Final Documentation

Smart Windows

5/3/2010 Kelley Daniels

EE Senior Design 2010 Tommy Haunert

Professor Schafer David Shilling
Andy Spangler

8l [l

Let your blinds worp Jor you!

Smart Windows
Daniels, Haunert, Shilling, Spangler

Table of Contents

I 10T L1 o 4 o] OSSP SRTSPPRN 3
2 Detailed Project DESCIIPLIONciveeiieiecie e nne e 10
2.1 Theory Of OPEIatiON..........cceiiiiiiiiiiee e 10
2.2 System BIOCK dIagramcc.oiveiiiiiiicie et 12
2.3 PC CoNtrol UNIt (PCU) ...cceiiiiieeee ettt st s 14
2.4 ON-Window UNit (OWU)ooieiicc et s 36
2.5 Remote CoNtrol (RCU) ...cuiiiiiieiicie et s 47

3 System INtegration TESINGcccueiveie e 51
3.1 General Software Testing ParadigmS..........c.coeiiierereninesieeeeee e 51
3.2 Pure PC SOFtWAre TESHINGooviririeriiriiiieiei ettt 53
3.3 Pure Microcontroller Software TeStINGcccvevviiieiieiice e 53
3.4 PC-Microcontroller INteraction TeSTING........cceivereiireriresieieeee e 53

4 Installation Manual and User’s GUIAEcccuveeiiiiiieiiiiiiee et 55
4.1 INSTAIIATION GUITRecueeieieieeie ettt e e sre e 55
4.1.1 PC Unit Setup (OPtioNal)cceecveiiiiieesicse e 59
4.1.2 WINAOW UNIT SETUD.....eoviiiiiiiieiesiese et 60
4.1.1 Remote Control Setup (0ptional)........cccccveiieiieiiieieecsece e 63

4.2 USEI™S GUIAE ...uvveeeeiiiiie e ettt e ettt ettt e e e et e e e e et e e e s et e e e e e s eabaeeeeebbeeeessnbbeeeesansaeeeas 64
4.2.1 MANUAI MOTEceiiiiiieiieiee bbb 64
A.2.2 ECOMOUE ..ottt sttt et e e nreenaeereesneenee s 64
4.2.3 TIMEI IMOUE ..ottt ettt ettt bbb 65
o303 Tod 111 o] o SR 68
(CI a0 1= 0 Lo = SRS PPPR 69
6.1 Complete Hardware SChEMALICSccoviiiiiiiieie e 70
6.2 Complete SOftware LiStINGcocvoviiieiicie e 73
6.2.1 MiCrocoNtroller SOTIWAE.........coiieiieece e 73
6.2.2 PC SOTIWANE ...ttt 161
6.2.3 ANAroid SOTIWAIE........eeiieieiie e eas 187

6.3 Bill OF MALEIIAlSccveeieeiieieee e 194
R 17] 1T £ 196

Final Documentation 2 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

1 Introduction

In collaboration with Solar Shades, Smart Windows has sought to create a bridge
between Notre Dame EE Senior Design and Notre Dame’s Innovation Park. In addition,
Smart Windows sought to solve a very important technical problem.

In a world faced with rising energy demand and depleting energy supply, the next
generation of technology must take into account energy usage at every level. According
to the United States Energy Information Administration’s (EIA) Residential Energy
Consumption Survey (RECS), air conditioning consumes a significant and growing
portion of US electric power. From 1997 to 2005, the RECS shows that the percent of US
residential electric power used for air conditioning rose from 14% to 20.2%."

To fight rising energy usage, the US Department of Energy’s Energy Savers program
recommends reducing the stress on air conditioners. One important Department of
Energy guideline is to use window treatments like blinds and shades to reduce the
thermal gain through the windows due to radiant solar energy: “Install window shades or
other window treatments and close the shades. Shades will help block out not only direct
sunlight, but also radiated heat from the outdoors, and insulated shades will reduce the
conduction of heat into your home through your windows.” In fact, the Department of
Energy says that reflective shades can reduce heat gain up to 45%.”

In addition to reducing air conditioning energy consumption, window treatments have
other functions. For example, the September 23, 2009 edition of the University of Notre
Dame and Saint Mary’s College newspaper The Observer recommends window
treatments as a crime prevention tool. In an article entitled “Burglars Target Off-Campus
Housing,” South Bend Police Captain Phil Trent notices, “There's people with their front
windows right open and I can see a 50-inch plasma screen from the street. You can see
someone with the lights on in their house and they're working on a laptop computer...A
burglar can do an assessment of what they can steal just by walking down the street
looking in the windows." The article states, “To prevent burglaries, students should keep
their windows and curtains closed.”

These benefits of window treatments are only effective, however, if the homeowner is
diligent in opening and closing them. To access the energy benefits of window
treatments, the homeowner must constantly monitor sunlight exposure. To access the
security benefits, the homeowner must close every treatment prior to leaving the house.

L E1A online RECS 2005 Status Report. <http://www.eia.doe.gov/emeu/recs/contents.html>.

22
DOE Energy Savers.
<www.energysavers.gov/your_home/space_heating_cooling/index.cfm/mytopic=12353>.

8 Mervosh, Sarah. “Burglars Target Off-Campus Housing.” The Observer. 23 Sept 20009.

<http://media.www.ndsmcobserver.com/media/storage/paper660/news/2009/09/23/News/Burglars. Target.
OffCampus.Housing-3780142.shtml>.

Final Documentation 3 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Since few homeowners can afford to give this level of attention to their window
treatments, the benefits of properly operated window treatments are rarely utilized. For
these benefits to be tapped into, the windows must operate automatically in the
homeowner’s stead. It is this problem of maximizing window treatment utility through
automation and electronic intelligence that the Smart Windows design addresses.

In order to address this problem of maximizing window treatment utility, we proposed a
window treatment automation system called Smart Windows. As originally proposed,
the Smart Windows system is centered on a PC Control Unit (PCU), which consists of a
custom-designed PC application with graphical user interface (GUI) and appropriate
wireless interfacing hardware. Through this wireless interface, the user can issue
commands to individual On-Window Units (OWUSs). Users not at their computer can
issue commands to individual windows from a wireless remote control unit (RCU) or
from directly from a window-mounted panel.

Users have the choice to manually control individual windows, to implement sensor-
based control, or operate windows on a timer. These choices are defined as modes. The
OWU, operating in one of these three modes, can drive the window treatment using a
direct current (DC) motor. In sensor-controlled mode, or Eco Mode, the OWU uses a
light sensor to decide if the window blind should be opened or closed to maximize the
efficiency of the household HVAC. In Timer Mode, the window treatment open or close
at preset times, typically at night or during working hours. In manual mode, the user
operates the windows individually from the PC application, remote control, or on-
window buttons. Users choose from opened, closed, or half opened window treatments.
The OWU derives its intelligence from an embedded microprocessor.

In order to solve the problem of maximizing window treatment utility, this Smart
Windows system must meet certain requirements. These requirements are shown in
Table 1.1. These are the same requirements that were proposed along with the Smart
Windows system in the fall. Table 1.1 indicates whether or not the final Smart Windows
design met each requirement.

Final Documentation 4 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Table 1.1 Smart Windows system requirements

Subsystem and Interface Requirements

On Window Unit (OWU)

Requirement Description Feedback
General Must be able to control window treatments intelligently | Completed,;
Must continue to operate when wireless Requirement
communication is broken Achieved
Size Must have total dimensions less than or equal to 8 x Completed;
57 x4 Requirement
Achieved
Weight Must be less than 5 pounds Completed;
Must operate with Solar Shades windows Requirement
Must operate with at least on set of venetian blinds Achieved,
Preferably operates with all window blinds Does not operate
with general
window treatments
Power Must use 4-8 rechargeable AA batteries lasting a System used 8

minimum of 14 days

rechargeable AA
batteries lasting

only 5 days
Microcontroller | Must use a reasonable amount of program memory Completed;
Software Must operate the drive the motor appropriately when Requirement
necessary Achieved
Must periodically monitor the light sensor and manual
buttons
Must decode received wireless messages
Must enter power-saving mode when possible
Motor Must be a DC motor capable of at least 20 oz-in of Completed;
torque Requirement
Must be geared to turn less than 100 rotations per Achieved
minute
Must have a safety clutch to protect the window
treatment
Must make minimal noise when operating
Must meet power requirements (see “Power”) above
Light Sensor Must be capable of differentiating a sunny day froma | Completed,;
cloudy day Requirement
Must ignore light coming from inside the house Achieved
Must be report light levels to microcontroller using
minimal 1/0 pins
Must meet power requirements (see “Power”) above
Wireless Must send and receive messages at an indoor distance | Completed;
Transceiver of 100 feet Requirement
Must be able to address messages to a particular target | Achieved

Must not create interference with other household

Final Documentation 5

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

items

Must be able to interface with a microcontroller
quickly and reliably

Must meet power requirements (see “Power”) above

Manual Buttons | Must reliably control the system when used Completed;
Must be easily accessible Requirement
Must let the user open or close the treatment one Achieved
increment
EEPROM Must be able to hold 1000 bytes of non-volatile Completed;
Memory memory Requirement
Must maintain memory for at least a week without Achieved
power
Must interface with a microcontroller
Real Time Must be capable of accepting current time from Completed;
Clock microcontroller Requirement
Must keep time and date accurately from that point Achieved
forward as long as power is connected.
PC Control Unit (PCU)
General Must give the user the highest amount of control over | Completed;
the system Requirement
Must have control over every connected window Achieved
treatment in the house
Power Must be able to draw power from the PC USB Completed,
connection Requirement
Achieved
PC Software Must be able to interface to a microcontroller through | Completed;
USB Requirement
Must have an intuitive graphical user interface Achieved
Must be capable of placing each window into one of
the three modes
Must be capable of controlling individual windows
when in manual mode
Must store at least Wake-up/Work/Return-from-
work/Sleep times locally
EEPROM Must be able to hold 1000 bytes of non-volatile Completed,
Memory memory Requirement
Must maintain memory for at least a week without Achieved
power
Must interface with a microcontroller
Real Time Clock | Must be capable of accepting current time from Completed;
microcontroller Requirement
Must keep time and date accurately from that point Achieved
forward as long as power is connected.
Microcontroller | Must decode messages received through the USB Completed;
Software connection Requirement
Must pass these messages to the wireless transceiver | Achieved
Final Documentation 6 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Wireless Must send and receive messages at an indoor distance | Completed;
Transceiver of 100 feet Requirement
Must be able to address messages to a particular Achieved
target
Must not create interference with other household
items
Must be able to interface with a microcontroller
quickly and reliably
Must meet power requirements (see “Power”) above
Remote Control Unit
General Must give the user remote control over a particular Completed,
window treatment Requirement
Must be capable of converting a particular window to | Achieved
manual mode
Must be able to select an active window treatment to
control
Power Must use 2-4 rechargeable AA batteries lasting a
minimum of 14 days
Microcontroller | Must monitor the user input buttons Completed,
Software Must pass user commands to the wireless transceiver | Requirement
Must conserve power when possible Achieved
Manual Buttons | Must reliably control the system when used Completed,
Must be easily accessible Requirement
Must let the user open or close the treatment one Achieved
increment
Must let the user select the active window to
communicate with
Must interface with the microcontroller directly
through 8 or less 1/0O pins
Wireless Must send and receive messages at an indoor distance | Completed;
Transceiver of 100 feet Requirement
Must be able to address messages to a particular Achieved
target
Must not create interference with other household
items
Must be able to interface with a microcontroller
quickly and reliably
Must meet power requirements (see “Power”) above
EEPROM Must be able to hold 1000 bytes of non-volatile Completed,
Memory memory Requirement
Must maintain memory for at least a week without Achieved
power
Must interface with a microcontroller
LCD Screen Must display the actively selected window on-screen | Completed,;
Must be consistent with Power requirements above Requirement
(See “Power”) Achieved
Final Documentation 7 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Wireless Interface
Distance Must connect the various units at a distance of 100 Completed,
feet Requirement
Achieved
Power Must not consume more power than the various units | Completed;
can provide Requirement
Achieved
Interfacing Must be able to address specific units while ignoring | Completed;
others Requirement
Must operate on several channels to avoid inter- Achieved
house interference
Speed Must be fast enough to send and receive a message in | Completed;
less than 1 second Requirement
Achieved

The expectations and requirements set for Smart Windows early on were extensive.
However, these requirements were kept in general terms, allowing us the freedom of
multiple possible solutions. Therefore, as the design process unfolded, our design
requirements changed very little. However, the specific design decisions made to fill
these requirements were constantly changing.

While there are many examples of the Smart Windows design changing and adapting,
perhaps the best is in the design of the motor limiting mechanism. The requirement for
this feature was simply that the motor would be able to stop accurately when the window
was open, closed, or half open. There are many ways to accomplish this level of control.
Originally, we proposed a design that used a stepper motor to accurately position the
blinds. This solution was eventually abandoned in favor of cheaper, more available DC
motors. As our design unfolded, this limiting mechanism went through many stages of
design. Motor shaft encoders, carefully timed motors, and motor current monitoring
were all proposed as possible solutions. In the end, we chose to use a physical limit
switch for the motor’s open and closed positions and a optical interrupter for the motor’s
half open position. This design was preferred because it is simple and lightweight.
However, the use of limit switches did limit to specific window treatments, causing us to
abandon our hopes of a general window treatment solution.

Overall, the system outperformed our minimum expectations. With only one exception,
Table 1.1 shows that our design was able to meet all of the minimum expectations set
forth for Smart Windows. Our only failure was battery life. Our project was not able to
meet the expected two weeks of battery life between charges. This was due to a variety
of reasons. First, did not anticipate the large energy consumption by the wireless
network. Second, we had hoped to use several sets of batteries in parallel. However,
because the motor needed such a large voltage we were forced to place all of our batteries
in series. A more advanced system with a larger budget could have used solar battery
charging to circumvent this requirement.

Final Documentation 8 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

The only other failure of the Smart Windows system is lack of generality. While
controlling general window blinds was not a requirement of our original solution, it was a
goal of ours. In the end, our design decisions limited us to specific window treatments,
the Lowes blinds and the Solar Shade. A system that can control any set of window
blinds would find more marketability. Some have suggested that our project ought to be
able to raise and lower window blinds in addition to opening and closing them. While
this would certainly be an attractive feature for venetian blinds, polarizing Solar Shades
windows cannot be opened or closed. Since our main focus was always on making a
product immediately attractive to Solar Shades, raising and lowering blinds was never
included in our expectations or requirements.

In addition to meeting our minimum requirements, the Smart Windows design includes a
variety of features not originally proposed. The final Smart Windows product offers not
only PC-level control, but also on-the-go control through an Android mobile phone
application. Smart Windows is able to monitor and report its own battery life, a feature
the user will appreciate. Also, in manual mode Smart Windows is capable of not only
moving the windows to an open, middle, and closed state, but also driving the windows
to any state in between. Because Smart Windows was able to meet the vast majority of
its design requirements, much of the design time was spent adding to and expanding on
the Smart Windows feature set.

Final Documentation 9 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

2 Detailed Project Description

2.1 Theory of Operation

The Smart Windows system consists of a motor block and three main units, the PC
control unit (PCU), the on-window unit (OWU), and the remote control (RCU). Each
unit is broken down into several subsystems and the interfaces between them. These
units communicate through two-way RF communication using ZigBee protocol.

Each unit requires a printed circuit board (PCB) containing a microcontroller, a ZigBee
transceiver circuit, and peripherals. Some peripherals are mounted directly on the main
board, but others are mounted on secondary boards. Since each unit requires many of the
same basic peripherals, a single PCB was designed. This board will be referred to as the
main board. The main board is capable of accepting all peripherals in use in this project.
However, the main board for any particular unit only has the necessary peripherals
attached. All main boards contain a microcontroller, ZigBee transceiver circuit, a
microcontroller programmer circuit, and a 20-MHz ceramic oscillator circuit supplying
the microcontroller with its clock.

The PCU consists of the PC application and a main board. The PC connects to the
microcontroller on the board through a USB interface. In addition the PC application
connects to an Android mobile phone application through the Notre Dame Android lab
server. The Android application is capable of issuing window instructions through the
PC application. The ZigBee circuitry connects to the microcontroller through a standard
serial parallel interface (SPI) synchronous serial interface. The PCU main board has three
peripherals attached, a real-time clock, a serial EEPROM chip, and a FTDI serial
USB/UART device. The real-time clock interfaces with the microcontroller through SPI
and will keep the current time and date. The serial EEPROM acts as non-volatile data
memory and connects to the microcontroller through SPI. The serial EEPROM is not
currently in use, as the on-chip EEPROM is sufficient. However, future enhancements
may require the use of the EEPROM. The FTDI serial USB/USART device allows the
microcontroller USART to communicate through standard asynchronous serial
communication with the PC through USB. The PCU main board receives its power from
the USB connection to the PC.

The OWU consists of a main board with a variety of peripherals. These peripherals
include a real-time clock, a serial EEPROM, a DC-input regulation circuit, a DC/DC
voltage converter, a limit switch jumper, a button harness, and a motor board, and a light
sensor board. The DC-input circuit accepts a voltage from a battery stack and regulates it
down to the required 3.3V. The DC/DC converter steps up this 3.3V signal to the 5.0V
signal used by several of the peripherals. The limit switch jumper contains the pull-down
resistors necessary to operate the motor limit switches and the resistors necessary to bias
the photo-interrupter. The button harness contains five panel-mount buttons and pull-
down resistor and connects to the main board through jumper wires. The motor board
contains the h-bridge circuit needed to run the DC motor and connects to the main board
through jumper wires. The light sensor board contains a phototransistor that produces a

Final Documentation 10 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

voltage proportional to ambient light levels. It also interfaces to the main board through
jumper wires.

The RCU also consists of a main board with several peripherals. These peripherals
include a DC-input circuit, LCD screen, a DC/DC voltage converter, a button harness,
and a serial EEPROM chip. The DC input circuit accepts a battery voltage and regulates
it down to a usable value. The LCD screen displays the name of the currently selected
window. It connects to the microcontroller through an SPI interface. The DC/DC
converter provides the 5V signal needed by the LCD. The button harness holds the
buttons that cycle through selected window and command the selected window to open or
close. The serial EEPROM is not used in this implementation, but is available for future
needs.

The motor block consists of a DC motor, window blinds, two limit switches, a photo-
interrupter two ID hubs, a rubber spider coupling, and a steel rod. The DC motor drives
the window blinds, causing the shaft on the blinds to rotate. The ID hubs and spider
coupling will allow the window blind shaft to couple to a bent steel rod. As the shaft
turns, the steel rod will come into contact with the limit switches. A press of a limit
switch will indicate that the window is fully opened or closed. When the steel rod breaks
the beam of the photo-interrupter, the window will be half opened.

Final Documentation 11 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

2.2 System Block diagram

A block diagram illustration of the system is shown in Figure 2.2.1. An in-depth
illustration of the PCU is shown in Figure 2.2.2. The OWU is shown in Figure 2.2.3,

and the RCU is shown in Figure 2.2.4.

Smart Windows System

ZigBee ZigBee

Figure 2.2.1 Block Diagram of the Smart Windows system

PCU

UsSB ZigBee
>
g2 ¢ ¢
o - —
S

wall
Power

Figure 2.2.2. Block diagram of the PCU.

Final Documentation 12 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

OWU

Connect to base

Open Blinds
ZigBee Close Blinds
Direct
<,
A/D @/G
% S % Reg "%, =
ulator 05/ D
o ~
%,
co/‘-
Battery
Power
Figure 2.2.3. Block diagram of the OWU.
Open Blinds
Close Blinds
Scroll OWU up

ZigBee
Scroll OWU down

Reg-
ulator
wv w
A 3
Battery
Power

Figure 2.2.4. Bock diagram of the RCU

Final Documentation 13 EE Senior Design 2009-2010

Smart Windows

Daniels, Haunert, Shilling, Spangler

2.3 PC Control Unit (PCU)

The PCU subsystem will allow the user to interface to the system through a personal
computer application. The application will give the user a variety of controls over the
operation of the window, as described in section 2.3.1. The user will also be able to
contact the PC application indirectly though an Android mobile phone application.
Commands entered on the PC application will be transmitted through a USB protocol a
PC-connected microcontroller board, as described in Section 2.3.2. The microcontroller
board will interpret these commands and forward them on to the appropriate windows
using a ZigBee wireless interface, as described in Section 2.3.3.

2.3.1 PC application

For the development of our SmartWindow PC interface, we chose to use the
language Python, with PyQT and PyUSB libraries. Our decision began with how
to best develop a professional looking GUI that we could rapidly develop and that
would be powerful enough for our task. (We did not consider USB
communication at first, assuming this could be done in every major application
language.) Towards this goal, we considered the several languages and graphics
plugins. The pros and cons of each considered language are shown in Table 2.3.
Ultimately, we decided on Python as our language for this project.

Table 2.3. Summary of considered languages.

Language (Graphics
Libraries)

Pros

Cons

C++ (with QT)

Professional and powerful.

Cross-platform. Free.

QT with C++ is probably
overkill and has steep
learning curve.

C++ with C, assembly and
native Win32 API calls.

Very efficient and clean.
Free.

For Windows platform only,
and way overkill for an
application that will never
actually be sold.

C++/C# (with Microsoft
Visual Studio libraries)

Relatively easy to code.
MFC classes are
professional grade.

Deployable only on
Windows. MFC classes
have licensing fee. May
require user to install Visual
Studio DLL’s.

JAVA (with standard
Swing GUI libraries)

Professional and cross-
platform. Free.

Hard to compile (without
extra tools and significant
effort). May require user to
install Java Virtual Machine.

Python (with QT, called
PyQT)

As professional looking as
C++ with QT, but slightly
easier and faster to
program. Cross-platform.
Free.

Usually an interpreted
language, but we can use
external tools (such as
py2exe) to easily make
executable.

Final Documentation

14

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

After we decided to use Python with PyQT, we searched for USB libraries. We
initially found “UsbLib” and then later “PyUsb,” a simpler thin wrapper around
the “UsbLib” API. As far as open-source libraries, these two were the only
options we found.

