www.ti.com/general/do
cs/suppproductinfo.tsp

LoRa Module RFM96W
https://github.com/SeeedDocu
ment/RFM95-98_LoRa_Modul
e/blob/master/RFM95_96_97
_98_DataSheet.pdf

Microcontroller ESP32-C3-WROOM
https://www.espressif.com/site
s/default/files/documentation/
esp32-c3-wroom-02_datashe
et_en.pdf

Temp/Humidity Sensor SHT-30
https://media.digikey.com/pdf/
Data%20Sheets/Sensirion%2
0PDFs/HT_DS_SHT3x_DIS.p
df

R. M. Schafer 47 EE Senior
Design

https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fbq24210
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Fbq24210
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Ftps63030
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Ftps63030
https://github.com/SeeedDocument/RFM95-98_LoRa_Module/blob/master/RFM95_96_97_98_DataSheet.pdf
https://github.com/SeeedDocument/RFM95-98_LoRa_Module/blob/master/RFM95_96_97_98_DataSheet.pdf
https://github.com/SeeedDocument/RFM95-98_LoRa_Module/blob/master/RFM95_96_97_98_DataSheet.pdf
https://github.com/SeeedDocument/RFM95-98_LoRa_Module/blob/master/RFM95_96_97_98_DataSheet.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3-wroom-02_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3-wroom-02_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3-wroom-02_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-c3-wroom-02_datasheet_en.pdf
https://media.digikey.com/pdf/Data%20Sheets/Sensirion%20PDFs/HT_DS_SHT3x_DIS.pdf
https://media.digikey.com/pdf/Data%20Sheets/Sensirion%20PDFs/HT_DS_SHT3x_DIS.pdf
https://media.digikey.com/pdf/Data%20Sheets/Sensirion%20PDFs/HT_DS_SHT3x_DIS.pdf
https://media.digikey.com/pdf/Data%20Sheets/Sensirion%20PDFs/HT_DS_SHT3x_DIS.pdf


Purpose Model Datasheet

Pressure Sensor DPS310

https://www.infineon.com/dgdl
/Infineon-DPS310-DataSheet-
v01_02-EN.pdf?fileId=5546d4
62576f34750157750826c422
42

Solar Panel Voltaic P126
https://cdn-shop.adafruit.com/
product-files/5366/5366_Voltai
c+Systems+P126+R1E.pdf

9.5. Programming with PlatformIO

The included code for the project has two folders: one is named tx

and the other is named rx. These folders contain the code for the remote

station and the receiver, respectively. The included platformio.ini file

will configure the PlatformIO environment with separate tasks for both tx

and rx. Either device can be reprogrammed by selecting the task labeled

“Upload” under the device’s category (e.g., rx for the receiver).

R. M. Schafer 48 EE Senior
Design

https://www.infineon.com/dgdl/Infineon-DPS310-DataSheet-v01_02-EN.pdf?fileId=5546d462576f34750157750826c42242
https://www.infineon.com/dgdl/Infineon-DPS310-DataSheet-v01_02-EN.pdf?fileId=5546d462576f34750157750826c42242
https://www.infineon.com/dgdl/Infineon-DPS310-DataSheet-v01_02-EN.pdf?fileId=5546d462576f34750157750826c42242
https://www.infineon.com/dgdl/Infineon-DPS310-DataSheet-v01_02-EN.pdf?fileId=5546d462576f34750157750826c42242
https://www.infineon.com/dgdl/Infineon-DPS310-DataSheet-v01_02-EN.pdf?fileId=5546d462576f34750157750826c42242
https://cdn-shop.adafruit.com/product-files/5366/5366_Voltaic+Systems+P126+R1E.pdf
https://cdn-shop.adafruit.com/product-files/5366/5366_Voltaic+Systems+P126+R1E.pdf
https://cdn-shop.adafruit.com/product-files/5366/5366_Voltaic+Systems+P126+R1E.pdf

