Michael Gerardi & Martin Nguyen

Senior Design Software Subsystem Analysis

A/D Conversion

We will use A/D conversion to take readings from our current and voltage sensors to translate what is actually being measured. To test this functionality, we wrote a program that took a reading off of two of one of the A/D ports, converted it into a scaled value of voltage or current, and printed that scaled value to the LCD screen. We use integer values to represent voltages and currents that have been scaled up from the actual values—ie, if we measure 3.52 V, it will get represented in software as 352. This allows the use of a short variable, which saves data; eliminates the overhead of manipulating floating point values; and allows for flexibility in the future should we need to represent current/voltage values that press the capacity of the short type variable. We used the protoboard to output a variable 0 to 5 V input to confirm that the A/D converters were behaving correctly.

The A/D conversion works as expected during our testing, even when we use multiple ports. The remaining work has to do with adding more ports and ensuring our current sensor outputs a value from 0 to 5 V, which is more of an integration issue than a software problem.

Delay Mode / WDT / Interrupts

The end of the test program simulates a delay function. The purpose of the function is to prevent the system from checking voltage and current constantly, by stipulating regular intervals at which it must be checked, or state changes (car goes on or off, override status changes) that may potentially require a change in settings. To accomplish this, the microcontroller is put in an “idle” mode that clocks other peripheral devices even though it does not execute program instructions. It breaks out of this mode when an interrupt is triggered, or when the watchdog timer (WDT), which is enabled and set for period by header pragmas at the beginning of the program, goes through a single iteration. Before entering this mode, the program adjusts interrupt settings on two input pins (alternator and interrupt) so it knows whether to look for a high-to-low or low-to-high change.

As a way of testing, the program is currently designed to print its status to the LCD. As an initial test, we simply left the microcontroller run on its own with nothing attached to the interrupt pins, meaning it should simply iterate through the watchdog timer. It worked fairly well but not quite to standards because the floating pins on the microcontroller trigger interrupts when they should not be occurring. To resolve these problems, we built some simple switches on a breadboard and tied them to the interrupt pins. The performances was as hoped for. We’re highly satisfied with this subsystem; most of the remaining work here is finding a way to turn the alternator into a 5V switch of source that works with our microcontroller, but this is, again, an integration issue.

I2C Memory and Timekeeping

We spent a significant amount of time developing routines to read and write to I2C time and memory chips. To test these routines, which require no integration with the broader system hardware, we used the USBee logic analyzer’s two-wire serial decode feature to see what was being passed back and forth between the master and slave, when transmission was being initiated and stopped, etc.

After significant testing, we are very confident in our ability to write and read from both of these chips. The current outstanding issues including outlining a data structure, rewriting the I2C routines to work with this structure, writing a terminal program to display memory contents in an intelligible way, and some memory management issues (for example, the appropriate time to switch memory pages as we reach the limits of a given page, in order to avoid overwriting crucial data).

Intelligent Switching of Devices
We have written a very simple routine that turns on and off the PORTD latches, based on the voltage and current readings off the AD converter. Right now, the devices are unlabeled, but in the future we will necessarily get more specific about which ports are controlling what. A good guide may be the central port Jason found in the car, that was labeled for various currents. It is easy to envision the program leading out to a FET designated to switch all six of these ports. In testing, the LED panel on the microcontroller turns on and off the appropriate LEDs at various voltage and current levels that I’ve set. The only potentially troubling issue is that the board only outputs about 4 V on the D terminals when turned on, which may not be quite enough to turn on a MOSFET. However, this could possibly be stepped up in hardware if it proves to be insufficient.