The PC application will operate in three classes. The first class occurs during
startup and initializes the application by loading a settings file stored locally on
the PC. The second class represents standard operation. The third class consists
of child windows that allow the user to input additional information about a
specific window. Figure 2.3.1 documents the flow of the startup class. Figure
2.3.2 shows a graphical illustration of the program creating the settings file.
Figure 2.3.3 documents the flow of the main class. Figure 2.3.4 documents the
flow of the window-child class.

PC SOFTWARE: Class

* Displays
* Loading Screen

* User Interaction
*None

e Structure
* Threads
*Thread 1 (Ul Thread)
* Loading Bar/Animation
* Thread 2 (Background Thread)
* USB Communication with HEAD-UNIT module
* Preconditions
* An instance of the SmartWindows application isnot already running
* Postconditions
* Has established which window module are active
* Has sent out current time to the HEAD-UNIT module

* Hierarchy
* Instances: Only 1, Parent: None, Children: None

Figure 2.3.1. Flow of the startup class.

Final Documentation 15 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

window
name

y . N
~/ User- b\
"N defined

\ /

{ ZigBeelD of
window

SETTINGS File

Figure 2.3.2. Settings file data diagram.

PC SOFTWARE: Class

* Displays
* Window Module Attributes: Name, Open/Close States, Modes

* User Interaction
* Button for each window module
* Clicking online window module starts up WINDOW-CHILD instance
* Menu allows
* Emergency Open All, Emergency Close All, Remove Window

e Structure
* Threads
*Thread 1 (Ul thread)
* Thread 2 (Background Thread)
* Receives intermittent updates on modules that are online
* Receives intermittent temperature readings
* Preconditions
* START-UP has run and attempted to connect with window modules
* Postconditions
* Has loaded all SETTINGS files available and displayed information
* On object destroy
* Closes itself and all child (WINDOW-CHILD) instances

* Hierarchy
* Instances: Only 1, Parent: None, Children: WINDOW-CHILD instances

Figure 2.3.3. Flow of the main class.

Final Documentation 16 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

MICROCONTROLLER SOFTWARE:

e Unit Hardware
» ZigBee receiver/transceiver
e Address: 0xA000
* Real-time clock
* Set by PC
* Onlyused to set the time for the ON-WINDOW modules
* Does not handle timer interrupts (This is left to the ON-WINDOW modules)

* Main Software Loop
* Listens constantlyto UART communicator with PC
* Interrupted by a specific byte (currently ASCII ‘A’)
* Continueslisteningfor 6 command characters after interrupt byte
* Interprets command and puts on the stack
¢ Delete Button on PC sends signal to HEAD-UNIT to remove module
* Listens constantlyto ZigBee
* Looks for “I’'m awake” signal from a new ON-WINDOW unit
¢ When HEAD-UNIT gets signal from new ON-WINDOW, assigns it ID
* Every 1l secondthe ON-WINDOW unit asks the HEAD-UNIT for a command
* |If there’sa command on the stack, it is passed on
* Otherwise it responds back that it does not have a new command

Figure 2.3.4. Flow of the window-child class.

“A designer usually intends an artefact to have some function(s). This influences
the way (s)he designs the artefact and chooses to shape its form in such a way that
it gives the user clues to the intended functions. Doing so the form itself becomes
an intended function. The artefact in itself is just a physical object.” “Form is
Function* (Bosse Westerlund)

In designing the SmartWindows PC application, we were intimately aware of how
important it was to make the interface intuitive and fun, as well as powerful and
customizable. Controlling windows from ones computer far from a life necessity
and we knew that users would only do so if it were quick and easy to use.

Towards this end, nearly all controls were put on the main graphical interface
alongside friendly icons, with only “delete all windows,” “synchronize current
time,” and “exit” (commands not usually necessary) under the menu bar. The
buttons to manually open, half-open, and close the windows only became
available after the window was put into “manual” mode, to avoid any possible
confusion. Setting specific times was put in a separate window which could be
opened and closed as desired.

Another important criteria for such a program that sends and receives commands
externally, is positive user feedback. After each command was sent to the
microcontroller, the program alerted the user (via a message box) that the
command was successfully sent. Also, if the head module became disconnected
at any point, the user would be notified. The design on the software is shown in
Figure 2.3.5

Final Documentation 17 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Figure 2.3.5 Screenshot of the PC software

Outside of the USB communication parts of our PC Program there are two major
types of code we tested over: deterministic commands and highly variable
commands. Out of necessity, we employed two different methods for testing
these two types of code.

Deterministic commands, such as “change mode to ECO,” “delete a window,” or
“change the name of a window” were tested using comprehensive testing. Every
possible command was sent to the microcontroller or PC and to ensure that each
command is successfully executed.

Other commands, such as the custom timing for the “Automatic Mode” of our
windows, is customizable to the point of being nearly infinitely variable. Thus,
we settled for the systematic testing as extensively as our patience allows. For
instance, after verifying that all eight open/close times on our form are
programmatically identical, we entered extensive day and times and take note of
the output bytes. Since we used certain built-in objects, such as the python time-
entry widget, we can be confident that it is not be possible to enter in
unintelligible times (such as 25:61 o’clock), as many other programmers have
verified this is not possible with the widget. Whenever possible we have used
reliable blocks such as this.

In addition, two members of our team completed an inspection and walkthrough
of the source code together, in keeping with the principles of pair programming.
A combination of clean programming, carefully checked over, and extensive
testing of major cases is sufficient in our case. Writing computer testing routines
was not feasible in our timeframe.

Final Documentation 18 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

The Smart Windows Android Application allows users to open, close, or half-
open two windows (Windows “0” and “1”’) from their Google Android equipped
device. This application works from anywhere in the world as long as the PC
application is running, the windows are connected to the PC, and the cell phone
has either 3G or WiFi connection.

The app worked by interpreting the user clicks as one of following six commands:
o Open Window 1

o Half-open Window 1
J Close Window 1
. Open Window 2
. Half-open Window 2
. Close Window 2

These commands are then routed to 6 slightly different PHP “$ GET” commands.
PHP is a popular web scripting language, and “$ GET” is the shorter and simpler
of the two major methods of passing data to the server: “$ GET” and “$_POST.”
Once the server interpreted the PHP command, it would modify an XML file,
which included a tag for whether the current state of the window should be
opened, half-opened, or closed. Then, back on the PC computer running the
Smart Windows application, a background thread would check this XML file 2
times per second. If it detected that the desired state was different from the
current state, it would send out a command to switch to the new state. The
operation of this Android application is shown in Figure 2.3.6.

=~
%
'd-equi PC ——
Android-equipped Server ——
cellphone

Figure 2.3.6 Operation of the Smart Windows Android Application

Final Documentation 19 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

2.3.2 USB Interface

The USB interface consists of asynchronous serial communication
between the PC and the main board. The PC interacts with the USB
channel through a virtual COM port. This USB signal is converted into
simple asynchronous serial communication through the FTDI part
described in Section 2.3.3.11. The microcontroller will send and receive
bytes from the FTDI part through its on-board USART. Figure 2.3.4 a-g
shows a summary of the communication protocol between the
microcontroller and the PC.

Message Type A: Startup

Figure 2.3.4.a. Communications protocol for USB link.

Final Documentation 20 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Message Type B: Runtime Messages

A

>

..

Figure 2.3.4.b. Communications protocol for USB link.

Figure 2.3.4.c. Communications protocol for USB link.

Final Documentation 21 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Cmd

0: Open
1: Middle
2: Close
3:Eco

4: Timer

Type:

0: Open
1: Middle
2:Close

Figure 2.3.4.d. Communications protocol for USB link.

Final Documentation 22 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Response to I' command

A

Micro-

PC Controller

Figure 2.3.4.e. Communications protocol for USB link.

To test this USB protocol, a variety of bytes were sent from the
microcontroller to a terminal. Since all of these bytes were received
correctly, than microcontroller transmission and PC reception were
verified. Then, a variety of bytes were sent from the PC program to a
microcontroller and displayed on an LCD screen. Since these bytes were
received correctly, the microcontroller reception and PC transmission were
verified. Finally, the microcontroller and the PC program were connected
together for two-way communication. Once successful, the USB protocol
passed this tested this test.

2.3.3 Main Board

The purpose of the main board is to maintain USB communication with the
PC and forward messages to the other units through ZigBee wireless
communication.

Radio-frequency (RF) communication was chosen for our wireless link for
a variety of reasons. RF communication is preferable to infrared
communication because it is non-directional. RF communication is
reliable and fast, at relatively low power levels. For our RF protocol, we
chose ZigBee. The ZigBee standard is optimized for home automation

Final Documentation 23 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

products, offering an acceptable range at low power levels. ZigBee
devices are well understood and readily available.

The main board was designed as a printed circuit board using surface
mount technology (SMT). This allowed us to concentrate a large number
of parts in a well organized, small area. As described in Section 1 above,
this main board has certain standard parts and unit-specific peripherals.
The motivation and design of these standard parts and the peripherals are
described below. The main board testing consists of testing each of the
individual subsystems and interfaces between them. These test plans are
also described below.

2.3.3.1 Microcontroller

The microcontroller used as the embedded intelligence for this project
must have 33 1/O pins, a universal asynchronous receiver transmitter
(UART), non-volatile memory, and capable of 3.3V operation. Since the
microcontroller software is written with the BoostC compiler, a Microchip
P1C18 model microcontroller was selected. The lowest cost PIC18 that
meets our design requirements is the PIC18LF4620. Therefore, to
minimize cost while meeting our requirements, the PIC18LF4620 was
chosen as our microcontroller. Figure 2.3.5 shows a schematic of this
microcontroller with the pins connected to 1/0 signals. The naming
conventions applied to these 1/0 signals will be applied throughout the
document. The reasons for each pin assignment are explained in the
following sections.

Final Documentation 24 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

1C4
——, MCIR 18] o e re7irGn WI— BT~
o+ AD 18] ragano rasPce HE—BE S~
_—F Al e B TRIITOD nps A BS =
1 e - - 14 B4 -
ﬂﬂ 2 ;2 RAZIANZ FRB4 7 o -
- =T REVPCEM L R x v
— o] FUANAND REIPGM —)
442 RearTock RB2 E‘E 82
= = RASIANA AB =
_——C—== RENANS rpg |—BO -~
——E1— 2 Reuane voD [e . 1’?-'%
0 4 == £ REZANT VES fes 31 >
. - S
20— ,iﬂ':_’j - voD ro7 P—OL ——
gl ., M ¥ 06 4
%q . 2| I'-SS Rl 3 - Y
T AL =9 Raziox RDS "_Ei— 3
'='L IHE ;_" RLAGIDX2 RO4 = ey .—-
= =4 RCO rerRx P—i—c
ol = pey RCETX —'—'E'—';é -
= G2 S o cepang BE 65 0 S~
= =1 RC2 Resmost fm—L)
, =4 RCAUSBCHK RCAMISD Fo— ;
T——D1 3 api roz M0 D2~
1BF4GZ07PT

Figure 2.3.5. Microcontroller Schematic.

Since each subsystem relies on proper microcontroller operation, testing
the operation of this microcontroller consisted of many implicit tests along
the way. To specifically test the soldering connections of the
microcontroller, the ports were configured as inputs and connected to Vpp
and ground successively. An LCD screen was used to display the values
on the ports and insure they are operating as expected. This method could
only be applied to pins which had solid external pinouts. Other pins were
verified by the simple fact that the subsystems connected to them were
functioning.

4.3.3.2 Microcontroller Software

The design for the microcontroller software for the PCU is shown in
Figure 2.3.6. The software consists of a main loop that listens ZigBee
communication. USART communcication with the PC is interrupt-driven.
When a new USART message is received, the microcontroller is
interrupted.

When a PC instruction is received, it is placed on a stack indicating which
window the instruction is for. Once a communication link is achieved
with that window, the instructions are removed from the stack and sent to
the window. If the window requests to join a network, the PCU
orchestrates this process and stores the window’s address. Later, this
connection can be reported to the PC application upon request.

Final Documentation 25 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

MICROCONTROLLERSOFTWARE:

* Unit Hardware
» ZigBee receiver/transceiver
* Address: 0xAO0O
* Real-time clock
e SetbyPC
* Onlyused to set the time for the ON-WINDOW modules
* Does not handle timer interrupts (This is left to the ON-WINDOW modules)

* Main Software Loop
» Listens constantlyto UART communicator with PC
* Interrupted by a specific byte (currently ASCII ‘A’)
* Continueslisteningfor 6 command characters after interrupt byte
* Interprets command and puts on the stack
* Delete Button on PC sends signal to HEAD-UNIT to remove module
* Listens constantlyto ZigBee
* Looks for “I'm awake” signal from a new ON-WINDOW unit
* When HEAD-UNIT gets signal from new ON-WINDOW, assigns it ID
* Every1 secondthe ON-WINDOW unit asks the HEAD-UNIT for a command
* |If there’sa command on the stack, it is passed on
* Otherwise it responds back that it does not have a new command

Figure 2.3.6. Microcontroller software design for PCU.

To test the microcontroller code, the code was run many times with a
variety of inputs and scenarios. All attempts were be made to create
unusual situations for the program to handle. Program crashes were
monitored and corrected.

The complete microcontroller code and libraries are included in the
Appendix at the end of this document. The code is also listed in an
executable form on the Smart Windows project website.

2.3.3.3 ZigBee Circuit

The ZigBee circuit must contain an integrated circuit capable of
performing ZigBee radio frequency (RF) communication. This IC must
be able to interface to the microcontroller through an SPI interface. To
perform these functions, we chose the ATMEL ZigBee part AT86R231.
The Atmel ZigBee transceiver part was chosen mainly out of familiarity.
Senior design groups have worked with this part in the past to great
success. We chose the part on the recommendation of past experience.
The ZigBee circuit also contains an antenna, an oscillator, and associated
impedance-matching traces. These components were chosen as per the
instructions on the Atmel datasheet, shown in Appendix 6.4. These
ZigBee circuit components were designed by Professor Mike Schafer of

Final Documentation 26 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

the University of Notre Dame and are reproduced here exactly. The
schematic for this ZigBee circuit is shown in Figure 2.3.7.

G
VDD
s 1

b 3§.
16—t = 8 =
;fl’H &o &ho
I I | ot
o L [N2 —
_Lose
_|CBytu
GND TJ
*
o

Figure 2.3.7. ZigBee Circuit Schematic.

To test this ZigBee circuit, a two-step process was be used. First, the SPI
interface was tested by writing and reading to registers on the ATMEL
chip. Once this can was confirmed, the ZigBee transmission was tested.
Messages were sent over ZigBee to a packet sniffer. This confirmed
transmission. Then, packets were received from a packet sender to test
reception. Finally, two ZigBee devices were connected in two-way
communication. These tests were performed for each ZigBee transceiver
involved in the project.

2.3.3.4 ZigBee Wireless Interface

The ZigBee circuit has two interfaces. The SPI interface connects the
ATMEL ZigBee IC to the microcontroller. This interface is a standard
protocol SPI interface. Standards describing SPI operation and the
sending of bytes through SPI are readily available from a variety of
sources. Because the ATMEL ZigBee transceiver demands an SPI
interface, this decision was out of our control.

The ATMEL ZigBee IC communicates with the ZigBee units on other
main boards through a ZigBee protocol RF wireless interface. The ZigBee

Final Documentation 27 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

protocol we are using is compliant with the IEEE 802.15.4 standard. Our
reasons for choosing this standard were laid out above. ZigBee units
connected to the network are given a unique two-byte short address by the
PCU. The ZigBee modules are set to extended mode, given them the
capability for automatic address filtering, automatic message
acknowledgement, and automatic retry until acknowledgment.

In any particular message, the first byte represents the type of instruction
and subsequent bytes represent additional information associated with that
instruction. In general, these messages follow the protocol set forward for
USB communication set forth in Figure 2.3.4 above. However, four
additional message types are required for ZigBee communication that
were not used for USB communication. The message protocol for these
ZigBee-specific message types is laid out in Figure 2.3.7a.

0x00: Add new WindoV
xOt.Response to add 0x03
Request for instructions

0x02:
Request Command

Figure 2.3.7a ZigBee-specific message protocol. The hex numbers listed
replace the message type in the protocol of Figure 2.3.4. The first and
second byte following the message type will contain the current light and
battery readings, respectively. All other fields are set to zero.

The ZigBee interface was tested as part of the ZigBee circuit test in the
previous section.

2.3.3.5 Ceramic Resonator

Our microcontroller requires a clock source, internal or external. The
design of this clock source was subject to several constraints. To save
power, our microcontrollers are set to sleep mode in between computation
bursts. To decrease power usage, the time per instruction must be minimal
S0 as to increase the sleep duty cycle. Therefore, our clock source must be
as fast as possible, while maintaining reliable operation. To ensure
efficient operation of the microcontroller, we have used an external

Final Documentation 28 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

ceramic resonator providing a 20MHz clock to the microcontroller. A
ceramic resonator was chosen over a crystal oscillator because of its
superior simplicity. The appropriate oscillator is available from Murata
through Digi-Key. The part number and ordering information are
provided in the Bill of Materials shown in the Appendix. The oscillator
circuit is shown in Figure 2.3.8. The circuit includes 2 30pF capacitors
and a 1M ohm resistor. These elements are included for balancing should
the resonator signal be unsatisfactory. In our implementation, the
balancing resistor and capacitors were not needed.

(=0
o

— I:.*”’ GND

20MHz

1

7]
e | .

& P K LIRS T
- j{E —ANAN ' MURATA
i i ‘IH -

5
ﬂT??J:u

GHD
Figure 2.3.8. Oscillator Circuit. The balancing resistor and capacitors
were unneeded in our implementation.

This circuit did not need to be tested explicitly since correct
microcontroller operation indicated successful clock generation.

2.3.3.6 Programmer Circuit

The programmer circuit allows the Melabs programmer card to interface
to our PIC microcontroller. The Melabs programmer was chosen for its
availability and ease of use. This circuit was designed by Professor Mike
Schafer of the University of Notre Dame and is included in Figure 2.3.9
with permission. The diode and resistor are intended to protect the
programmer from large reverse voltages during programming. The switch
is included for resetting microcontroller operation after programming.

Final Documentation 29 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

GHO
"ﬁ:: éKD Prog rammer
18] - - g
GND GMD E-
=—"R7 & oor o= |5
9 ; A e - ¢
= =] NC e e
"_"?-:I: = "'.'-_- | —
=
E,,l:” MCIE —
INZ148 :I,‘,
53 -
=5

Figure 2.3.9. Programmer Circuit

This circuit did not need to be tested explicitly since correct
microcontroller operation indicated successful programming operation.

2.3.3.7 Serial EEPROM

The main board must be able to maintain information about connected
window units when power is disconnected. For this design, we have
chosen EEPROM memory as our non-volatile memory source. Other
forms of memory, such as SD cards, offer larger storage capactity at
greater price and complexity. For our design, only 1000 Bytes of memory
are required.

The PIC18 microcontroller has limited non-volatile EEPROM memory
available. This memory met the needs of our project, and no external
memory was required. However, external EEPROM memory in the form
of a serial EEPROM chip was included in our design should future
versions of the project require it. The serial EEPROM chip chosen is the
Microchip 25LC640, which provides an additional 64kbits of memory.
This chip was chosen because it is from a trusted manufacturer. It uses a
standard SPI interface, which was already in use in other areas of our
project. The circuit connecting this EEPROM chip to our microcontroller
is shown in Figure 2.3.10.

Final Documentation 30 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

2
_ . B] -) 1] i :. [
i Hl-_|‘ ._' G5 wLiLl |'. I‘D _GI:
E— S5 ML _._Dl'_._ —— =
15 g ol |t B3
= GND o4l oc o |Ee—L5
=4 4 yss g [Fel
251 CE40

Figure 2.3.10. Serial EEPROM schematic.

As the EEPROM device was not needed in our final design, no EEPROM
chips were ever ordered. Without EEPROM chips available, no testing
was done on this circuit. However, the on-board microcontroller
EEPROM was used in our final design and was tested extensively. Each
test involved writing to and reading from the device a variety of times.
Data was written to the device, and the power was shut off. The power
was then turned back on later, first several minutes and then several days,
and the data existence was confirmed.

2.3.3.8 Serial EEPROM SPI Interface

The serial EEPROM chip connects to the microcontroller through a
standard protocol SPI interface. Standards describing SPI operation and
the sending of bytes through SPI are readily available from a variety of
sources. Since the EEPROM chip was never included in the final design,
this SPI interface was never tested. However, other working SPI modules
give us confidence that this SPI interface is correctly designed should it be
needed in future designs.

2.3.3.9 Real Time Clock

When in automatic mode, the OWUs will be asked to open and close at
certain times and days of the week. In order to do this, they will need an
IC capable of keeping track of the current date and time. Since the PCU is
responsible for syncing the time on the various windows to the PC clock,
the PCU will also need time keeping abilities.

Devices capable of storing and incrementing the current real time are
called real time clocks. For our design, we preferred a real time clock
using an SPI interface, due to our familiarity with that interface. We also
wanted a real time clock capable of storing alarm times and interrupting
the microcontroller. In the final design this alarm feature was not utilized,
although the circuitry is available for future designs.

As a result of these design specifications, we selected the Dallas DS1305
real time clock device since it met all of our requirements and offered an

Final Documentation 31 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

appropriate surface mount package. The DS1305 connects to the
microcontroller through an SPI interface.

Figure 2.3.11 shows the schematic that governs the real time clock
operation. Pins 1 and 2 of this device are used for secondary power
sources. Since none are available, these pins are tied low. This real time
clock requires a 32.768 kHz crystal oscillator connected to pins 3 and 5.
The SER3205 has been used for this purpose. The datasheet for this
oscillator is included in the appendix. Pins 4, 6, 8, 13, and 19 of these
device are not connected. Pins 7 and 9 represent the interrupt signals fed
back to the microcontroller. They require external pull-up resistors
shown. INT1 isunused. INTO on pin 7 is attached to microcontroller port
B5, since this port is capable of interrupt-on-change. Pin 10 is grounded.

Pin 11 of this device determines the mode of serial communication. It is
pulled high to indicate SPI communication. The SPI signals on pins 12,
14, 15, and 16 are wired to the respective MSSP ports on the
microcontroller as shown. D7 is chosen as the enable port for this device.
Pin 17 is the logic-level supply pin and is given Vpp. Pin 18 offers an
interrupt when power to the device fails. It is wired to port A3 for
monitoring. Pin 20 is the power supply pin and is connected to the power
trace on the board.

SER3I205 Crystal

1 L o '}
.'ull'lll'!.l 1 e LT -

1 n L T 1k - 2 -
i TRTT
-.'l'u'l'.l"- 1

RN

s - O

iy

Figure 2.3.11. Real Time Clock Schematic.

The real time clock was tested by placing the current time on it through
the SPI interface. Then, the device was allowed to run for a significant
interval of time. Meanwhile, the elapsed time was measured with an
external clock. After the interval of time has passed, the time was read
from the device and compared to the known actual time.

Final Documentation 32 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

2.3.3.10 Real Time Clock SPI Interface

The real time clock connects to the microcontroller through an SPI
interface. Standards describing SPI operation and the sending of bytes
through SPI are readily available from a variety of sources. The SPI
interface will be tested as part of the real time clock device test listed
above.

2.3.3.11 USB/UART FTDI Circuit

To convert the asynchronous serial messages transmitted by the
microcontroller into the standard USB signals transmitted by the PC
through the COM port, an intermediary is needed. In the first portion of
senior design, the group gained experience using the FT232 for USB to
serial conversion. This device is widely used for this purpose in industry,
and its operation is well documented in online resources. For these
reasons, we choose the FT232RI from FTDI. Professor Mike Schafer of
the University of Notre Dame designed the circuit governing the operation
of this device. The circuit is used with permission and shown in Figure
2.3.12.

USB signals enter the circuit through the USB connector shown. The bus
voltage is filter using a ferrite bead and stabilized with capacitors as per
the data sheet. For boards with no other power source, this USB voltage is
regulated down and used as the power source as shown below. The data
signals are passed through to the input of the FTDI chip. The outputs
from pins 1 and 5 are attached to the USART port on the microcontroller
port ¢ as shown. The appropriate pins are driven high and low and shown
on the FTDi datasheet included in the appendix.

Final Documentation 33 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

A
=)
B
1 N
‘ o
- Bile
o L7
o

e mEES
woeml] e B e
o L _ o VDD
=5 o % — -
j :"'l ¥ ={- ?
Fe 2
| | Geus 1
["
— . I

Figure 2.3.12. FT232RL schematic.

This USB signal from the PC also carries a 5V signal along with it. This
5V signal will be used to power the PCU main board since the main board
of the PCU is not attached to a battery like other boards. This 5V voltage
is run directly into a 3.3V regulator, as shown in Figure 2.3.13. For the
regulator, the ZLD01117 was chosen. While a variety of regulators are
available, we required one that would support input voltages anywhere
between 5 and 15 volts. We also required the regulator to supply at least
125 mA of current and be available in-stock from Digi-Key. The only
regulator meeting these constraints was the ZLD01117.

The capacitors in the regulator circuit are included the filter AC noise out
of the power signal provided by the regulator. The values are those
recommended by the data sheet included in the appendix. The switch is
used to switch the input to the regulator from the USB bus voltage to the
battery voltage provided on the DC input jack. The resistor network
shown is not implemented on the PC board and will be explained in a later
section.

Final Documentation 34 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

]
| —=
| [y — WD
— 0
2 - o = -
ZLO0
LR i
-
+ Ly &M 3
- —
) Pl) .
Pl | 1 1 10 |
L]
Tl A
L=l i L
ol
-
o=
o
e T a
u —, |
—]
__,5- X
...-\.:I- .
i T
15k =
S o
PN i |
R16

Figure 2.3.13. Regulator circuit.

For testing the communications properties of this circuit, bytes were be
sent and received to the PC. This process was part of the USB interface
test already described above. To test the power generation portion of the
circuit, we simply checked to make sure the board is receiving power
using a voltmeter. At every step, an ohm meter was used to ensure that
there was adequate resistance between the power and ground traces on the
board.

Final Documentation 35 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

2.4 On-Window Unit (OWU)

Each on-window subsystem needed to have two features: intelligence and control. The
OWU needs the ability to control the window blinds through an appropriate actuator.
Intellegence is necessary in order to make control decisions in real time, with or without
direct user input.

For this purpose, we have divided the OWU into two main subsystems. The motor block
contains all the necessary hardware to drive the window blinds. Its operation is described
below. The main board contains the intelligence needed to control the motor block and
maintin communication with the rest of the system.

The motor block interfaces to the main board in several ways. The motor block will use
an h-bridge circuit (described below) to directly control the motor. This circuit will have
two input signals fed to it from the microcontroller representing forward and reverse
operation. Also, the main board will monitor the motor’s progress through two limit
switches and an optical photo-interruper. These devices are described below.

2.4.1 Motor Block

The motor block consists of a DC motor, window blinds, two limit switches, a
photo-interrupter, two ID hubs, a rubber spider coupling, and a steel rod.

The DC motor drives the window blinds, causing the shaft on the blinds to rotate.
Many motors were considered for this project. Servo motors and stepper motors
offer the greatest amount of control over motor rotation. DC motors with shaft
encoders offer the ability to monitor motor rotation directly. However, the
simplest and least expensive solution is a DC motor with no control device. For
this purpose, we chose the SolarBotics G3 motor because of its built in protection
clutch, low voltage operation, and geared down rotation.

However, it is imperative that we know how long the motor has rotated. For this,
we used simple limit switches located at each end of the motors rotation cycle.
When the spinning steel rod strikes these switches, the microcontroller can
receive a signal indicating that the motor has reached its bounds. This limit
switch solution, however, is not able to alert the microcontroller when the motor
has reached the middle of its rotation. For this, we mounted a photo-interrupter in
the center of the rotation path. As the steel rod attached to the motor turns
through this interrupter, the optical beam is broken and the interrupter sends a
logic high to the microcontroller. The circuit running these limiting devices is
shown below in Figure 2.4.a. The 10k-ohm resistors pull down the limit
switches. The 47-ohm resistor limits the current to the photodiode in the photo-
interrupter. The 1k-ohm resistor limits the current into the collector of the

Final Documentation 36 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

phototransistor in the photo-interrupter. These values were chosen as per the data
sheet shown in the Appendix.

Figure 2.4.a Limit switch connection circuit

The ID hubs and spider coupling will couple the window blind shaft to the motor
and to a bent steel rod. As the shaft turns the steel rod will come into contact with
the limit switches.

Our motor required both forward and backward operation. The circuit
traditionally employed to drive bi-directional DC motors is known as an h-bridge.
We choose the most commercially common h-bridge IC available for reliable
operation. Surrounding the h-bridge, a diode protection circuit was used, as
described in the data sheet for this device shown in the Appendix. The purpose of
these diodes is to prevent any large back voltages from the motor from reaching
the h-bridge or microcontroller. The final circuit is shown in Figure 2.4.b

oy 02 g 01
L Y T i Bad i

1= 03
T FT7

Figure 2.4.b Motor driving circuit

Final Documentation 37 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Inputs to this circuit from the micrcontroller conist of V_EN1 and V_EN2. When
V_EN1 is driven high, the motor outputs drive the motor forward. When V_EN2
is driven low, the motor outputs drive the motor in reverse. The DC input jack
provides ~10V power to the h-bridge and motor. The capacitor stabilizes these
voltages to a DC level.

To test this circuit, the motor was operated several hundred times over the span of
weeks. For a successful test the motor must start and stop exactly 100% of the
time. No motor faults were tolerated in this design.

2.4.2 Main Board

The vast majority of the design and testing of this system is identical to Section
2.3.3. Some OWU-specific elements are added where necessary. The design and
testing of these OWU-specific peripherals are described below.

2.4.2.1 Microcontroller
Identical to Section 2.3.3.1
2.4.2.2 Microcontroller Software

The microcontroller software operation has been described above. On each
cycle, the microcontroller will issue an alert indicating that it is awake.
Then it listens briefly for new instructions from the PCU. If instructions
are received, they are decoded and handled appropriately. This interaction
happens in accordance with the ZigBee protocol described above.

After talking to the PCU, the microcontroller will request instructions
from the RCU. If instructions are received, they will be handled
appropriately. If none are received, the software will move on with no
change. This interaction happens in accordance with the ZigBee protocol
described above.

After attempting both forms of ZigBee communication and polling the on-
window buttons, the software will make mode-dependent decisions. In
eco mode, the software polls the light levels and makes a decision. In
timer mode, the softwar polls the real time clock and checks the value
against the stored alarm times.

Following these steps, the microcontroller sleeps for a 1 second cycle

before repeating. This sleep cycle increases the battery life of the system
dramatically.

Final Documentation 38 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

The design for the microcontroller software for the OWU is shown in
Figure 2.4.1. The complete microcontroller code is listed in Appendix
6.2.1. The main program operates at a high level. Individual functions are
handled by a variety of task-specific function libraries. These function
libraries include the software to run the ZigBee, LCD, real time clock,
ADCON, EEPROM, serial communication, and motor functions.

MICROCONTROLLERSOFTWARE:

* Unit Hardware
» ZigBee receiver/transceiver
¢ Address: 0xB000, 0xB001, 0xB002, etc (sequentially numbering as added)
* Real-time clock
e Set by HEAD-MODULE
* Handlestimer interrupts (When in “Auto” timing mode)

* Memory
* Volatile:Own Zigbee Address
* Non-volatile: Mode (Auto/Manual/Eco), Open/Close Times

* Main Software Loop:
* Check flags for manual button presses
* |If so, respond accordingly
* Ask REMOTE for command
* Ask HEAD-UNIT for command
* Check real-time clock to see if it is time to turn blinds (AUTO Mode only)
* Check lightreadingto see if it is time to turn blinds (only)
» Sleep 1second (to conserve battery life)

Figure 2.4.1. Microcontroller software design for OWU.

To test the microcontroller code, the code was be run many times with a
variety of inputs and scenarios. All attempts will be made to create
unusual situations for the program to handle. Program crashes will be
monitored and corrected.

2.4.2.3 ZigBee Circuit

Identical to Section 2.3.3.3

2.4.2.4 ZigBee Wireless Interface

Identical to Section 2.3.3.4

2.4.2.5 Ceramic Resonator

Identical to Section 2.3.3.5

Final Documentation 39 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

2.4.2.6 Programmer Circuit

Identical to Section 2.3.3.6
2.4.2.7 Serial EEPROM

Identical to Section 2.3.3.7
2.4.2.8 Serial EEPROM SPI Interface

Identical to Section 2.3.3.8
2.4.2.9 Real Time Clock

Identical to Section 2.3.3.9
2.4.2.10 Real Time Clock SPI Interface

Identical to Section 2.3.3.10
2.4.2.11 DC Input Circuit

Because there is no USB connection to the OWUs, they must derive their
power from another source. Connecting each window to a wall outlet
would use a disproportionate number of outlets. These units could be
hardwired to the household power line, but that would require professional
installation. Our design preference for Smart Windows is for simple do it
yourself installation. Therefore, rechargeable batteries must power the
system. While a solar charging circuit would be ideal, the complexuity is
too great for this first version design. Due to their combination of safety
and longevity, we have chosen NiMH AA batteries. These batteries can
be charged with any household charger. To reach the voltage required by
the DC motor, we will need 8 batteries in series.

To regulate these voltages down to the 3.3V required by the main board, a
voltage regulator will be used. The required regulator design has already
been explained in Section 2.3.3.11 along with most of this power circuit.

This power circuit must be capable of monitoring battery voltage. To do
this, we have chosen to run the battery voltage into the analog to digital
converter present in the microcontroller. To monitor battery voltage, the
battery voltage must be scaled down to a safe level before entering the
micrcontroler. At new battery life, battery voltages near 15 volts are
possible. For safety, we have chosen a 5:1 resistor divider as shown
below. When monitoring battery voltage, we have simply remember that

Final Documentation 40 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

the true battery voltage is 5 times greater than the measured value. Port
Al is used to connect to the analog to digital converter.

This DC input circuit is shown in Figure 2.4.2.

.I"|IIII|II|'

iy

Ml

RF1i5

Figure 2.4.2. DC input circuit.

Testing the DC input circuit was straightforward. A voltmeter was used to
insure that the board is receiving power. Then, the voltage measured by
the analog to digital converter was scaled up by 5 and compared to this
reading.

2.4.2.12 Light Sensor Board

When the OWU is in eco mode, it must be able to respond to changing
light levels. Therefore, a small light sensing board has been designed.
This board will be fixed to the window surface. Jumper wires connect this
board to the main board.

The light sensor board contains a TEMT6000 phototransistor. This
transistor uses light levels in place of its gate. We have choosen a simple
phototransistor because of its size and simplicity. We want the light
sensor to have a small size impact on the project. More complicated
sensors are available, but they are larger and more costly. The voltage
created by the light-gated phototransistor is read by the analog to digital
converter using port AO and reported to the user. This voltage is roughtly

Final Documentation 41 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

proportional to ambient light levels. The TEMT6000 was chosen as the
most widely used ambient light phototransistor.

The fully designed light sensor board is shown Figure 2.4.3. The jumper
on the main board that connects to the light sensor board is shown in

Figure 2.4.4.
LIGHTSENSOR
JP1 2 TEMTS000
' Yisls
2 AD_CON
5 2
_%:-f.
gnn T T

Figure 2.4.3. Light sensor board.

. Jps
.:E" : A0 _—'('.:"I
I:d S_E-;

L= . -

Light Sense Board

Figure 2.4.4. Main board light sensor jumper.

To test the light sensor board, the voltage output was converted to a digital
signal using the A/D converter. This digital reading was displayed on the
LCD screen. The light levels on the sensor were be varied by changing
the room lighting conditions. We verified that the light readings on the
screen agreed with the light levels on the sensor.

2.4.2.13 Button Card

The OWU needs three buttons. One button will be used to connect the
OWU to the base station. The other two buttons will be used open and
close the window blinds. Since these buttons must be in a place accessible
to the user, they cannot be attached to the main board. Instead, the buttons
are placed on the panel of the project box containing the OWU main
board. A wiring harness connects these buttons to their pull-down
resistors on the board. This card supports up to 5 buttons, but only three
will be needed for the OWU. Figure 2.4.6 contains the main board
jumper to which this button card can be attached. 10-kohms was chosen
as an ordinary value for a pull-down resistor.

Final Documentation 42 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

[
i 10k
— e
Wil— Rk

S

P
f
-

WO

Figure 2.4.7. Button Card Main Board Jumper.

To test the button card, we will display the value on the Port B on the
LCD screen. We will press various combinations of the buttons to ensure
that they all work as expected.

2.4.2.14 DC/DC Converter

The motor control board requires a 5V signal. To convert the main board 3.3V
signal to a 5.0V signal, a DC-DC converter device is necessary. A suitable device
is the MCP1252 charge pump. This device was chosen because it is produced by
a trusted manufactuer and has worked acceptably on previous projects. The LCD
screen and motor logic will draw current from this device. Both devices were
tested to insure that they did not draw more than the maximum allowed current of
the charge pump.

The schematic governing the operation of this device was designed by Professor
Mike Schafer at the University of Notre Dame and is reproduced here with
permission as Figure 2.4.8.

o
*
e
i i1 [- 8
a1t = PGOODD SELECT =
—AW— - Fe—3 vour spNe [
I-SI:II";.] L = F --. WM C_ N
|c1u CT7 L1 sl &b Al R

100 ‘”:'d | _ | 186

MOUP1252 Va0

GhD t?

Figure 2.4.8. DC/DC converter circuit.

Final Documentation 43 EE Senior Design 2009-2010

Smart Windows

Daniels, Haunert, Shilling, Spangler

To test the charge pump DC/DC converter, a voltmeter was be used to make sure
the appropriate 5V signal is being generated.

2.4.2.15 Motor Control Board

To control the DC motor from the microcontroller, an h-bridge and related
protection circuitry are needed. The h-bridge converts logic outputs from
the microcontroller into the voltages needed to drive a motor. These
choice of this h-bridge design has been described above. Because the
motor deals with high voltage signals that are dangerous to the
microcontroller, this motor driving circuit is placed on a physically
separate board.

Figure 2.4.9 shows the motor board. The protection circuitry around the
h-bridge was designed using the datasheet for the LM298. The jumper
connection that interfaces to the motor control board is shown in Figure

2.4.10.

oy 02
FTyraling

L

1= 03
s

g U
T

Figure 2.4.9.

Motor control board.

11"

‘-. | -I' -I'

* o A

Figure 2.4.10. Motor control board to main board jumper connection.

Final Documentation

44

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

No specific test was be needed for the h-bridge circuit since the operation
of the motor is being tested above in the motor block test. If the motor
block is able to respond appropriately with certainty to microcontroller
signals, it can be assumed that the driver board is working correctly.

2.4.2.16 Limit Switch Jumper Circuit

When operating the motor, a limit switch is depressed when the motor
becomes fully opened or fully closed. The microcontroller will read this
voltage to control motor movement. Therefore, pull-down resistors are
necessary to create a working switch circuit. The necessary resistors are
included on the main board and connected to the switches through a
jumper. The circuit is shown in Figure 2.4.11.

As described above, the microcontroller must also sense when the motor
has reached its half opened state. To do this, we have chosen a
photointerrupter, since it does not impede the path of the motor. For this
design, we chose the Sharp GP1S52. Our specific photointerrupter was
chosen because it was produced by a trusted manufacturer and had an
appropriate sized slit.

The photointerrupter has a photodiode to produce a beam of light and a
phototransistor to receive it. The photodiode needs a current-limiting
resistor, and the phototransistor needs a collector resistance. These
resistors values were chosen according to the data sheet shown | the
Appendix.

4} - A

N —

Figure 2.4.11. Limit switch jumper circuit.

No specific test was needed for the limit switch circuit since the operation
of the motor is being tested above in the motor block test. If the motor

Final Documentation 45 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

block is able to stop appropriately when it reaches the limits of its motion,
it can be assumed that the limit switch circuit is working correctly.
However, in the event of limit switch malfunction, a voltage meter could
have been used to insure proper switch operation.

Final Documentation 46 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

2.5 Remote Control (RCU)

The user may choose to control his or her Smart Windows without the use of the PC. It
would be inconvienient for the user to have to use the on-window buttons in this event.
Instead, our design includes a wireless remote control subsystem. This system interfaces
to the rest of the system using ZigBee, as previously described. As was the case before,
the remote control uses a main board with certain RCU-specific peripherals as described
below.

2.5.1 Main Board

The vast majority of the design and testing of this system is identical to Section
2.3.3. Some RCU-specific elements are added where necessary. The design and
testing of these RCU-specific peripherals are described below.

2.5.1.1 Microcontroller
Identical to Section 2.3.3.1
2.5.1.2 Microcontroller Software

The design for the microcontroller software for the RCU is shown in
Figure 2.4.3. Since no on or off button was included for the remote
control, it must be capable of putting itself to sleep during periods of
inactivity. This is handeled through a 1 Hz interrupt and counter. The
counter is incremented once per second in software. After 180 counts, or
3 minutes, the microcontroller goes to sleep until a button is pressed. Any
time a button is pressed, the counter is reset to zero. In this way, the
remote control shuts itself off after three minutes of inactivity.

Specific ZigBee messages are sent out in response to a request from the
OWU, as described in the ZigBee protocol above. The software listens for
requests and responds appropriately once per cycle. At the end of the
cycle, the software puts the ZigBee to sleep for 1 second in order to save
battery life. Button presses are stored on a stack until they are requested
by the appropriate OWU.

Final Documentation 47 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

MICROCONTROLLERSOFTWARE:

* Unit Hardware
» ZigBee receiver/transceiver
* Address: 0xC000
* Only one REMOTE unit will be supported under our implementation

* Memory
* Volatile
¢ List of window names with corresponding ID’s

* Main Software Loop:

* Update LCD with currently selected window (if changed)

* Look for “Open window” or “Close window” button flag
e Send corresponding open or close command to HEAD-MODULE (to be

forwarded to ON-WINDOW)

* Look for “Show next window (up)” or “Next Window (down)” button presses
* Update which window is to be displayed, based on internal list

* Every 5 seconds receive new list of ON-WINDOW modules

Figure 2.5.1 Microcontroller software design for RCU

To test the microcontroller code, the code will be run many times with a
variety of inputs and scenarios. All attempts were made to create unusual
situations for the program to handle. Program crashes were monitored and
corrected.

2.5.1.3 ZigBee Circuit
Identical to Section 2.3.3.3

2.5.1.4 ZigBee Wireless Interface
Identical to Section 2.3.3.4

2.5.1.5 Ceramic Resonator
Identical to Section 2.3.3.5

2.5.1.6 Programmer Circuit

Identical to Section 2.3.3.6

2.5.1.7 Serial EEPROM

Final Documentation 48 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Identical to Section 2.3.3.7

2.5.1.8 Serial EEPROM SPI Interface
Identical to Section 2.3.3.8

2.5.1.9 DC Input Circuit
Identical to Section 2.4.2.11

2.5.1.10 Button Card
Identical to Section 2.4.2.13

2.5.1.11 DC/DC Converter
Identical to Section 2.4.2.14

2.5.1.12 LCD Screen
The remote control can only address one OWU at a time. To display the
currently addressed window to the user, an LCD screen was included on
the remote control. For this design, we required an LCD screen capable of
making SPI communication, the standard for this project, and capable of
fitting onto the panel of our remote control.
For this purpose have chosen the 2x16 character display offered by New
Haven Displays. This display uses a one-directional SPI interface to
display characters on the screen. Figure 2.5.2 shows the schematic for the
main board jumper that enables connection to the LCD screen. The LCD

screen requires a 5V signal for power. This signal is obtained from the
DC/DC converter in Section 2.4.1.11.

™

1P
0 ¥y
4] «—3,
9 3 3—?
- ';_:_j.
40
L 65
g SP_LCD
GND W
Wa.ll

Figure 2.5.2. LCD screen jumper.

Final Documentation 49 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

To test the LCD screen, a variety of characters were sent to the screen
through the SPI interface. Once these characters were displayed correctly,
we sent more complicated commands such as clear the screen and advance
one line. Once these also worked correctly, the LCD had passed the test.

2.5.1.13 LCD Screen SPI Interface

The SPI1 screen communicates with the microcontroller through a one-way
SPI protocol. This protocol operates in the same manner as the standard
SPI protocol available in a variety of places. The difference is that for
one-way communication the slave (the LCD screen) does not return a byte
after the master sends one. Instead, the master sends bytes corresponding
to the ASCII codes to display on the screen. The SPI interface was tested
with the LCD screen test listed above.

Final Documentation 50 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

3 System Integration Testing

There were three main forms of software system integration required by this project.
First the various ZigBee-enabled main board units had to make reliable communication
with each other over ZigBee. Each command of the ZigBee protocol described above
needed to be tested. Second, the USB-enabled PCU had to make reliable USB
communication with the PC application. Each command of the USB protocol described
above needed to be tested. Finally, the Android mobile phone application had to connect
to the PC application through the Notre Dame Android server.

Separate hardware system integration testing was not necessary for two reasons. First,
the subsystem testing descrived in Section 2 included tests of each hardware interface.
Since each hardware interface was already tested, it has been proved that the hardware is
integrated. Second, the software integration testing described here was completed by
sending messages and enacting the instructions described by those messages. This
process implicitly tests each piece of necessary hardware as individual messages and
commands are carried out by the hardware systems.

Therefore, our software testing was grouped into the following categories:
%+ Pure PC-side testing

%+ Pure Microcontroller-side testing
% PC-Microcontroller interactions

Android testing was included in the pure PC-side testing as it measures the Android’s
ability to communicate instructions only to the PC. The PC’s ability to forward these
messages to individual OWU’s is tested elsewhere.

ZigBee testing was accomplished in the pure-microcontroller-side testing. Here, we
measured one microcontroller’s ability to reliably send messages to other microcontroller
units.

In each of these 3 testing categories, general testing paradigms were applied. These
principles are described in Section 3.1.

3.1 General Software Testing Paradigms

The main testing paradigm applied to this project was repeatability. One successful test
was never taken to mean a successful interface. Instead, each test was repreated many
times with different variations. Other important paradigms are summarized here:

% Deterministic (or “fixed”’) commands

o Deterministic commands were tested using comprehensive testing,

since doing so was easily possible. Every possible command was sent

Final Documentation 51 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

to the microcontroller/PC and we ensured each command was
successfully executed.

o Examples:

= “Change mode to ECO”
= “Open window”
= “Delete a window”
%+ Highly variable (or “infinitely variable’) commands.

o Commands such as the custom timing for the “Timing Mode” of our
windows, was customizable to the point of being nearly infinitely
variable

o Thus, we had to settle for systematic testing as extensively as our time
constraints allowed. For instance, carefully verifying that all eight
open/close times on our form were programmatically identical, we
entered extensive days and times and took note of the output bytes
generated.

% Well accepted packages:

o By using certain built-in objects, such as the python time-entry widget,
we were confident that it would not be possible to enter in
unintelligible times (such as 25:61 o’clock), as many other
programmers and testers have verified this is not possible with the
widget. Whenever possible we used reliable blocks such as this in our
design.

o Another example of this was our USB communication module which
had been developed by other programmers and tested extensively
before us

Overall, a combination of clean and well-regarded programming practices, which we
carefully checked over, and extensive testing of major cases is what we deemed sufficient
in our case. Since we are not dealing with dangerous equipment or huge financial
transactions, minor flaws are, although unfortunate, not disastrous. Writing computer
testing routines was not feasible in our timeframe, or, we felt, necessary for a non-safety
related application. Having a completely separate testing team unrelated to our design
team was not possible.

Ideas for future improvements in the software testing progress:
% Separate testing team:

o For every “programmer” there will be an “antigrammer”
% Code reviews:
o Putting all, or nearly all, of our code on a large screen or projector
= We can then critique and verify each other’s code
++ Pair programming:

Final Documentation 52 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

o Statistics show that 2 programmers programming together on one
computer program at 70% of the speed with 70% fewer errors

3.2 Pure PC Software Testing

The PC software was tested extensively, both through specific testing and by general
run time observation. Some examples of this pure PC software testing are provided
hereExamples of pure PC-side testing include:
% Verifying that the various date and time selections matched up to the correct
bytes
o Since the program visually outputs the byte codes to the right of the
date and time selection, this part can be verified before without the
microcontroller.
% Verifying that saved window names and times save to a file, and load from a
file, correctly.
Verifying routing of clicks and graphical confirmation.
Most of GUI minus back-end USB communication
Getting the current time
Formatting the time to “binary coded decimal”

X/ R/ R/
L X X X

33

€

3.3 Pure Microcontroller Software Testing

The microcontroller software was tested in two steps. First each submodule of the
main board was tested without the use of ZigBee to insure proper operation. Then,
messages were sent from one board to another of ZigBee, while being monitored by a
ZigBee packet sniffer. The team watched the messages closely to be sure that each
submodule was able to receive the correct instructions reliably. Examples of pure
Microcontroller testing include:

®,

% Sending the time from the head module to the secondary modules
% Sending light readings from the secondary modules to the head module
% Sending battery readings from the secondary module to the head module

R/

% Verifying that the window responds to changes in sunlight while in Eco mode

3.4 PC-Microcontroller Interaction Testing

The PC-microcontroller interface was the most difficult testing we performed. The
microcontroller hardware, the pc software, and the microcontroller software were all
involved in the successful operation of this test. First, the USB testing described in
Section 2 above was applied to ensure a reliable USB link between the two
subsystems. Then, each of the protocol-described message formats were tested one at
a time, sticking to the testing paradigms described above. Examples of PC-
Microcontroller interactions that were tested include:

o,

% Receiving light and battery readings back from the head module

Final Documentation 53 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

% Sending the current time from the PC to the head module and verifying that it

IS correct
s Sending mode-change commands from the PC to the head module, and having

them correctly forwarded on and executed.

Final Documentation 54 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

4 Installation Manual and User’s Guide

Thank you for purchasing a Smart Windows system. If you have purchased a Smart
Windows Starter Kit, you have everything you need to install and control one Smart
Window in your home. If you want additional windows, please purchase a Smart
Windows Expansion Pack. Your new product will:

e allow you to open and close your window blinds at the touch of a button,

e control your window treatments with a wireless remote control,

e and coordinate all your windows with a PC application.

If you have purchased a Smart Windows expansion pack, your new product includes
everything you need to setup and connect an additional Smart Window to your current

Smart Windows installation.

4.1 Installation Guide

Table 4.1.1 shows the contents of your new Smart Windows Starter Kit. Smart Windows
Expansion Packs contain only those elements listed in the “Window Unit” section of
Table 4.1.1. Before beginning, please ensure that these elements were included in your

Smart Windows kit.

Table 4.1.1 Smart Windows contents

Smart Windows Contents

Part | # | Picture
Window Unit

Window blind assembly 1

Blinds mounting bracket 2

Wood Screws 10

Final Documentation

55 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Motor connector 1

Window assembly connector | 1

Battery Pack 1

.~
2700 RECHARGEABLE O™ ety
A “?
YHI3IY D0L2 v

G VRN e |

7
1

Rechargeable AA battery 8

Battery mounting bracket 3

Power cable 1

Final Documentation 56 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Picture hanger 2
Nail 2 .
Window control box 1 —)

e~
Motor control box 1
Light sensor 1
Light sensor connector 1

Remote Control

Final Documentation

57 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Wireless Remote Control 1
9V Battery 1
PC Unit
PC Communication Box 1
5-pin Full-Size A-to-BUSB | 1
Cable

Final Documentation

58 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

In order to complete the assembly, you will need the tools and supplies shown in Table
4.1.2. Please gather these items before beginning assembly.

Table 4.1.2 Smart Windows required tools and supplies

Smart Windows Contents

Tools Supplies
Hammer Hot glue, double-sided tape, or other
Phillips Screwdriver adhesive

Personal Computer (optional)

NiMH Battery Charger

4.1.1 PC Unit Setup (optional)

Note: If you do not have a personal computer or choose not to install the PC-based
portion of this product, your windows will still be operational. However, the available
features will be greatly reduced. Installing the PC portion of this product is highly
recommended.

(1) Connect the hardware: Remove the communication box (as shown in Table 4.1.1)
from its packaging. Using the included A-to-B USB cable (as shown in Table 4.1.1),
plug the communication box into an available USB port on your windows-based personal
computer. Your computer should recognize the connection of an “FTDI USB to serial
converter.” You may be prompted to install a driver for this device. Follow the on-
screen instructions.

(2) Install the software: Insert the Smart Windows CD-ROM into your personal
computer. A dialog box will appear prompting you to install the Smart Windows
software. Please follow on-screen installation instructions.

(3) Start the software: At the conclusion of the installation, a Smart Windows icon will
be placed on your desktop. Use this icon to start the Smart Windows software
application. At startup, the software will search for connected windows. If no window
units have been installed yet, the software will alert you that there are no connected
windows.

(4) How to use the software: Now that you have installed your PC software, you can use
it only when you need it. Individual windows will operate with or without the software.
However, new windows will not be able to be added to the system if the PC
communication box is not plugged into a USB port on your computer. The software does
not have to be running to install new windows.

Final Documentation 59 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

4.1.2 Window Unit Setup

(1) Install the window blind assembly: Smart Windows window blinds are installed like
any ordinary window blind. Use a Phillips screw driver and wood screw to mount the
two mounting brackets (as shown in Table 4.1.1) to the top of your window frame as
shown in Figure 4.1.2a. Then, using firm pressure, lock the window blind assembly into
place in the mounting brackets. Be sure that the open side of the blind assembly is facing

up.

Figure 4.1.2a Proper installation of the window blind assembly mounting brackets

(2) Install the batteries: Smart Windows blinds operate on eight rechargeable AA
batteries (included). Remove the batteries from their packaging and charge them using a
NiMH AA battery charger (available wherever batteries are sold). Once the batteries are
charged, insert them into the provided battery pack (as shown in Table 4.1.1). Be sure to
insert the batteries with the correct polarity.

(3) Install the battery mounting assembly: To hold your batteries, 3 battery mounting
brackets have been provided (as shown in Table 4.1.1). Using a Phillips screwdriver and
wood screws, install these brackets near the top of your window frame in such a way as
to hold your battery pack securely, as shown in Figure 4.1.2b. Consider installing your
battery pack in a location where it will not be visible, such as behind the valence above
your window frame. Slide your battery pack into the assembled battery mounting frame.

Final Documentation 60 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Figure 4.1.2b Proper installation on the battery mounting brackets.

(4) Install the window control box: The window control box contains the buttons you
will use to control your window blinds directly. Choose a spot for this box near your
window where it will be visible but non-intrusive. The control box will be hung from
your wall or window frame using picture hangers (as shown in Table 4.1.1). Using a
hammer and nails, fix the picture hangers to the wall. Be sure that the picture hangers are
spaced in such a way that they will fit into the holes on the back of the control box. Hang
the control box from the picture hangers.

(5) Mount the light sensor: Smart Windows uses a light sensor to monitor the sunlight
outside your window. Use hot glue, double-stick tape, or other adhesive to mount this
light sensor (as shown in Table 4.1.1) to the surface of your window. Be sure that the
light-sensing side of the sensor board is facing out of your home, as shown in Figure
4.1.2c. Using the three-wire light sensor connector, connect the light sensor to the port
on the top of the window control box.

Figure 4.1.2c The light-sensing side of the light sensor MUST face out of your home.

(6) Install the motor control box: Choose a spot above your window frame to install the
black motor control box. Try to choose a spot where the control box will not be visible,
such as behind the valence above your window frame. Also, choose a spot as close as
possible to the motor on your window blind assembly (see Section 4.1.2.1). Using a
Phillips screwdriver and two wood screws, fix the motor control box to the wall or
window frame through the screw holes on the mounting flanges. The motor control box

Final Documentation 61 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

has one red and one black wire coming out of it. Attach these wires to the similar colored
connector on the motor assembly.

(7) Connect the power cords: The battery pack has two power plugs. Attach the
shorter cord to the receptacle on the side of the motor control box. Attach the longer cord
to the receptacle on the side of the window control box. Leave the battery switch in the
off position for now.

(8) Connect the control wiring: Attach the 6-wire window assembly connector coming
from your window blind assembly to the associated port on the top of your window
control box. Using the 4-wire motor connector, attach the motor control box to the
associated port on the top of the window control box, as shown in Figure 4.1.2d.

Figure 4.1.2d Port placement on the top of the window control box. From left to right:
light sensor, window assembly connector, motor connector.

(9) Turn on the system: Using the switch on the battery pack, turn on the power to the
system. You should now be able to use the window control buttons on the window
control box to open and close your window blinds.

Recommended: If you have installed a PC unit in Section 4.1.1, you can now connect this
window to the PC unit. Check to be sure your PC communication box is plugged into a
USB port on your computer. The software does not need to be running in order to
connect a new window. Press and hold the “Connect” button on the window control box
for 2 seconds. The window is now connected to the system and will remain connected
unless it is manually removed from the system using the PC application. If you ever need
to reconnect the window, repeat this process.

(10) Repeat steps 1-9 for all window units

Final Documentation 62 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

4.1.1 Remote Control Setup (optional)

Note: The remote control can operate independent of the PC software. However,
individual window units cannot connect to the system without the PC communication box
being plugged into a USB drive. Therefore, the remote control will not be able to find
connected windows if the PC communication box is plugged into a USB port.

(1) Insert a battery: Using a Philips screwdriver, remove the faceplate of the remote
control. Attach the provided 9V battery to the battery connector inside of the remote as
shown in Figure 4.1.3a. If at any point the remote battery dies, it can be replaced by
following this same procedure.

‘m,.., 221

u,mﬂ; hpw

sran Mn’)‘ N —
& ¥

Figure 4.1.3a Connection of the 9V battery

(2) The remote is now operational

Final Documentation 63 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

4.2 User’s Guide

The Smart Windows system you have purchased is designed to be easy to install and
easier to operate. As described in Section 4.1 (Installation Guide), simply pressing the
connect button on your new window will connect it to the system.

Now that your window is connected, you are free to operate it as you choose. Your
widow has three modes of operation: manual mode, eco mode, and timer mode. Each
mode of operation is described below. Following these descriptionals, a troubleshooting
guide is included for your benefit.

4.2.1 Manual Mode

In manual mode, you have control over your window blind. To enter manual mode, load
the PC software and connect the OWU. Be sure that you have connected the OWU to the
system by pressing connect during installation. Press the refresh button on your screen,
and your OWU should appear. Click on the icon of the window to give this window a
unique name. This name will help you identify which window is which as your
collection grows. Names can be up to 10 characters in length. To move the window into
manual mode, click on the red M below the window.

Now that the window is in manual mode, you can control it one of three ways. First, you
can open, close, or half-open the window blind right from your PC by simply clicking the
appropriate box under the window. You can also control the Smart Window at the press
of the button. Press and hold the open or close buttons on your window control box.
When the window blind is opened or closed to your liking, release the button.

Finally, you can control your window blind using the provided wireless remote control.
First, ensure that your PCU is plugged into a computer. Then, press any button on the
remote to wake up the remote and switch it on. The remote will automatically search for
connected windows through your PC. The PC application does not have to be running
for this process. Once the windows are displayed on your remote screen, use the up and
down arrows to select the window you are interested in. Then, press either the open or
close button to change the state of that window blind. Be sure to press the button firmly
and hold it for about 1 second. If you connect new windows to your system, the remote
will automatically find the names of these windows in a few minutes.

4.2.2 Eco Mode

In eco mode, your window blinds will adapt to changing sunlight. This mode is ideal if
you are running your home’s air conditioning. As sunlight levels increase, your air
conditioning unit has to work harder to cool the house. Smart Windows will
automatically close your window blinds when it becomes too sunny, saving you money.

Final Documentation 64 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

To enter eco mode, load the PC software and connect the OWU. Be sure that you have
connected the OWU to the system by pressing connect during installation. Press the
refresh button on your screen, and your OWU should appear. Click on the icon of the
window to give this window a unique name. This name will help you identify which
window is which as your collection grows. Names can be up to 10 characters in length.
To move the window into manual mode, click on the sun icon below the window.

Once your window is in eco mode, it will adapt to changing sunlight. If at any time you
press an open or close button associated with this Smart Window, either on the window
control box or on the remote control, the window blind will automatically leave eco mode
and enter manual mode.

4.2.3 Timer Mode

In timer mode, your Smart Window has the ability to open or close at certain times of the
day. You choose these times from a simple menu on your PC application. Each Smart
Window can have its own set of alarm times.

To enter timer mode, load the PC software and connect the OWU. Be sure that you have
connected the OWU to the system by pressing connect during installation. Press the
refresh button on your screen, and your OWU should appear. Click on the icon of the
window to give this window a unique name. This name will help you identify which
window is which as your collection grows. Names can be up to 10 characters in length.
To move the window into manual mode, click on the clock icon below the window.

Once your window is in timer mode, it will open or close according to the preferences
you have set on the PC application. The PC application does not have to be running for
the window to operate in timer mode. If you wish to change your preferences for a
particular window at any time, simply open the PC application and click on the window
icon you wish to modify. You can store up to 8 alarm times for any given Smart
Window.

If at any time you press an open or close button associated with this Smart Window,
either on the window control box or on the remote control, the window blind will
automatically leave timer mode and enter manual mode. The window will no longer
react to the alarm preferences you have set.

4.2.4 Troubleshooting Guide

If you are having problems with your system, first shut off the power and restart the
device. Most times, this will correct any issues. Try restarting the software or
reconnecting the window to the system. When connecting new windows or re-loading
the remote control, be sure that the PCU is connected to a computer using the provided
USB cable. If one part of your system is not working, be sure that the batteries do not
need charged. The PC application will report the battery voltage of all connected

Final Documentation 65 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

windows. OWU batteries can be charged with any home NiMH AA charger. The remote
battery is a common 9V and must be replaced. Do not charge the 9V battery.

If none of the above general solutions solve your problem, try the application specific
solutions listed below. The sections below also list instructions for verifying that your
Smart Windows installation is working correctly.

When manually setting window to opened, closed, or middle:
e After a brief transmission delay, the PC application should then give a message box
indicating the command was successfully sent.

o After another brief delay, the window should respond to the command.
e Ifthe window is already in that mode it will not throw any error, but will simply not
visually respond (since it immediately hits the limit switch).
e Troubleshooting:
o Isthe window already in the mode (open, closed, middle) which you are
trying to change it into? If so, you will not see a visual change.
o Try hitting “Refresh” on the PC
= Does the microcontroller still show as there?
e Ifnot, push the “connect” button on the window module.
Then hit the “Refresh” button again.
o Did the PC application never give a message box indicating the command
was successfully sent?
= I[fnot, the PC and/or microcontroller are hung up
= Restart the PC application.
= The microcontroller should automatically break out of its hang
within 2 minutes.
= [fthere is still a problem, start the microcontroller again. Then press
the “connect” button to add it.
o Other ideas:
= Try clicking the “manual mode” button again
= Try restarting your computer

When changing window mode:
o After a brief transmission delay, the PC application should then give a message box
indicating the command was successfully sent.

e After another brief delay, the window should switch its mode, but it may not be
immediately obvious.
e To test Eco mode:
o Take a flashlight, or portable light source, and put it close to the light sensor.
The window blinds should close. Then remove the light source, and the
window blinds should open again.
e To test Timing mode:

Final Documentation 66 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

o Open your local system time (in the lower right on a Window machine), and
note the current time (the real time is irrelevant, the time for your window
modules will be taken from this).

o Switch the mode for the target microcontroller to Timer mode (see
directions above).

o Open the time settings by clicking on the window. Choose a time that is
some short but reasonable period of time out (such as 2 minutes from what
you see is the current time).

o Click “Apply Times”

o Wait until the correct time and watch the window module for the change to

ocCcur.

When deleting all windows from PC:
e Go to menu bar and select “Delete all window modules”

¢ Remember to hit refresh button

Final Documentation 67 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

5 Conclusions

While most people choose to ignore their window blinds, our research has shown that this
is a poor choice. At the very least, inpromper window treatment operation can cost
homeowner’s money on their energy bill. At the very worst, negligent operation of
window blinds can lead to increased likelihood of burglary and theft. It is clear that we
should all pay more attention to our window blinds.

However, this is not an easy proposal. Owning a home brings with it a full list of daily
tasks and chores. As any homeowner knows, the summation of these chores can become
tiring a tedious. Who has time to worry about meticulously opening and closing window
blinds several times a day?

Smart Windows solves the problem of improperly operated window blinds without
adding more work for the homeowner. Smart Windows systems can be installed quickly
and easily. Once installed, the user can set his or her preferences right from the PC.
Then, the windows will operate themselves with no extra effort from the user. If the user
chooses to take a more active role in the operation of his window treatments, he or she
has a variety of options. The remote control adds an impressive piece of technology into
your home at little cost. The PC application allows you to control your window blinds as
part of your morning ritual — without walking all around the house.

The Smart Windows system has shown commercial viability. Solar Shades, a company
producing polarizing window films has expressed interest in adding Smart Windows
techonology for their product demos. As windows move towards a more technological
future, the Smart Windows technolog is well placed to become a part of everyday our
everyday window experience.

This project brings to the forefront a series of design issues and serious engineering
challenges. However, a solution exists to each of these various problems. In discovering
and implementing these solutions, we have gained a great deal of technical knowledge as
well as problem solving strategies.

In an effort to best minimize costs and maximize functionality, this design has been
carefully considered and revised. A wide variety of sources and experts were consulted
in constructing this design. To this end, several members of the Notre Dame engineering
faculty, especially Professor Schafer and Will McCleoud, the owner of Solar Shade,
deserve thanks for their valuable tools and guidance.

The Smart Windows system, as it is designed here, is a widely applicable and adaptable

system. However, it has also been targeted as a valuable marketing tool for the Solar
Shades window treatment.

Final Documentation 68 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

6 Appendices

These four appendices are found on the following pages:

6.1 Complete Hardwork Schematic

6.2 Complete Software Listing

6.2.1 Microcontroller Software
6.2.2 PC Software

6.3 Bill of Materials

6.4 Data Sheets

Final Documentation 69 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

6.1 Complete Hardware Schematics

The hardware consists of three circuit boards: the main board, the motor board, and the
light sensor board.

Main Board: Page 1

1 2 3 4 5 6

L
e s -
T 1l ¢ o i
A L EE R
& z o
g T |
c l l ¢
o T bs
T~
o T
vl‘
D D
SmartWindouwsMB
3/30/2018 11:@9:11 AM
Sheet: 1/1
1 2 3 4 5 6

5/3/2010 12:33:40 AM N:\Public\SmartWindows\Eagle\CurrentBoards\SmartWindowsMB\SmartWindowsMB.sch (Sheet: 1/1)

Main Board: Page 2

Final Documentation 70 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

1 2 3 4 5 6
Ds1305
oz CC1
’ i ey) R
24 A = no 1t e
Q RO x2 ‘A‘.?K 5] %L 2
A ®ustn | o] = =7 fovd
- 10 GHD 1 -
= E
VoD e VDD
B B
P T)
I) fer)
EMQ St & e s
4 =05 3 ypsok B3 =
S¢—Gund ygs g B OS5 S
“ 25LC6405M
1 10k -
4 Bl . e w2
——— Ak Wie—bg
1 Bl g = —— W7
C q ATinlnl i l':‘llltu L og R20 A C
- -
B —=tn o B
= = B
o R
@ —
D i g D
DVE.EI
Smar tlindousMB
3/30/2818 11:09:11 AN
Sheet; 1/1
1 2 3 4] [3]
Main Board: Page 3
1 I 2 3 I 4 I 5 [6
8(£
CSTCE-RESONATORZ0MOV
1k
A {2,k A

=6 B CERRESTONHZ
AL —e
cs

b

FERRITE_BEAD

—
300

(] TBF4BZOTFT
D e 2 PGOOD SELECT [o
VW 4 wour sHon L
R e = I =
T - MCPi262 V50 : Smar tlindousMB
o J 3/38/2818 11:89:11 AM
Sheet: 171 I
1 I 2 3 T 4 I 5 I 5

Final Documentation 71 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Motor Board

1 2 3 4 5 [

Motor Schematic2
3/29/2010 9:0@:55 P
Sheet: 1/1

1 2 3 4 i 5 6

Light Sensor Board

Final Documentation 72 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

6.2 Complete Software Listing

The software consists of three main submodules: microcontroller software (embedded C),
PC software (Python QT), and Android software (Java).

6.2.1 Microcontroller Software

The microcontroller software consists of a main function and several libraries. These are
listed below. The main program contains of a software switch. Switch position O
indicates the software is for a PCU, switch position 1 indicates the software is for a
OWU, and switch position 2 indicates the software is for a RCU.

Main Program

#include <system.h>
#include "ZigBeelib.h"
#include "LCDlib_SPI.h"
#include "RTCIlib.h"
#include "ADlIib.h"
#include "usartlib.h"
#include "EEPROMIib.h"
#include "motorlib.h"

#pragma DATA _CONFIG1H, _OSC_HS_1H

#pragma DATA _CONFIG2H, _"WDT_OFF_2H

#pragma DATA _CONFIGAL, _LVP_OFF 4L & _XINST_OFF_4L
#pragma DATA _CONFIG3H, _MCLRE_ON_3H

#pragma CLOCK_FREQ 20000000

T

1 Smart Windows Project /1

1 I
1 SmartWindows.c 1

/I Main code for the project I

T

/I--Il Communication Definitions
#define pc_attn 0

#define pc_poweron 1

#define win_max 10

/I--11 Function prototypes
void PIC_sleep(void); // Puts the Microchip in idle mode

Final Documentation 73 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

[/I--1/ VVoltatile bit Declarations

/I Timers

volatile bit tmrOif@INTCON.2; // Timer O Interrupt Flag

Il USART

volatile bit rcif@PIEL.5; /I USART2 Receive Interrupt Flag
Il ZIGBEE

volatile bit zb_rs @PORTD.1; Il ZigBee Reset

volatile bit zb_slp@PORTD.2; Il ZigBee Sleep Signal
volatile bit zb_irq@PORTD.3; Il ZigBee Interrupt Signal
// Buttons

volatile bit LO@PORTB.0; /I Button attached to BO

volatile bit b1@PORTB.1; // Button attached to B1

volatile bit b2@PORTB.2; // Button attached to B2

volatile bit b3@PORTB.3; // Button attached to B3

volatile bit b4@PORTB.4; /I Button attached to B4

volatile bit connect_button@PORTB.2; // Connect button

I/l Motor block
volatile bit open_command @PORTA.4; // output
volatile bit close_command @PORTA.5; // output

volatile bit close_button @PORTB.1; [/l input
volatile bit open_button @PORTB.O0; I input
volatile bit open_stop @PORTE.O; [/l input
volatile bit close_stop @PORTE.1;// input
volatile bit middle_stop @PORTE.2,; [/l input
/I RCU

volatile bit RCU_open @PORTB.0;
volatile bit RCU_close @PORTB.1;
volatile bit RCU_up @PORTB.2;
volatile bit RCU_down @PORTB.3;

II--Il Global Interrupt Semiphores

bool tmrQis; // Timer O Rollover Interrupt
bool rcis; /I USART2 Character
Receiver

/I--1 MAIN FUNCTION

Final Documentation 74 EE Senior Design 2009-2010

void main(void){

/-1l Setup 1/O Pins
adconl = 00001101b;
intcon2.7 = 1;

portb = 0;

trish.5=1;
trisb.4 = 1;
trish.3 =1;
trish.2 = 1;
trish.1 =1;
trisb.0 = 1;

trisa.5 =0;
trisa.4 = 0;

/I-1/ General Variables
unsigned short i;
multiple places
unsigned short j;
multiple places
unsigned short k;
multiple places
char debounce;

/I--Il USART Initialization
usart_init(57600);
@ 57.6k baud rate
charc="I"

/I--1] Real Time Clock Initialization
RTC_init();
struct time t;
struct time* tp = &t;

t.hr10 =1;
thrl =1;
t.hr =11;
t.min10 =1;
t.minl =1;
t.min =11;
t.sec10 =1;
t.secl =1,
t.sec =11;
tday =2;
Final Documentation 75

Smart Windows

Daniels, Haunert, Shilling, Spangler

// Loop variable used
// Loop variable used

// Loop variable used

/I Initializes USART2

EE Senior Design 2009-2010

Smart Windows

Daniels, Haunert, Shilling, Spangler

t.monl0 =1,
t.monl =1,
t.mon =11,
t.date10=1;
t.datel = 1;
t.date =11;
t.yrl0 =1;
tyrl =1;
tyr =11;

RTC_set(tp);
delay_ms(100);

t.day =3;

RTC_get(tp);
RTC_print_terminal(tp);

char alarm[8][5];
for (i=0;i<8;i++){
for (j=0;j<5;j++) {
alarm[i][j] = 255;
}
}
char checkl = 0;
char check2 = 0;
char check3 = 0;
char check4 = 0;
char days = 0;
char sec_bcd=0;
char min_bcd=0;
char hr_bcd=0;
usart_putc(c);

/I-1/ ZigBee Initialization

messages

operation

send

message

spi_init(0);
usart_putc(c);

zb_init(11);
usart_putc(c);
char seq = 0;

char success;

char message[85];

unsigned short message_length;

Final Documentation 76

/I Initialize the SPI

/I Initialize for ZigBee
/I Sequencing field for

/I Success of an

// Holds messages to

/I Holds length of current

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

char data[70]; /I Holds data received

unsigned short data_length; // Holds length of current
data

char pc_instructions[win_max][11]; // Instruction from the PC to be
transmitted

char new_instructions[win_max]; /Il Indicates that new
instrutions are available
for(i=0;i<win_max;i++){ /I Initialize to zero

new_instructions[i] = 0;
for(j=0;j<4L;j++){
pc_instructions[i][j]=0;

}
}

char current_window = 254; Il Currently addressed
window 254 - none, 255 - all

char pan0; /I LS Byte of
PAN address

char panl; /Il MS Byte of
PAN address

char addo; /I LS Byte of
device address

char addi; /Il MS Byte of
device address

char source_add1; /I Received message
source

char source_addo; /I Received message
source

unsigned short window_count; // Number of connected windows

char name[10][10];

char status[10];

char light[10];

char battery[10];

char disp[11];

/[--II USART Initialization

[lusart_init(57600); /I Initializes USART2
@ 57.6k baud rate

/char c;

[[--II Interrupts Initialization

intcon |= 11000000b; // Global and Peripheral
Interrupts enables

tmrOis = 0;

rcis = 0;

Final Documentation 77 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

1 I
Enable speific interrupts seperatley

/[--Il Type-dependant Code
/I CASE 0: PCU Base Station -- Do not modify (D.C.S.)
/[CASE 1: OWU Window Station -- Do not modify (D.C.S)
/I CASE 2: RCU Remote Control -- Do not modify (D.C.S)
/[l CASE 3: Product Testing and Evaluation

switch (2) {

/I--Il PCU
case O: Il
BASE STATION
open_command = 0;
close_command = 0;
/-1l ZigBee Addressing
panl = OXBA,
pan0 = Ox5E;
addl = OxAO;
add0 = 0x00;
zb_write_reg(PAN_ID_1,panl); /I PAN ID OxBASE
zb_write_reg(PAN_ID_0,pan0);
zb_write_reg(SHORT_ADDR_1,addl); /I Device Address

0xA000
zb_write_reg(SHORT_ADDR_0,add0);
/[--// Hold up to 10 Windows with name-length 10
window_count = EEPROM _read(0,0);// Get window count from
EEPROM

if (window_count==255) {
window_count = 0;

for (i=0;i<window_count;i++){
/I For each window...
status[i] = EEPROM_read(0,11*(i+1)+0);
/Il ...Read in the status
light[i] = 0;
[/l Default light reading
for (j=0;j<10;j++){
name[i][j] = EEPROM read(0,11*(i+1)+1+j);

¥

/! ...Read in the name

¥

/ ENABLE RECEIVER
usart_receive_enable();

Final Documentation 78 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

while(1) {
/-1 INTERRUPT CHECK ROUTING
if (tmrOis==1) {
tmr0is=0;
}
if (rcis==1) {
/I Received an attention signal
rcis=0;
/Il Clear the semiphore
¢ = usart_getc();
delay_ms(400);
usart_putc(c);

/-1 Startup Message
if (c==254) {
/[Startup Code
for (i=0;i<window_count;i++){
I/l Loop through connect windows
delay_ms(800);
usart_putc(i);
// Put window number
delay_ms(200);
for (j=0;j<10;j++){
usart_putc(name[i][jD);
/[Put window name
delay_ms(100);

}
usart_putc(255);

}

/I--I Regular Message
else { // ELSE: Not a startup code

/] Put success code

/I-1/ Obtain the rest of the instructions...
current_window = c;

[I-1] ...for 255 signals
if (c==255) {

for(i=0;i<11;i++){pc_instructions[0][i]=usart_getc();}
for(i=0;i<win_max;i++){
for(j=0;j<11;j++){
pc_instructions[i][j] =
pc_instructions[0][j];

Final Documentation 79 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

¥

new_instructions[i] = 1,

¥

/-1l Special Cases
switch (pc_instructions[0][0]) {
case 'a".
// NOT FILLING FOR
SIMPLICITY (SHOULD BE '1','2','3','4")
break;
case'n'
// Record the names

for(i=0;i<window_count;i++){
for (j=0;j<10;j++){

EEPROM_write(pc_instructions[i][j+1],0,11*(i+1)+1+j);
for

(i=0;i<window_count;i++){
new_instructions[i] =

0;
}
break;
case 1"
/1 Store time locally
RTC _init();
t.secl0 =
(pc_instructions[0][1]>>4) & 00001111b;
t.secl =
pc_instructions[0][1] & 00001111b;
t.minl0 =
(pc_instructions[0][2]>>4) & 00001111b;
t.minl =
pc_instructions[0][2] & 00001111b;
t.hrl0 =
(pc_instructions[0][3]>>4) & 00001111b;
thrl =
pc_instructions[0][3] & 00001111b;
tday =

pc_instructions[0][4];
RTC_set(tp);
delay_ms(50);
spi_init(0);

Final Documentation 80 EE Senior Design 2009-2010

(i=0;i<window_count;i++) {
(light[i]==255){light[i]=254;}

(battery[i]==255){battery[i]=254;}

(i=0;i<window_count;i++) { // Put the readings

/I Signal eng of message
(i=0;i<window_count;i++){

0; /I Clear the new message

(i=0;i<window_count;i++){

0;

Smart Windows
Daniels, Haunert, Shilling, Spangler

break;
case 'l':
delay_s(1);
for
if
if
}
for
usart_putc(light[i]);
delay_ms(200);
usart_putc(battery[i]);
delay_ms(200);
}
usart_putc(255);
for
new_instructions[i] =
}
break;
case 'e"
for

new_instructionsl[i] =

}

window_count = 0;
EEPROM_write(0,0,0);

// Erase Window count

(i=0;i<window_count;i++){

EEPROM_ write(0,0,11*(i+1)+0);

EEPROM_write(0,0,11*(i+1)+1+j);

Final Documentation

81

for
[/l For each window...

/I ...overwrite in the status
for (j=0;j<10;j++){

/I ...overwrite in the name
}
}
break;

case 'c".
/I Nothing needed

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

break;
default:
/I Nothing needed
break;
}
}

[I-1] ... for individual windows
else if (c<win_max) {

for(i=0;i<11;i++){pc_instructions[current_window][i]=usart_getc();}
new_instructions[current_window] =

1
/-1l Special cases
switch
(pc_instructions[current_window][0]){
case 1"
new_instructions[current_window] = 2;
break;
case '2".
new_instructions[current_window] = 2;
break;
case ‘3"
new_instructions[current_window] = 2;
break;
case '4":
new_instructions[current_window] = 2;
break;
case 'n":

for (j=0:j<10:j++){
EEPROM_write(pc_instructions[current_window][j+1],0,11*(i+1)+1+j);

name[current_window][j] = pc_instructions[current_window][j+1];

}
new_instructions[current_window] = 0;
break;
default:
/I Nothing
break;

Final Documentation 82 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

}
}
}
usart_receive_enable();
/I Reenable random communication

¥
/[---/l INTERRUPT CHECK ROUTINE

success = 0; I/ Reset the
success flag to avoid mixups

data[0] = OxFO; /l
Reset data flag to avoid mixups

success = zb_rx(10000); /I Listen for a

while

if (success){
message_length = zb_read_fb(message);
/I Message Length
data_length = message_length - header_length - 2;
for (i=0; i<data_length; i++){
/I Data extraction
data[i] = message[header_length+i];

source_addO = message[header_length-2];
Il Source extraction
source_addl = message[header_length-1];

I/ Use the data
switch (source_addl) {
/I--II Remote request
case 0xCO0:
/I Remote control unit
if (data[0] == OxFF) { Il
Request for names
message[0] = window_count;
success =
zb_tx(0xC0,0x00,message,1,seq);
seq++;
for
(i=0;i<window_count;i++) {
for (j=0;j<10;j++) {
disp[j] =

¥

success = 0;

namefi][j;

Final Documentation 83 EE Senior Design 2009-2010

zb_tx(0xC0,0x00,disp,10,seq);

break;

Smart Windows

Daniels, Haunert, Shilling, Spangler

while ('success){
success =

}

seq++;

}

[[--II Window unit request
default:

/I On window unit

address

zb_broadcast(message,5,seq);

zb_rx(30000);
message_length = zb_read_fb(message);

Length

message_length - header_length - 2;

i<data_length; i++){

= message[header_length+i];

message[header_length-2];

message[header_length-1];

Final Documentation 84

/I--Il Request to join
if (data[0] == 0x00) {

window_count++;

I/l Send the window its new
message[0] = 0x01,
message[1] = panl;
message[2] = pan0;

message[3] = 0xBO;
message[4] = window_count-

while (data[0] !'= 0x02) {
seq =

SUCCess =

/I Listen for a while

if (success){
I/l Message
data_length =
for (i=0;
/I Data extraction

data[i]

}

source_add0 =
I/ Source extraction
source_addl =

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

¥
}
NAJ- name[window_count-1][0] =
W | name[window_count-1][1] =
.I name[window_count-1][2] =
.n.’ name[window_count-1][3] =
.d.’ name[window_count-1][4] =
.0 name[window_count-1][5] =
W name[window_count-1][6] =
.O.’ name[window_count-1][7] =
Z name[window_count-1][8] =

name[window_count-1][9] =
window_count-1 +'0’;

/I Update the records

EEPROM_write(window_count,0,0);
i=window_count-1;

EEPROM_write(window_count-1,0,11*(i+1)+0);
for (j=0;j<10;j++){

EEPROM_write(name[window_count-1][j],0,11*(i+1)+1+j);
}

/I Clean the new_instructions

new_instructions[window_count-1] = 0;

¥

//--1 Request for instructions
else if (data]0] == 0x03) {
light[source_add0] = data[1];
Il Second byte is the light data

Final Documentation 85 EE Senior Design 2009-2010

Smart Windows

Daniels, Haunert, Shilling, Spangler

data[2]; /[Third byte is battery data

for correct window

(new_instructions[source_add0]){

pc_instructions[source_addO][i];

zb_tx(source_addl,source_add0,message,11,seq);

(new_instructions[source_add0]==2){

new_instructions[source_add0] = 0;

available for the correct window

battery[source_add0] =

// New Instructions available
if

for (i=0;i<11;i++){
message[i] =

}

SuUcCcess =

seq++;
if

usart_putc(‘a’);

}

}

// No new Instructions

else{
message[0] = 0x00;
success =
zb_tx(source_add1,source_add0O,message,1,seq);
seq++;
}
}
break;
}
}
if (resta.1){
usart_receive_disable(); /I Clear

any reception errors

usart_receive_enable();

}
}
/ DISABLE RECEIVER
usart_receive_disable();
break;

II--Il OWU

Final Documentation 86

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

case 1: /!
REMOTE STATION
/I OWU Variables

motor_init();

char mode = 0; /l0
(1,2) manual, 3 green, 4 security

char state; /10

closed, 1 middle, 2 open
if (porte.0){state=2;}
else if (porte.1){state=0;}
else {state=1;}

/I ZigBee addressing

panl = EEPROM_read(0x00,0x00); // PAN ID from
EEPROM

pan0 = EEPROM_read(0x00,0x01);

addl = EEPROM _read(0x00,0x02); /I Device Address
from EEPROM

add0 = EEPROM _read(0x00,0x03);

zb_write_reg(PAN_ID_1,panl);

zb_write_reg(PAN_ID_0,pan0);

zb_write_reg(SHORT_ADDR_1,addl);

zb_write_reg(SHORT_ADDR_0,add0);

/I Initialize Timerl

tOcon = 10000111b; /I Initialize TO

tmrOh = 46005/256; // Set TO to
interrupt @ 1 Hz

tmrOl = 46005%256;

/I Initialize adcon for light sensor
ad_init(0);

char light_reading = 0;

char bat_reading = 0;

/I Technical Readout
usart_printf("\n\rTechnical Read Out:\n\rPower On");

while(1) {
/I---Il INTERRUPT CHECK ROUTING
if (tmrOis==1) {
tmr0is=0;

}
if (rcis==1) {

rcis=0;
usart_receive_enable();

Final Documentation 87 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

¥

/I Technical Readout
usart_printf("\n\r>");

/I--11 Check the light-sensor and battery
light_reading = ad_conv();
ad_init(1);
delay_ms(50);
usart_printf("{L:");
usart_putShort(light_reading);
usart_printf(" B:");
bat_reading = ad_conv();
usart_putShort(bat_reading);
usart_printf("} ");
ad_init(0);

/I--Il STATE MACHINE
switch (mode) {
case 3: /I Green Mode
/ICheck Buttons
if(open_button||close_button){
debounce = 0;
for (i=0;i<50;i++){
if
}

if (debounce>25) {mode = 0;}

}
while(open_button && (lopen_stop))

(open_button||close_button) {debounce++;}

{open_command =1;}
open_command = 0;
while(close_button && (Iclose_stop))
{close_command = 1;}
close_command = 0;
//Check Light

if (porte.0){state=2;} // Open
else if (porte.1){state=0;} // Close
else {state=1;} /l

Middle
switch (state) {
case 0:
if (light_reading < 75)
{motor_open();}
break;
case 2:

Final Documentation 88 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

if (light_reading >= 75)
{motor_close();}
break;
default:
if (light_reading < 75)
{motor_open();}
else
{motor_close();}
break;

}
break;
case 4: I/ Security Mode
//Check Buttons
if(open_button||close_button){
debounce = 0;
for (i=0;i<100;i++){
if
(open_button||close_button) {debounce++;}

}
if (debounce>50) {mode = 0;}

while(open_button && ('open_stop))
{open_command =1;}

open_command = 0;

while(close_button && (Iclose_stop))
{close_command = 1;}

close_command = 0;

//Check Alarms

RTC _init();

RTC_get(tp);

/*

/IRTC_print_terminal(tp);

sec_bcd = (t.sec10<<4) | t.secl;

min_bcd = (t.min10<<4) | t.min1;
hr_bcd = (t.hrl0<<4) |t.hrl;
usart_putc('");
usart_putByte(sec_bcd);
usart_putc(":");
usart_putByte(min_bcd);
usart_putc(":");
usart_putByte(hr_bcd);
usart_putc(":");
usart_putShort(t.day);
usart_putc('");

*/

Final Documentation 89 EE Senior Design 2009-2010

days.0;

{usart_putc('4’);}

days.1;

{usart_putc('4’);}

days.2;

{usart_putc('4’);}

days.3;

{usart_putc('4’);}

Final Documentation

Smart Windows
Daniels, Haunert, Shilling, Spangler

for (i=0;i<8;i++) {

90

checkl = 0;
check2 = 0;
check3 =0;
check4 = 0;
if (alarm[i][1] '= 255){
usart_printf("{A");
usart_putShort(i);
usart_printf(":");
if (alarm[i][1] == sec_bcd) {
checkl=1;
usart_putc('1);

}

if (alarm[i][2] == min_bcd) {
check2=1;
usart_putc(‘2";

}

if (alarm[i][3] == hr_bcd) {
check3=1;
usart_putc('3);

days = alarm[i][4];
switch (t.day){
case 1:
check4 =
if (check4)
break;
case 2:
check4 =
if (check4)
break;
case 3:
check4 =
if (check4)
break;
case 4:
check4 =

if (check4)

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

break;
case 5:
check4 =
days.4;
if (check4)
{usart_putc('4’);}
break;
case 6:
check4 =
days.5;
if (check4)
{usart_putc('4’);}
break;
case 7:
check4 =
days.6;
if (check4)
{usart_putc('4’);}
break;
default:
break;
}

if (checkl && check2 &&
check3 && check4){
switch (alarm[i][0]) {
case 0:

motor_open();
break;
case 1:

motor_middle();
break;
case 2:

motor_close();
break;
default:
break;
}
}
usart_printf("}");

}
spi_init(0); // Initialize the SPI
break;

Final Documentation 91 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

default: /l Manual Mode
if (middle_stop) {usart_putc('m’);}
while(open_button && ('open_stop))
{open_command =1;}
open_command = 0;
while(close_button && (!close_stop))
{close_command = 1;}
close_command = 0;
break;

¥

II--1I Wake up the ZigBee
zb_wake();

/-] Contact the PC

message[0] = 0x03;

message[1] = light_reading;

message[2] = bat_reading;

success = zb_tx(0xA0,0x00,message,3,seq);

seq++;

success = 0;

success = zb_rx(2000);

/I Listen for a message

if (success){

message_length = zb_read_fb(message);
/I Once one is received, read FB
// Extract the data
data_length = message_length -
header_length - 2;
data[0] = message[header_length];
usart_printf(" {M:");
for (i=0; i<data_length; i++){
data[i] = message[header_length+i];
}

usart_putc(data[0]);
usart_printf("}");

switch(data[0]) {
case 'c":
switch (data[1]) {

case 0:
mode = 0;
motor_open();

break;

case 1:
mode = 0;

Final Documentation 92 EE Senior Design 2009-2010

motor_middle();

data[k];

data[Kk];

data[k];

Final Documentation

93

Smart Windows

Daniels, Haunert, Shilling, Spangler

break;

case '1":

break;

break;
case 2:
mode = 0;
motor_close();
break;
case 3:
mode = 3;
break;
case 4.
mode = 4;
break;
}
k=1,

for (i=0;i<2;i++) {
for (j=0;j<5;j++) {
alarm[i][j] =

k++;

}

case 2"

break;

k=1;
for (i=2;i<4;i++) {
for (j=0;j<5;j++) {
alarm[i][j] =

k++;

}

case '3"

k=1;
for (i=4;i<6;i++) {
for (j=0;j<5;j++) {
alarm[i][j] =

k++:

}

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

break;
case '4"
k=1;
for (i=6;i<8;i++) {
for (j=0;j<5;j++) {
alarm[i][j] =
data[k];
k++;

}

/-k
usart_printf("\n\r\n\rAlarm1:

usart_putByte(alarm[0][0]);
usart_putc('");
usart_putByte(alarm[0][1]);
usart_putc('");
usart_putByte(alarm[0][2]);
usart_putc('");
usart_putByte(alarm[0][3]);
usart_putc('");
usart_putByte(alarm[0][4]);
usart_printf("\n\r\n\rAlarma2:

usart_putByte(alarm[1][0]);
usart_putc('");
usart_putByte(alarm[1][1]);
usart_putc('");
usart_putByte(alarm[1][2]);
usart_putc('");
usart_putByte(alarm[1][3]);
usart_putc('");
usart_putByte(alarm[1][4]);
usart_printf("\n\r\n\rAlarm3:

usart_putByte(alarm[2][0]);
usart_putc(');
usart_putByte(alarm[2][1]);
usart_putc(');
usart_putByte(alarm[2][2]);
usart_putc(');
usart_putByte(alarm[2][3]);
usart_putc(');
usart_putByte(alarm[2][4]);
*/

Final Documentation 94 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

break;
case 't"
RTC_init();
t.secl0 = (data[1]>>4) &
00001111b;
t.secl = data[l] &
00001111b;
t.min10 = (data[2]>>4) &
00001111b;
tminl = data[2] &
00001111b;
t.hr10 = (data[3]>>4) &
00001111b;
thrl = data[3] &
00001111b;
t.day = data[4];
RTC_set(tp);
delay_ms(10);
spi_init(0); // Initialize the
SPI
/lzb_init(11); // Initialize for
ZigBee
break;
case 'e"
panl = 0x00;
pan0 = 0x00;
addl = 0x00;
addo0 = 0x00;
zb_write_reg(PAN_ID_1,panl); // PAN ID from EEPROM

zb_write_reg(PAN_ID_0,pan0);

zb_write_reg(SHORT_ADDR_1,addl); // Device Address from EEPROM
zb_write_reg(SHORT_ADDR_0,add0);

EEPROM_write(pan1,0x00,0x00);

EEPROM_write(pan0,0x00,0x01);

EEPROM_write(add1,0x00,0x02);

EEPROM_write(add0,0x00,0x03);

break;
default;

Final Documentation 95 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

break;
}

¥

/[--II Contact the Remote
message[0] = 0x03;
success = zb_tx(0xC0,0x00,message,1,seq);
seq++;
success = 0;
success = zb_rx(1000);

/I Listen for a message

if (success){
message_length = zb_read_fb(message);

// Once one is received, read FB

header_length - 2;

Middle

{motor_open();}

{motor_open(); }

{motor_middle();}

{motor_close();}

request/panid/address

Final Documentation

I/ Extract the data
data_length = message_length -

data[0] = message[header_length];
for (i=0; i<data_length; i++){
data[i] = message[header_length+i];

}
if (porte.0){state=2;} // Open
else if (porte.1){state=0;} // Close
else {state=1;} Il
switch (data[0]) {
case 0x01:
if (state==0)
else if (state==1)
break;
case 0x02:
if (state==2)
else if (state==1)
break;
}

¥

/[--I/l CONNECT TO BASE STATION
if (connect_button){
/I Send broadcast message with

96 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

message[0] = 0x00;
message[1] = panl,;
message[2] = pan0;
message[3] = add1,;
message[4] = add0;
seq = zb_broadcast(message,5,seq);

/I Listen for response with new panid/address

data[0]=0;
while(data[0] !'= 0x01){
success = 0;

success = zb_rx(0);
if (success){
message_length =
zb_read fb(message);
/l Extract the data
data_length = message_length -
header_length - 2;
for (i=0; i<data_length; i++){

data[i] =
message[header_length+i];
}
}
}
I/ Use the data
zb_write_reg(PAN_ID_1,data[1]); Il PAN

ID from EEPROM
zb_write_reg(PAN_ID_0,data[2]);
zb_write_reg(SHORT_ADDR_1,data[3]); //
Device Address from EEPROM
zb_write_reg(SHORT_ADDR_0,data[4]);
EEPROM_write(data[1],0x00,0x00);
EEPROM_write(data[2],0x00,0x01);
EEPROM_write(data[3],0x00,0x02);
EEPROM_write(data[4],0x00,0x03);
/I Send connected message
message[0] = 0x02;
success = zb_tx(0xA0,00,message,1,seq);
seq++;
// Tell Technical Readout
usart_printf("{Connected as # ");
usart_putShort(data[4]);
usart_printf("} ");
delay_s(5);
}

Final Documentation 97 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

/-1l Sleep cycle

zb_sleep();
PIC_sleep();
}
break;
/I--1l RCU
case 2:
/[--I] TimerO0 Init
tOcon = 10000111b; Il
Initialize TO
intcon |= 00100000b; // Enable the
TO interrupt to occur @ tmrOif
tmrOh = 46005/256; Il Set

TO to interrupt @ 1 Hz
tmrOl = 46005%256;

char tmrOcount = 0; I
Reset the timer interrupt counter
char sleep_timer = 0; /I Fall asleep

/I--11 Set Device Addressing

panl = OXBA;

pan0 = Ox5E;

addl = 0xCO;

add0 = 0x00;

zb_write_reg(PAN_ID_1,panl); I PAN ID
OxBASE

zb_write_reg(PAN_ID_0,pan0);

zb_write_reg(SHORT_ADDR_1,addl); // Device
Address 0xC000

zb_write_reg(SHORT_ADDR_0,add0);

/-1l Prepare to accept Current Windows from Base Station
window_count=1, Il
Number of connected windows
current_window = 0; Il Currently
addressed window
for (i=0;i<10;i++){
name[i][0] ='E’;
name[i][1] ='m’;
name[i][2] = "p’;
name[i][3] =t
name[i][4] ="y";
name[i][5] ="
nameJi][6] ="";
name[i][7] ="";

Final Documentation 98 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

name[i][8] ="";
name[i][9] ="";
status[i] = 0;
}
/I--Il Request up to date window information
data[0] = OxFF;
success = zb_tx(0xA0,0x00,data,1,seq);
/I Are you there
seq++;
if (success) {
/'If a head station responds
source_addl =0;
while (source_addl !'= 0xAO0) {
/I Listen for return byte from HEAD
success = zb_rx(0);

message_length = zb_read_fb(message);
source_addl = message[header_length-1];
Il Source extraction

for (i=0; i<message_length; i++){
/I Data extraction
data[i] = message[header_length+i];

window_count = data[0];
/l Returned byte is the window count

for (i=0;i<window_count;i++) {
I/ Receive the window names
source_addl =0;
while (source_addl !'= 0xAO0) {
/I Listen for byte from HEAD
success = zb_rx(0);
message_length =
zb_read fb(message);
source_addl =

}
for (j=0; j<message_length; j++){

message[header_length-1]; // Source extraction

// Data extraction
data[j] = message[header_length+j];
name[i][j] = datal[j];

by

name[i][message_length] ="\0';

I byte string is the window name

/I End of string character

Final Documentation 99 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

by

name[window_count][0]
name[window_count][1]
name[window_count][2]
name[window_count][3]
name[window_count][4]
name[window_count][5]
name[window_count][6]
name[window_count][7] = 'a’;

name[window_count][8] ='d";

name[window_count][9] ="e’;

name[window_count][10] ="\0";

}

/-1l Setup the LCD
SPILCD _init();
delay_ms(100);
SPILCD_brightness(6);
delay_ms(100);
SPILCD_clear();
delay_ms(100);
SPILCD_putShort(window_count);
SPILCD_printf(" windows.");
delay_ms(100);
SPILCD_home();
delay_ms(100);
spi_init(0);
delay_ms(2);

0
a,

S
Il
rl
S
hl

[I--II Main Loop
while(1) {
/[---I INTERRUPT CHECK ROUTINE
if (tmrOis==1) {
tmr0is=0;
tmrOcount++;
sleep_timer++;
if (sleep_timer>180){
SPILCD_init();

SPILCD_brightness(0);

spi_init(0);
delay_ms(100);
zb_sleep();

while(!(RCU_up||RCU_down|[RCU_open||RCU_close));

zb_wake();

Final Documentation 100 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

delay_ms(100);

SPILCD _init();

delay_ms(100);

SPILCD_brightness(6);

delay_ms(100);

SPILCD_clear();

spi_init(0);

sleep_timer=0;

}

if (tmrOcount>60) {

tmrOcount = 0;

/I Get current windows again

data[0] = OxFF;

success =
zb_tx(0xAO0,0x00,data,1,seq); /I Are you there

seq++;

if (success) {

/'If a head station responds
source_addl = 0;
while (source_addl
1= OxA0) { /I Listen for return byte from HEAD
success =

zb_rx(0);

message_length = zb_read_fb(message);
source_addl =
message[header_length-1]; // Source extraction

¥
for (i=0;
i<message_length; i++){ // Data extraction
data[i] =
message[header_length+i];
}
window_count =
data[0]; /I Returned byte is the window count
for
(i=0;i<window_count;i++) { Il Receive the window names
source_addl =
0;
while
(source_addl = 0xA0) { /I Listen for byte from HEAD
success
=zb_rx(0);

message_length = zb_read_fb(message);

Final Documentation 101 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

source_addl = message[header_length-1]; // Source extraction

¥
for (j=0;
j<message_length; j++){ // Data extraction
data[j]
= message[header_length+ij];
name[i][j] = data[j]; I byte string is the window
name
¥
name[i][message_length] ="\0"; // End of string
character

¥
name[window_count][0] ='S";
name[window_count][1] ='0";
name[window_count][2] =I';
name[window_count][3] ='a’;
name[window_count][4] ='r";
name[window_count][5] ='S";
name[window_count][6] = 'h’;
name[window_count][7] ='a’;
name[window_count][8] = 'd’;
name[window_count][9] = 'e";
name[window_count][10] ="\0";
}
/[---I INTERRUPT C&ECK ROUTINE
/I--1/ Check the Buttons

if (RCU_up) {
current_window++;

Final Documentation 102 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

if (current_window>window_count)
{current_window = 0;}
sleep_timer = 0;
}
else if (RCU_down) {
if (current_window==0) {current_window =
window_count;}
else {current_window--;}
sleep_timer = 0;
}
else if (RCU _open) {
status[current_window] =1,
sleep_timer = 0;

}

else if (RCU _close) {
status[current_window] = 2;
sleep_timer = 0;

}
/-] Pass along the most recent command
success = 0; Il Reset the
success flag to avoid mixups
success = zb_rx(1000); /I Listen for a
while

if (success) {
message_length = zb_read_fb(message);
source_addO = message[header_length-2]; //
Source extraction
source_addl = message[header_length-1];

if
((source_add1==0xB0)&&(status[source_add0])){
data[0] = status[source_add0];
status[source_add0] = 0;
success =
zb_tx(source_add1,source_add0,data,1,seq);
seq++;
}
else if
((source_add1==0xD0)&&(status[window_count])) { // Solar Shade
data[0] = status[window_count];
status[window_count]=0;
while(RCU_open||[RCU_close) {
success = 0;
success = zb_rx(1000);
if (success) {

Final Documentation 103 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

zb_tx(0xD0,0x00,data,1,seq);
//'1 open, 2 close
seq++;
}
}

success = 0;

i=0;

while(('success)&&(i<100)){success =
zb_rx(1000);}

data[0] = 0;
for (i=0;i<10;i++) {
success =
zb_tx(0xD0,0x00,data,1,seq); // O stop
seq++;
}
}
}
SPILCD _init();

delay_ms(50);
SPILCD_clear();
delay_ms(35);
for (i=0;i<10;i++){
disp[i] = name[current_window][i];

}
disp[10] ="\0";
SPILCD_printf(disp);
delay_ms(10);
spi_init(0);
delay_ms(50);
}

break;

/[--Il Product Testing
case 3:

char thecount = 0+'a’;

while (1) {
usart_putc(thecount);
thecount++;
delay s(1);
if (thecount>10+73") {

thecount = 0+'a’;

¥

break;

Final Documentation 104 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

//--1/ Default Mode
default:

SPILCD_init();

while(1){
[[SPILCD_brightness(5);
/ISPILCD_clear();
SPILCD_printf("Catch");
/ISPILCD_putShort(window_count);
[Ispi_init(0);
}

break;

T

I Function: interrupt

I Purpose: The interrupt service routine
I Input: Void

/[Output: Void
T

void interrupt(void) {

T AMPORTANT /T
/I Semiphores Needed: tmrOis --> timerO rollover interrupt

Il Ensure that these semiphores are globally defined before using
T ||

if(tmrOif 1= 0) { /I Overflow on timer0
tmrOis = true; /I Set the semiphore
tmrOif = 0; /I Reset the flag
tmrOh = 46005/256; /I Reset the timerQ counter to 46005
tmrOl = 46005%256;
}
if(rcif 1=0) { /I USART Received Character
char c;
¢ = usart_foundc(); // Reset the flag by reading the buffer
if (c==pc_attn) { /I If the message signal has been given
rcis = true; /I Set the semiphore

usart_receive_disable();
delay_ms(400);
usart_putc(0);

}
c="0" /l Reset ¢

Final Documentation 105 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

return;

ks

T T

/l Function: sleep_PIC

/[Purpose: puts the microcontroller into idle_primary mode
/l Inputs: Void

/[Outputs: Void

o

void PIC_sleep(void){

intcon |= 00100000b; /I Enable the TO interrupt to occur @
tmrOif

/I Set for idle mode on sleep commmand

tmrOh = 46005/256; // Set TO to interrupt @ 1 Hz

tmrOl = 46005%256;

osccon |= 10000000b;
/Il ASSUMING SCS =00 (DEFAULT)

Il Execute sleep command

nop();
nop();
nop();
sleep();

/' Wake on interrupt

nop();
nop();

nop();
intcon &= 11011111b; // Disable TO interrupt

return;

ky

Final Documentation 106 EE Senior Design 2009-2010

Smart Windows

Daniels, Haunert, Shilling, Spangler

ZigBee Library: ZigBeelib.c

#include <system.h>
#include "ZigBeelib.h"
#include "LCDlIib_SPI.h"
#include "RTClib.h"
#include "ADlIib.h"
#include "usartlib.h"
#include "EEPROMIib.h"
#include "motorlib.h™

T

I Smart Windows Project 1

1

I ZigBeelib.c 1
I SPI functions for ZigBee I

T T
Il Function Prototypes are in ZigBeelib.h

/I Global Volatile Bits

volatile bit zb_cs @PORTD.0; /I Chip Select (low true)
volatile bit zb_rs @PORTD.1; Il Reset (Low true)
volatile bit zb_slp@PORTD.2; I Sleep Signal

T

1 Function: spi_init
1 Purpose: Initializes MSSP for SPI
1 Inputs: rate -> currently unused

1 Output: Void
T
void spi_init(unsigned short rate)
{

Il Reset

sspconl = 0b00000000;

Il SSP1STAT
/Ibit7: 0: sample time, middle of period
//bité: 1: CKE clock select, (Words-0, Picture-1)
//bit5-0: 0: 12C mode only, Default is 0

sspstat = 0b01000000;

/I SSP1CON1
/Ibit7: 0: write collision, clear in software

Final Documentation 107 EE Senior Design 2009-2010

I

Smart Windows
Daniels, Haunert, Shilling, Spangler

/Ibit6: 0: receiver overflow, clear in software, avoid by always reading
buffer
//bit5: 1. mssp enable bit
/Ibit4d: 0: CKP -idlestateisOor 1
//bit3-0: 0010: Clock speed - Fos/64
sspconl = 0b00100010;
/I Sets data in, data out, and clock ports
// BUT: must clear trisc.5 For data out
1 must clear trisc.3 For clock

//'1/O Ports
/* SEL: DO --> Output 0
Reset: D1 --> Output 0
SLP: D2 -->Output 0
IRQ: D3-->Input 1
SCK: C3-->Output 0
MISO: C4 --> Input
MOSI: C5 --> Qutput 0 */
trisc.5=0;
trisc.3 =0;
trisd.0 = 0;
trisd.1 = 0;
trisd.2 = 0;
trisd.3 =1;

[EEN

/I Set Default Output Values

zb cs =1; /I Set chip select high
zb slp =0; /I Set slp signal low
zb rs =1; /I Set reset high

T
1 Function: spi_byte
I Purpose: Sends a byte on MOSI and recieves a byte on MISO
I Inputs: data -> the byte to be sent on MOSI
I Ouput: The byte received on MISO
T
char spi_byte(char data)
{
volatile bit sspif@PIR1.3; // Define a bit For interuppt flag
char return_byte;
/I Collision Check not required yet
sspif = 0; /I Set interrupt flag to low
sspbuf = data; /I Write data to buffer to start trasmission

Final Documentation 108 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

while(Isspif); /I Wait until interupt flag goes high
return_byte = sspbuf;
return return_byte; /I Return the new contents of the buffer

T T

1 Function: zb_init

I Purpose: Initializes the zigbee card for transmission
1 Inputs: channel

I Output: Void

U T T
void zb_init(char channel)

{

char reg;

Il Reset the device

zb rs=0;

delay_ms(20);

zb rs=1;

delay_ms(20);

zb_write_reg(IRQ_MASK,0b00000000); /I Mask all interrupts

reg = zb_read_reg(IRQ_STATUS); /I Read the interrupt
register to clear it

zb_write_reg(PHY_CC_CCA channel); /I Set the
communication channel

zb_state_trans(TRX_OFF,TRX_OFF); /I Move ZigBee card
to clock state with command TRX_OFF

zb_state _trans(PLL_ON,PLL_ON); / Move to PLL-ON
state

/I Initialize for Extended Mode

unsigned short i; /I Loop Variable

char read_reg; I/l Temporary Register
char write_reg =0; I/l Temporaty Register

for (i=0;i<4;i++) { I/l Produce an 8-bit random

number from register 6
read_reg = zb_read_reg(PHY_RSSI);
switch (i){
case 0:
write_reg.0 = read_reg.6;
write_reg.1 =read_reg.5;
break;
case 1:

Final Documentation 109 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

write_reg.2 = read_reg.6;
write_reg.3 = read_reg.5;
break;
case 2:
write_reg.4 = read_reg.6;
write_reg.5 = read_reg.5;
break;
case 3:
write_reg.6 = read_reg.6;
write_reg.7 = read_reg.5;
break;
}
nop();
nop();
nop();
}

zb_write_reg(0x2D,write_reg); /I Write the random number to 0x2D
write_reg = 01000111b; /l Write the random number
to OX2E <2:0>, keep bit 6 set
zb_write_reg(Ox2E,write_reQ);
}

T T

I Function: zb_read_reg
1 Purpose: Reads a register on the ZigBee card
I Inputs: add -> the register address to read from

1 Output: The byte sitting in the register that was read
T
char zb_read_reg(char add)

{

char ans; /I Temporary 1-byte
variable

zb ¢cs=0; /I Chip select low to begin
process

ans = spi_byte((add&0x3F)|0x80); // Send command byte 10__add_

ans = spi_byte(0); /I Send dummy byte to
collect contents

zb cs=1; /I Chip select high to end
transmission

return ans;
}

Final Documentation 110 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

T nnn§n

I Fucntion: zb_write_reg

I Purpose: Writes to a register on the ZigBee card
I Inputs: add -> Address of the register to write to
1 data -> Byte to put in the register

I Output: Void

T T T
void zb_write_reg(char add, char data)

{

char ans; I/l Temporary 1-byte
variable

zb ¢cs=0; /I Chip select low to begin

transmission
ans = spi_byte((add&0x3F)|0xCQ); // Send command byte 11 add_

ans = spi_byte (data); /l Send data to be written
zb cs=1; I/ Chip select high to end
transmission

ks

T T |

I Function: zb_write_fb

I Purpose: Writes a 1-byte payload to the ZigBee card frame buffer
1 with the appropriate 802.15.4-2003 format

I Input: data -> The data bytes to be included in the buffer

1 size -> The size in bytes of the data

I seq -> The current seq value

1 addO -> First byte of the address to send to

I addl -> Second byte of the address to send to

1 Output: The updated seq value

s

char zb_write_fb(char add1,char add0,char data[],char size,char seq)

{
char ans; /I Temporary 1-byte variable
inti; I/l Loop variable

char my_pan_0=1zb _read_reg(PAN_ID_0);
char my _pan_1=zb read reg(PAN_ID_1);
charmy_add 0 =zb read reg(SHORT_ADDR_0);
char my _add 1 =zb read reg(SHORT_ADDR_1);

zb ¢cs=0; /I Chip select low to begin transmission

ans = spi_byte(0x60); // Send command byte 0110 0000
ans = spi_byte(13+size);// Send PHR (frame length) -> 13 + size of data

Final Documentation 111 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

/l Send PSDU
ans = spi_byte(0b00100001); // Send FCF(control bytes) 7654 3210 FEDC BA98
ans = spi_byte(0x88); // 0010 0001 1000 1000

ans = spi_byte(seq); I/l Send sequence field

ans = spi_byte(my_pan_0); // Destination Send addressing fields
ans = spi_byte(my_pan_1);

ans = spi_byte(add0);

ans = spi_byte(addl);

ans = spi_byte(my_pan_0); // Source Send addressing fields
ans = spi_byte(my_pan_1);
ans = spi_byte(my_add_0);
ans = spi_byte(my_add_1);

[**/ /I No Security Fields

for (i=0;i<size;i++) // Send data bytes

{

ans = spi_byte(data[i]);

}

I**l /I Auto sends the 2-byte FCS

zb cs=1; // Chip select high to end
transmission

seq++; /I Increment seq

return seq;

T ||
I Function: zb_read _fb

I Purpose: Reads the ZigBee frame buffer assuming the format used
1 used in the function zb_write_fb (see above)
I Input: Pointer to the memory where frame buffer will be stored

I Output: The length of the framebuffer read out
MU
char zb_read_fb(char* tmp)
{
char length; // Holds the contents of PHR field
zb ¢cs=0; /I Chip select low to begin transmission
length = spi_byte(0x20); // Send command byte 0010 0000

Final Documentation 112 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

length = spi_byte(0); // Read and store the PHR
tmp[0] = length;
char ans; /I Temporary variable
chari; // Loop counter variable
for (i=0; i<length; i++)
{
ans = spi_byte(0); /I Read the next byte
tmp[i+1] = ans; / Store that byte
}
zb cs=1; /I Chip select high to end

transmission
return length+1;
}

T T T

I Function: zb_state_trans

I Purpose: Moves the zb card into a new state

I Inputs: state -> the state you want to move into

I command -> the command to give to the register
1 Output: Void

T
void zb_state trans(char state, char command)

{

char reg;

zb_write_reg(TRX_STATE,command); // Move ZigBee card to PLL-
LOCK

reg = zb_read_reg(TRX_STATUYS);

while((reg&0b00011111) != state)

{

reg = zb_read_reg(TRX_STATUS);

}

}

T T o

I Function: zb_tx

I Purpose: Transmits a char string over ZigBee

1 Inputs: data -> the data to send over ZigBee

I size -> the size of the data to send
I seq -> the current seq value

Final Documentation 113 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

1 addO -> First byte of the address to send to
I addl -> Second byte of the address to send to
I Output: the incremented seq value

Tl
char zb_tx (char add1,char addO,char data[],char size,char seq)

{

char reg;

char success = 0;

zb_state _trans(TX_ARET_ON,TX_ARET_ON); /I Move to Extended
TX state

seq = zb_write_fb(add1,add0,data,size,seq); // Write the data into framebuffer

zb_state trans(BUSY_TX_ ARET,TX START); // Begin the
transmission

reg = zb_read_reg(TRX_STATUYS); // Wait until transmit

is finished by returning from Busy
while(reg '= TX_ARET_ON){
reg = zb_read reg(TRX_STATUS);
}
reg = zb_read reg(TRX_STATE); /I Extended-mode
transmission result
if ((reg&11100000b)==0) {
/I Reg 7:5 will be 0 on success
success = 1;

ky

zb_state _trans(PLL_ON,PLL_ON); // Move back to the
TRX_OFF state

return success;
}

HHHHH T

I Function: zb_rx

1 Purpose: Receives a byte over ZigBee

1 Inputs: Length to listen for (O for infinite)
I Output: Whether a frame was received

U T
char zb_rx (unsigned short length)

{

char reg;

char success = 0;

zb_write_reg(IRQ_MASK,0b00101100); /l Enable interrupts 2,
3,and5

Final Documentation 114 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

reg = zb_read_reg(IRQ_STATUYS); /I Refresh the intrupt
buffer

zb_state trans(RX_AACK_ON,RX_AACK ON); // Move to the AACK
Receive state

// On message detect, auto move to BUSY_RX_AACK state
/' IRQ_2: When RX begins
/' IRQ_3: When TRX ends
bool IRQ3=0;
// Puts FCS in PHY_RSSI bit 7
/I IRQ_5: If address match
/I Moves back into RX_AACK_ON

switch(length) {
case O: Il
Unending listen
while ('RQ3) {
reg =zb_read reg(IRQ_STATUS);
if (reg.3==1){
IRQ3=1,;
}
}
reg =zb_read_reg(TRX_STATUYS); // Wait until transmit

is finished by returning from Busy
while(reg '= RX_AACK_ON){
reg =zb_read reg(TRX_STATUS);
}
reg = zb_read reg(TRX_ STATE); /I Extended-mode
transmission result
if (((reg&11100000)==0) | ((reg&11100000)==32)) {
// Reg 7:5 will be 0 or 1 on success
success = 1;

}
break;

default: Il
Limited listen
unsigned short i;
for (i=0;i<length;i++) {
reg = zb_read reg(IRQ_STATUS);
if (reg.3==1){
reg = zb_read_reg(TRX_STATUS); /Il Wait
until transmit is finished by returning from Busy
while(reg '= RX_AACK_ON){
reg =zb_read_reg(TRX_STATUYS);

Final Documentation 115 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

}
reg = zb_read reg(TRX_STATE);
Extended-mode transmission result

I

if (((reg&11100000)==0) | ((reg&11100000)==32))

{
// Reg 7:5 will be 0 or 1 on success
success = 1;
}
break;
}
}
break;
}
zb_state _trans(PLL_ON,PLL_ON);
zb_write_reg(IRQ_MASK,0x00);
return success;
}
TN
I Function: zb_sleep
I Purpose: Puts the Zigbee card to sleep
1 Inputs: Void
1 Output: Void
M TN
void zb_sleep(void)
{
char reg; // Read current state
reg = zb_read_reg(TRX_STATUYS);
if((reg&0b00011111) '= TRX_OFF) /I If not in TRX_OFF...
{
zb_state _trans(TRX_OFF, TRX_OFF); // ...Move to TRX_OFF
reg = zb_read_reg(TRX_STATUYS);
zb_slp =1; // Once in TRX_OFF, go to sleep with sleep signal port
delay_ms(1);
}
Ml
I Function: zb_wake
Il Purpose: Wakes up the Zigbee card
I Inputs: Void

Final Documentation 116 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

1 Output: Void
T
void zb_wake(void)

{
zb slp =0;
delay_ms(1);

T T
1 Function: zb_broadcast_fb

I Purpose: Writes a broadcast payload to the ZigBee frame buffer
I with the appropriate 802.15.4-2003 format

I Input: data -> The data bytes to be included in the buffer

I size -> The size in bytes of the data

I seq -> The current seq value

I Output: The updated seq value

T |

char zb_broadcast_fb(char data[],char size,char seq)

{
char ans; /I Temporary 1-byte variable
inti; I/ Loop variable

char my_pan_0=1zb _read_reg(PAN_ID_0);
charmy pan_1=1zb read reg(PAN_ID 1);
charmy_add 0 =zb _read reg(SHORT_ADDR_0);
charmy add 1 =1zb read reg(SHORT_ADDR_1);

zb ¢cs=0; /I Chip select low to begin transmission
ans = spi_byte(0x60); // Send command byte 0110 0000
ans = spi_byte(13+size);// Send PHR (frame length) -> 13 + size of data

/l Send PSDU

ans = spi_byte(0x01); /I Send FCF(control bytes) 7654 3210 FEDC BA98
ans = spi_byte(0x88); // 0000 0001 1000 1000

ans = spi_byte(seq); /I Send sequence field

ans = spi_byte(OxFF); /I Destination Send addressing fields

ans = spi_byte(0xFF);
ans = spi_byte(0xFF);
ans = spi_byte(0OxFF);

ans = spi_byte(my_pan_0); // Source Send addressing fields

ans = spi_byte(my_pan_1);
ans = spi_byte(my_add_0);

Final Documentation 117 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

ans = spi_byte(my_add_1);

[**/ /I No Security Fields
for (i=0;i<size;i++) // Send data bytes
{
ans = spi_byte(data[i]);
}
[**/ // Auto sends the 2-byte FCS
zb cs=1; /I Chip select high to end
transmission
seq++; /I Increment seq
return seq;
}
T | T
I Function: zb_broadcast
I Purpose: Transmits a char string over ZigBee
I Inputs: data -> the data to send over ZigBee
I size -> the size of the data to send
1 seq -> the current seq value
1 Output: the incremented seq value

T T T
char zb_broadcast (char data[],char size,char seq)

{

char reg;

zb_state_trans(TX_ARET_ON,TX_ARET_ON); // Move to Extended
TX state

seq = zb_broadcast_fb(data,size,seq); // Write the data into framebuffer

zb_state_trans(BUSY_TX_ARET, TX_START); // Begin the transmission
reg = zb_read_reg(TRX_STATUYS); /[Wait until transmit is
finished by returning from Busy
while(reg '= TX_ARET_ON){
reg = zb_read_reg(TRX_STATUYS);
}
/*

reg = zb_read_reg(TRX_STATE); // Extended-mode
transmission result
if (((reg&11100000)==0) | ((reg&11100000)==32)) {
// Reg 7:5 will be 0 or 1 on success

Final Documentation 118 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

success = 1;
}
*/

zb_state_trans(PLL_ON,PLL_ON); // Move back to the
TRX_OFF state

return seq;
}

Final Documentation 119 EE Senior Design 2009-2010

ZigBee Library: ZigBeelib.h

#ifndef ZIGBEELIB_H_
#define ZIGBEELIB H_
#include<system.h>

T

I Smart Windows Project

I
I ZigBeelib.h

Smart Windows
Daniels, Haunert, Shilling, Spangler

I
I
I

I SPI function headers for ZigBee I

T

// Constants
#define header_length12

/I Structures

struct window {
char status;
char name[16];

%

/] Registers
#defineTRX_STATUS
#defineTRX_STATE
#defineTRX_CTRL_O
#defineTRX_CTRL_1
#definePHY_TX_PWR
#definePHY_RSSI
#definePHY_ED_LEVEL
#definePHY_CC_CCA
#defineCCA_THRES
#defineRX_CTRL
#defineSFD_VALUE
#defineTRX_CTRL_2
#defineANT_DIV
#definelRQ_MASK
#definelRQ_STATUS
#defineVREG_CTRL
#defineBATMON
#defineXOSC_CTRL
#define SHORT_ADDR_0
#define SHORT_ADDR_1
#define PAN_ID 0
#define PAN_ID_1

Final Documentation

0x02

0x06
0x07

0x09

0x0B

0xO0E

0x10

0x12
0x20
0x21
0x22
0x23

/I Length of the message before data

/I Window status
/I Name of the window

0x01
0x03
0x04
0x05
0x08
Ox0A
0x0C
0x0D
Il Set to enable an interrupt

OxOF /I Check to see if interrupt happened

Ox11

120 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

/I States

#defineP_ON 0x00
#defineBUSY_RX 0x01
#defineBUSY_TX 0x02
#defineRX_ON 0x06
#defineTRX_OFF 0x08
#definePLL_ON 0x09
#defineSLEEPOxOF

#defineBUSY_RX_AACK Ox11
#defineBUSY_TX_ARET 0x12
#defineRX_AACK_ON 0x16
#defineTX_ARET_ON 0x19
#defineRX_ON_NOCLK 0x1C
#defineRX_AACK_ON_NOCLOCK 0x1D
#defineBUSY_RX_AACK_NOCLK Ox1E
#defineSTATE_TX_IN_PROGRESS Ox1F

// State Commands

#defineNOP 0x00
#defineTX_START 0x02

#define FORCE_TX_OFF 0x03

#define FORCE_PLL_ON 0x04

[[#define RX_ON 0x06
[[#define TRX_OFF 0x08
[[#define PLL ON 0x09
I#define RX_AACK_ON 0x16
I#define TX_ARET_ON 0x19

/I ZigBee SPI1 Function Prototypes
Il See ZigBeelib.c for actual functions
void spi_init (unsigned short rate);
/I Initializes the SPI
char spi_byte(char value);
I/l Sends and receives a byte by SPI
void zb_init(char channel);
/I Initializes the Atmel ZigBee card
char zb_read_reg(char add);
/I Reads a register on ZigBee card
void zb_write_reg(char add, char data);
/I Writes a regiser on the ZigBee card
char zb_read_fb(char* tmp);
/I Reads the framebuffer on the ZigBee card

Final Documentation 121 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

char zb_write_fb(char add1, char add0,char data[],char size,char seq); I/ Writes to the
framebuffer on the ZigBee card
void zb_state_trans(char state, char command);

/I Causes the ZigBee card to change states
char zb_tx (char add1, char add0, char data[], char size, char seq); // Transmits a packet
over ZigBee
char zb_rx (unsigned short length);

/I Receives a data packet
void zb_sleep(void);
/[Puts the ZigBee chip to sleep
void zb_wake(void);
/I Wakes the ZigBee chip from sleep

char zb_broadcast_fb(char data[],char size,char seq);

Il Prepares a broadcast paket for ZigBee
char zb_broadcast(char data[], char size, char seq); /l
Transmits a broadcast packet over ZigBee

#endif //_ZIGBEELIB_H_

Final Documentation 122 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

SPI LCD Library: SPILCDIib.c
#include <system.h>

#include "ZigBeelib.h"

#include "LCDlib_SPI.h"
#include "RTClib.h"

#include "ADlIib.h"

#include "usartlib.h"

#include "EEPROMIib.h"
#include "motorlib.h"

T

I
I
I
I

Smart Windows Project I

Il
LCDIib_SPl.c Il
SPI functions For LCD /!

T

/l Global Volatile Bits
volatile bit lcd_cs@LATC.0; /I Chip Select (low true)

T

I
I
I

Function: SPILCD _init
Purpose: initializes the SPI LCD
Input: Void

/I Output: Void
T
void SPILCD _init(void){

buffer

Il Reset
sspconl = 0b00000000;

/I SSP1STAT
//bit7: 0: sample time, middle of period
/Ibite: 0: CKE clock select (rising)
//bit5-0: 0: 12C mode only, Default is 0
sspstat = 0b00000000;

// SSPICON1
/Ibit7: 0: write collision, clear in software
/Ibité: 0: receiver overflow, clear in software, avoid by always reading

//bit5: 1: msspl enable bit
/Ibitd: 1. CKP -idlestateisOor 1
//bit3-0: 0010: Clock speed - Fos/64

Final Documentation 123 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

1 0011: TMR2/2
sspconl = 0b00110010;

/I Sets data in, data out, and clock ports

/[BUT: must clear trisc.5 For data out

/! must clear trisc.3 For clock
/1 /O Ports
/* SCK: C3--> Qutput 0
MISO: C4 --> Input 1

MOSI: C5 --> Output 0
Select:CO --> Output 0 */
trisc.5=0;
trisc.3 = 0;
trisc.0 = 0;

/I Set Default Output Values
lcd _cs=1; /I Set chip select high

ky

T
I Function: SPILCD_putc
I Purpose: Puts a char to the SPI LCD
1 Input: Void
/I Output: ¢ -> the string to put to the screen
T T
void SPILCD_putc(char ¢){
char ans;
delay_ms(1);
lcd_cs=0;
delay_ms(1);
ans = spi_byte(c);
delay_ms(1);
lcd _cs=1;
delay_ms(1);
return;

¥

U

I Function: SPILCD_putShort

I Purpose: prints an unsigned short to the Icd in decimal form
Il Input: dec -> that value to be printed

I Output: Void

Final Documentation 124 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

e
void SPILCD_putShort(unsigned short dec) {

unsigned short dec1, /[Ten Thousands place

unsigned short dec2; /I Thousands place

unsigned short dec3; // Hundreds place

unsigned short dec4; Il Tens place

unsigned short dec5; // Ones place

decl = dec/10000; /I Get the Ten Thousands place with division

dec = dec%10000; /I Calculate how much is left

dec2 = dec/1000; /I Get the Thousands place with division

dec = dec%1000; /Il Calculate how much is left

dec3 = dec/100; /I Get the Hundreds place with

division

dec = dec%100; // Calculate how much is left

dec4 = dec/10; /I Get the Tens place with division

dec5 = dec%10; /I The Ones place is how much is left

if(decl '=0) /I If there is a Ten Thousands place, print it
SPILCD_putc(decl +'0%;

if(dec2 '=0) /I If there is a Thousands place, print it
SPILCD_putc(dec2 +'0%;

if(dec3 1= 0) /I If there is a Hundreds place, print it
SPILCD_putc(dec3 +'0%);

if(decd '=0) /'If there is a Tens place, print it

SPILCD_putc(dec4 +'0%);
SPILCD_putc(dec5 +'0"); // Print the one's place

ky

T T

1 Function: SPILCD_printf

I Purpose: Puts a string to the SPI LCD
/[Input: ¢ ->the char to put to the screen

/[Output: Void
T T

void SPILCD_printf(char c[]){

int i,

for(i=0; c[i] '="0"; i++) /I Loop through each character in the array
SPILCD_putc(c[i]); // Put the character to the terminal
delay_ms(1);

return;

}

Final Documentation 125 EE Senior Design 2009-2010

Smart Windows

Daniels, Haunert, Shilling, Spangler

U AT
// Function: SPILCD_cmd
/[Purpose: Sends a command to the screen via SPI
/[Input: The command length and the command
/[Output: Void
M T
void SPILCD_cmd(char length, char* cmd) {
char ans;
inti;
SPILCD_putc(OXFE);
for (i=0;i<length;i++) {
SPILCD_putc(cmd[i]);
delay_ms(1);
}

T T
/I Function: SPILCD _clear
/[Purpose: Clears the screen and returns cursor
/[Input: Void
/[Output: Void
T T T
void SPILCD_clear(void) {

char cmd[1];

cmd[0] = 0x51;

SPILCD_cmd(1,cmd);

}

T
I/l Function: SPILCD_newline
/[Purpose: Moves the LCD cursor to line 2
/[Input: Void
/[Output: Void
TNl
void SPILCD_newline(void) {
char cmd[2];
cmd[0] = 0x45;
cmd[1] = 0x40;
SPILCD_cmd(2,cmd);
}

Final Documentation 126

EE Senior Design 2009-2010

TN
I/ Function: SPILCD_home
/[Purpose: Moves the LCD cursor to line 1
/[Input: Void
/[Output: Void
T
void SPILCD_home(void) {
char cmd[1];
cmd[0] = 0x46;
SPILCD_cmd(1,cmd);
}

T
[/l Function: SPILCD_brightness
/I Purpose: Sets the LCD backlight brightness
/[Input: The brightness setting 1-8
/[Output: Void
T
void SPILCD_brightness(char brightness) {
char cmd[2];
cmd[0] = 0x53;
cmd[1] = brightness;
SPILCD_cmd(2,cmd);
}

Final Documentation

Smart Windows

Daniels, Haunert, Shilling, Spangler

127

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

SPI LCD Library: SPILCDIib.h
#ifndef _LCDLIB_SPI_H_
#define _LCDLIB_SPI_H_
#include<system.h>

T

I Smart Windows Project I
1 I
1l LCDlIib_SPlL.h 1

// SPI function headers for LCD//
TN

/l Function Prototypes

void SPILCD _init(void); /I Initializes the SPI
LCD

void SPILCD_putc(char c); // Puts a char to the SPI LCD
void SPILCD_putShort(unsigned short dec); // Prints a short to the LCD

void SPILCD_printf(char c[]); /1 Prints a string to the screen
void SPILCD_cmd(char length, char cmd([]);// Sends a command to the LCD

void SPILCD_clear(void); I Clears the screen and
returns cursor

void SPILCD_newline(void); I/ Moves the cursor to the
beginning of line 2

void SPILCD_home (void); I/ Moves the cursor to the

beginning of line 1
void SPILCD_brightness(char brightness); // Sets the LCD brightness
Il Utilizes spil_byte from ZigBeelib.c to send and receive spi bytes

#endif //_LCDLIB_SPI_H_

Final Documentation 128 EE Senior Design 2009-2010

Real Time Clock Library: RTClib.c
#include <system.h>

#include "ZigBeelib.h"

#include "LCDIlib_SPI1.h"

#include "RTClib.h"

#include "ADlib.h"

#include "usartlib.h™

#include "EEPROMIib.h"

#include "motorlib.h"

T

I Smart Windows Project
I
I RTClib.c

/I Functions for the RTC
TN

/I Global Volatile Bits
volatile bit rtc_ en@LATD.7,

Il Function Prototypes in RTClib.h

T

I Function: RTC _init

1 Purpose: initializes the SPI RTC
/[Inputs: Void

/I Output: Void
T

void RTC_init(void){

Il Reset
sspconl = 0b00000000;

I SSPSTAT

Smart Windows
Daniels, Haunert, Shilling, Spangler

I
I
I
I

/I Chip Enable

/Ibit7: 0: sample time, middle of period
//bit6: 0: CKE clock select (Falling if CKP is 0)
//bit5-0: 0: 12C mode only, Default is 0

sspstat = 0b00000000;

I/ SSPCON1

/Ibit7: 0: write collision, clear in software
/Ibité: 0: receiver overflow, clear in software, avoid by always reading

buffer

//bit5: 1: msspl enable bit

Final Documentation

129 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

/Ibitd: 0: CKP -idlestateisOor 1

//bit3-0: 0010: Clock speed - Fos/64
sspconl = 0b00100010;

/Il Sets data in, data out, and clock ports

/I BUT: must clear trisc.5 For data out

Il must clear trisc.3 For clock

/1'1/O Ports
/* Enable:D7 --> Output
SCK: C3-->Output
MISO: C4 --> Input
MOSI: C5 --> Output
trisc &= 11010111b;
trisd.7 = 0;

o OO

*/

/I Set Default Output Values
rtc_ en=0; /I Set chip select high

Il Set up the initial parameters
// Control Register
/I Bit7: Enable Oscillator (Low True) 0
// Bit 6: Write Protect 1
// Bit 5-3: Reserved 000
/Il Bit 2: Int Con (Use both Int Pins?) 1
// Bit 1: Alarm Enable 1
I/l Bit 0: Alarm Enable 0
char ans;
ans = RTC_reg(0x8F,0001000100);

ky

o o

T T

I Function: RTC_reg

1 Purpose: Writes or reads an RTC register

1 Input: Address to access, Byte to write

/I Output: Byte read

T

char RTC_reg(char add, char input){
char output = 0;
rtc_ en=1, Il Set the chip enable low
output = spi_byte(add); I/l Send an spi byte with address
output = spi_byte(input); /I Send an spi byte with the data
rtc_en=0; /Il Set the chip enable low
return output;

¥

Final Documentation 130 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

T |

/I Function: RTC_set

/I Purpose: Sets the current time to the RTC

/I Inputs: Pointer to a time structure

/I Outputs: Void

T T

void RTC_set(struct time* tp) {
char i; /I Loop variable
char ans; /I Temporary register placeholder
char time[7]; // The time information to be sent by SPI

time[0] = ((tp->sec10 <<4) & 0b01110000) | (tp->secl & 0b00001111); // See
datasheet

time[1] = ((tp->min10 <<4) & 0b01110000) | (tp->minl & 0b00001111);

time[2] = ((tp->hrl0 <<4) & 0b00110000) | (tp->hrl & 0b00001111);

time[3] = tp->day & 0b00001111;

time[4] = ((tp->date10<<4) & 0b00110000) | (tp->datel & 0b00001111);

time[5] = ((tp->mon10 <<4) & 0b00110000) | (tp->monl & 0b00001111);

time[6] = ((tp->yrl0 <<4) & 0b11110000) | (tp->yrl & 0b00001111);

ans = RTC_reg(0x8F,0b00000100); // Disable write protect

rtc en=1, /I Send time bytes over SPI
(Burst Mode)
ans = spi_byte(0x80); /I First address to write to

for (i=0;i<7;i++) {
ans = spi_byte(time[i]); /I Write the 7 bytes (address inc.
automatically)

}

rtc_en=0; // End burst mode

ans = RTC_reg(0x8F,0001000100); // Enable write protect
return;

ky

T T T

/I Function: RTC_get

/I Purpose: Gets the current time from the RTC
/I Input: Pointer to a time structure

/[Output: Void
M T T

void RTC_get(struct time* tp) {

Final Documentation 131 EE Senior Design 2009-2010

char tmp;
struct time t;

tmp = RTC_reg(0x00,0);

register
tp->sec10 = (tmp>>4) & 0b00000111;
tp->secl =tmp & 0b00001111;

Smart Windows
Daniels, Haunert, Shilling, Spangler

/I Temporary storage variable
/[Structure to hold the output

/l Read the seconds

// Decode the 10s place
/I Decode the 1s place

tp->sec = 10*tp->secl0 + tp->secl; // The total seconds

tmp = RTC_reg(0x01,0);

register
tp->minl0 = (tmp>>4) & 0b00000111;
tp->minl =tmp & 0b00001111;
tp->min = 10*tp->min10 + tp->minl;

tmp = RTC_reg(0x02,0);

register
tp->hr10 = (tmp>>4) & 0b00000011;
tp->hrl =tmp & 0b00001111;
tp->hr = 10*tp->hrl10 + tp->hrl;

tmp = RTC_reg(0x03,0);
register
tp->day =tmp & 0b00001111;

tmp = RTC_reg(0x04,0);

register
tp->date10 = (tmp>>4) & 0b00000011;
tp->datel =tmp & 0b00001111;
tp->date = 10*tp->datel0 + tp->datel,;

tmp = RTC_reg(0x05,0);

register
tp->monl10 = (tmp>>4) & 0b00000011;
tp->monl =tmp & 0b00001111;

tp->mon

tmp = RTC_reg(0x06,0);

register
tp->yrl0 = (tmp>>4) & 0b00001111;
tp->yrl =tmp & 0b00001111;
tp->yr = 10*tp->yrl0 + tp->yril,
return;

¥

Final Documentation

= 10*tp->mon10 + tp->moni,

132

// Read the minutes
// Decode the 10s place
/I Decode the 1s place
// The total minutes
// Read the hours
// Decode the 10s place
/I Decode the 1s place
// The total hour
// Read the days
// Decode the 1s place
// Read the date
// Decode the 10s place
/I Decode the 1s place
// The total date
// Read the month

// Decode the 10s place
/I Decode the 1s place

// The total month
// Read the year
// Decode the 10s place

I/l Decode the 1s place
Il The total year

EE Senior Design 2009-2010

Smart Windows

Daniels, Haunert, Shilling, Spangler

T nn

/I Function: RTC_print_terminal

/I Purpose: Prints a time to the screen through usart2

/I Input: A Pointer to a time structure

/I Output: Void

T LT

void RTC_print_terminal(struct time* tp) {
usart_printf("\n\r");

usart_putShort(tp->hr10); // Put the hours to the screen
usart_putShort(tp->hrl); [/ Put the hours to the screen

usart_printf(":");

usart_putShort(tp->min10); // Put the minutes to the screen
usart_putShort(tp->minl); // Put the minutes to the screen

usart_putc("");

usart_putShort(tp->sec10); // Put the seconds to the screen
usart_putShort(tp->secl); // Put the seconds to the screen

usart_printf(" ");

switch (tp->day) { // Put the day of the week to the screen

case 1:
usart_printf("Sunday ");
break;

case 2:
usart_printf("Monday ");
break;

case 3:
usart_printf("Tuesday ");
break;

case 4.
usart_printf("Wednesday ");
break;

case 5:
usart_printf("Thursday ");
break;

case 6:
usart_printf("Friday ");
break;

case 7:
usart_printf("Saturday ");
break;

default:
usart_printf("Error ");
break;

Final Documentation 133 EE Senior Design 2009-2010

Smart Windows

Daniels, Haunert, Shilling, Spangler

¥

switch (tp->mon) { /[Put the month to the sreen

case 1:

case 2:

case 3:

case 4:

case 5:

case 6:

case 7:

case 8:

case 9:

usart_printf("January ");
break;

usart_printf("February ");
break;

usart_printf("March ");
break;

usart_printf("April);
break;

usart_printf("May ");
break;

usart_printf("June ");
break;

usart_printf("July ");
break;

usart_printf("August ");
break;

usart_printf("September ");
break;

case 10:

usart_printf("October ");
break;

case 11:

usart_printf("November ");
break;

case 12:

default;

¥

usart_printf("December ");
break;

usart_printf("Error ");
break;

usart_putShort(tp->date10);// Put the date to the screen
usart_putShort(tp->datel);// Put the date to the screen

Final Documentation 134

EE Senior Design 2009-2010

/I Input:
/I Output: Void
T T
void RTC_print_lcd(struct time* tp) {

usart_printf(", 20");
usart_putShort(tp->yr10);
usart_putShort(tp->yrl);

ks

T
/I Function: RTC_print_lcd
/I Purpose: Prints a time to the Icd through spi
A Pointer to a time structure

SPILCD_clear();

Smart Windows
Daniels, Haunert, Shilling, Spangler

/[Put the year to the screen
/[Put the year to the screen

SPILCD_putShort(tp->hr10); // Put the hours to the screen
SPILCD_putShort(tp->hrl); // Put the hours to the screen

SPILCD_printf(":");

SPILCD_putShort(tp->min10);
SPILCD_putShort(tp->minl);

SPILCD_putc(:);

SPILCD_putShort(tp->sec10);

SPILCD_putShort(tp->secl);
SPILCD_newline();

switch (tp->day) {
case 1:

/I Put the minutes to the screen
/I Put the minutes to the screen

/I Put the seconds to the screen
/I Put the seconds to the screen

// Put the day of the week to the screen

SPILCD_printf("Sun");

break;
case 2:

SPILCD_printf(*Mon ");

break;
case 3:

SPILCD_printf("Tues ");

break;
case 4:

SPILCD_printf("Wed ");

break;
case 5:

SPILCD_printf("Thur ");

break;
case 6:

SPILCD_printf("Fri ");

break;
case 7:

SPILCD_printf("Sat ");

break;

Final Documentation

135 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

default:
SPILCD_printf("Err ");
break;

¥

switch (tp->mon) { /[Put the month to the sreen

case 1:
SPILCD_printf("Jan™);
break;

case 2:
SPILCD_printf("Feb ");
break;

case 3:
SPILCD_printf("Mar ");
break;

case 4.
SPILCD_printf("Apr ");
break;

case 5:
SPILCD_printf("May ");
break;

case 6:
SPILCD_printf("June ");
break;

case 7:
SPILCD_printf("July ");
break;

case 8:
SPILCD_printf("Aug ");
break;

case 9:
SPILCD_printf("Sept);
break;

case 10:
SPILCD_printf("Oct ");
break;

case 11:
SPILCD_printf("Nov ");
break;

case 12:
SPILCD_printf("Dec ");
break;

default:
SPILCD_printf("Err "),
break;

Final Documentation 136 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

}

SPILCD_putShort(tp->date10);// Put the date to the screen
SPILCD_putShort(tp->datel);// Put the date to the screen
SPILCD_printf(", 20");

SPILCD_putShort(tp->yr10); // Put the year to the screen
SPILCD_putShort(tp->yrl); // Put the year to the screen

ks

Final Documentation 137 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Real Time Clock Library: RTClib.h
#ifndef RTCLIB H_

#define _RTCLIB_H_
#include<system.h>

T

I Smart Windows Project I
1 I
1l LCDlIib_SPlL.h 1

// SPI function headers for LCD//
TN

/I Structures
struct time {

char sec10; /1 10s place of seconds
char secl; I 1s place of seconds

char sec; /I Decimal form of seconds
char min10; /1 10s place of minutes
char mini; I 1s place of minutes

char min; /I Decimal form of minutes
char hrl0; /1 10s place of hours

char hrl, I 1s place of hours

char hr; /I Decimal form of hours
char day; /I Day of the week (Sun=1)
char datel0; // 10s place of date

char datel, /I 1s place of the date

char date; /I Decimal form of hours
char mon10; // 10s place of the month
char mon1; /I 1s place of the month
char mon; /I Decimal form of month
char yr10; /I 10s place of the year
char yrl,; I 1s place of the year

char yr; /I Decimal form of year

3

/I Function Prototypes

void RTC_init(void);

char RTC_reg(char add, char input);
void RTC_set(struct time *tp);

Final Documentation

/I Initializes the RTC
/I Writes or read a RTC register
/I Sets a time to the RTC

138

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

void RTC_get(struct time *tp); /I Gets the time from the RTC
void RTC_print_terminal(struct time *tp); // Prints a time to the screen
void RTC_print_lcd(struct time *tp); /l Prints a time to the screen

#endif //_RTCLIB_H_

Final Documentation 139 EE Senior Design 2009-2010

Smart Windows

Daniels, Haunert, Shilling, Spangler

ADCON Library: ADlib.c
#include <system.h>
#include "ZigBeelib.h"
#include "LCDlib_SPI.h"
#include "RTClib.h"
#include "ADlIib.h"
#include "usartlib.h"
#include "EEPROMIib.h"
#include "motorlib.h"

T

I Smart Windows Project

1l

/! ADlib.c

/I Functions for A/D conversion /!

T

I/ Function Prototypes in ADIib.h

T T

I Function: ad_init
I Purpose: Configures the A/D converter module
1 Input: the channel you want to use

1 Output: Void
T T T
void ad_init(char channel){

chartemp; // Temporary value

//IADCONL1:
/1 bit 7-6: unimplemented
/1 bit 5-4: voltage ref config 00
/1 bit 3-0: A/D port config
Else digital
adconl = 0b00001101;

/I ADO PORTA bit0
/I AD1 PORTA bitl
/I AD2 PORTA bit2
trisa.0 = 1;
trisa.1 =1;

//ADCONO:

[/ bit 7-6: unimplemented
/I bit 5-2: analog channel select

Final Documentation 140

Il
Il
Il
00
\Vdd-Vss

1101 ANO, AN1 Analog;

00
0000 ANO

EE Senior Design 2009-2010

Smart Windows

Daniels, Haunert, Shilling, Spangler

I
0001 AN1

I/ bit 1: A/D GO/DONE (0O=idle, 1=in prog) 0

/I bit 0: A/D enable (O=disabled, 1=enabled) 0

adcon0 = (channel<<2) & 00111100b;

//IADCONZ2:
/Ibit 7: A/D result format
Justified
//bit 6: unimplemented
//bit 5-3: A/D acquisition time

Disabled

0 Left-

010 4

oscillations of the A/D clock = 6.4us > 2us (arbitratry)

//bit 2-0: A/D conversion select
1.6us => See data sheet
adcon2 =0b00010010;

T

I Function: ad_conv
I Purpose: A/D conversion
1 Input: Void

/I Output: Unsigned short converted value
TN
char ad_conv(){
char store[30];
char i;
for(i=0;i<30;i++) {
volatile bit godone @ADCONO.1;

adconO |= 0b00000001;
delay_us(10);

godone =1,
conversion process

while (godone);
conversion bit is idle

store[i] = adresh;
/lunsigned short outl = adresl;

010 32*Tosc =

/I GO/DONE bit

/lturn on A/D module
/I Wait an aquisition time

/I starts the

// wait until

/lunsigned short out = ((outh<<8) & (0b1111111100000000)) + outl;

adcon0 &=0b11111110;

Final Documentation 141

//turn off A/D module

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

}

long sum = 0;

for (1=0;i<30;i++) {
sum = sum + store[i];
}

char out = sum/30;

return out;

}

Final Documentation 142 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

ADCON Library: ADIib.h
#ifndef ADLIB_H_
#define _ADLIB_H_
#include<system.h>

T

I Smart Windows Project I

Il /l
I ADIlib_SPlL.h Il

I SP1 function headers for AD I

T

/l Function Prototypes
void ad_init(char channel); /I Sets up the A/D for a particular channel
char ad_conv(); I/ Performs A/D conversion

#endif //_ADLIB_H_

Final Documentation 143 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Serial Library: usartlib.c
#include <system.h>
#include "ZigBeelib.h"
#include "LCDIlib_SPI1.h"
#include "RTClib.h"
#include "ADlib.h"
#include "usartlib.h™
#include "EEPROMIib.h"
#include "motorlib.h"

T

I Smart Windows Project I

1 /l
I usartlib.c Il

/I Serial functions for usart i

T
/I Function Prototypes are in usartlib.h
I/l Global Volatile Bits

T T

I Function: usart_init
I Purpose: initializes usart
1 Input: rate -> Must be 57600 for stable operation

/[Output: Void

i

void usart_init(unsigned short rate)

{
trisc |= 11000000b; /I Set TX and Receive pins for eusart
baudcon = 00000000b; /I 8-bit baud rate

if (rate == 57600)
spbrg = 21; Il Set correct spbrg2 correctly For 57.6k rate
else
spbrg = (1250000/rate)-1; // Otherwise, attempt to find the "n value" as
best as possible
// THIS CODE HAS AN
OVERFLOW ERROR -> DON'T USE

/**/ [[rcsta2 default is 00000000b
/Ircsta2 = 10000000b;
/Ibit 7: enable serial port - 1
/bit 6: 8 bit reception -0
/Ibit 5: N/A - X
/Ibit 4: enable receiver -0

Final Documentation 144 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

/bit 3: N/A - X
//bit 2: No framing error. - X
//bit 1: No overrun error. - X
/Ibit 0: N/A - X
rcsta = 10000000b; /l Enable serial port

[**| [[trxsta default is 00000010b
/ltxsta = 00100100b;
/Ibit 7: x
/Ibit 6: 8-bit transmit => 0
//bit 5: transmit enable => 1
/Ibit 4: asynch =>0
//bit 3: not "sync break on transmission completed” => 0
/bit 2: high speed => 1
/Ibit 1: "TSRx empty" => X
//bit O: Parity bit => x
txsta = 00100100b; // High speed baud rate mode

T

I Function: usart_putc

I Purpose: puts a character to terminal via usart
/[Input: ¢ -> character to be typed (ascii)

/[Output: Void
T

void usart_putc(char c)

{
volatile bit transmitReady@PIR1.4; // transmission signal bit
while(!transmitReady); /I Wait until usart is ready
(bit goes high)
txreg =c; // Put the data to be
written into the Register
}

T T

I Function: usart_getc
I Purpose: gets a characeter from terminal via usart
I Input: Void

/I Output: The character captured from the terminal
U T
char usart_getc(void)

{

Final Documentation 145 EE Senior Design 2009-2010

Smart Windows

Daniels, Haunert, Shilling, Spangler

char value;
For a character

/I Allocate memory

volatile bit receiveReady@PIR1.5; // Monitor receive signal flag

unsigned long ii = 0;
char error = 0;
rcsta |= 00010000b;
while(IreceiveReady){
(bit goes high)
if (ii>750000) {

error =1;
break;
}
ili++;
}
value = rcreg;

resta &=11101111b;
prevent overflow

if (error) {value = 0;}

return value;

T nn
1 Function: usart_receive_enable

1 Purpose: Enables the receiver for character finding

1 Input: Void
/[Output: Void
T T
void usart_receive_enable(void) {

piel |= 00100000b;

rcsta |= 00010000b;

return;
}
T T T
I Function: usart_receive_disable
I Purpose: Enables the receiver for character finding
I Input: Void

/I Output: Void
U T T
void usart_receive_disable(void) {

resta &=11101111b;
prevent overflow

Final Documentation 146

// Enable the receiver
/I Wait until usart2 is ready

/I Get that value in the buffer
/l Disable the receiver to

/I Return the character

/I Enable receiver interupts
// Enable the receiver

/I Disable the receiver to

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

piel &=11011111b; /l Disable the receiver
interrupts
return;

ks

T T
// Funtion: usart_foundC

Il Purpose: Interrupt driven mechanism for finding cs on terminal
I Input: Void
// Output: The character captured from the terminal

T L T |
char usart_foundc(void)

{

char value = rcreg;
return value;

T

I Function: usart_printf
I Purpose: prints a character string to the terminal
1 Input: c[] -> variable length character array

1 Output: Void
T T
void usart_printf(char c[])

{
for(int i=0; c[i] '="\0"; i++) /I Loop through each character in the array
usart_putc(c[i]); // Put the character to the
terminal
}

T | §§ i

I Function: usart_putShort
I Purpose: prints an unsigned short to the terminal in decimal form
1 Input: dec -> that value to be printed

I Output: Void
MU
void usart_putShort(unsigned short dec)

{

unsigned short decl; /I Ten Thousands place
unsigned short dec2; /l Thousands place

Final Documentation 147 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

unsigned short dec3; // Hundreds place

unsigned short dec4; Il Tens place

unsigned short dec5; // Ones place

decl = dec/10000; /I Get the Ten Thousands place with division

dec = dec%10000; /I Calculate how much is left

dec2 = dec/1000; /I Get the Thousands place with division

dec = dec%1000; Il Calculate how much is left

dec3 = dec/100; /I Get the Hundreds place with

division

dec = dec%100; /I Calculate how much is left

dec4 = dec/10; /I Get the Tens place with division

dec5 = dec%10; /I The Ones place is how much is left

if(decl '=0) /I If there is a Ten Thousands place, print it
usart_putc(decl +'0";

if(dec2 '=0) /I If there is a Thousands place, print it
usart_putc(dec2 +'0";

if(dec3 1= 0) /I If there is a Hundreds place, print it
usart_putc(dec3 +'0";

if(dec4 '=0) /' there is a Tens place, print it

usart_putc(dec4 +'0";
usart_putc(dec5 + '0");// Print the one's place

T T

1 Function: usart_getShort
I Purpose: reads in an decimal number from the terminal
/[Input: Void

/I Output: The decimal input in unsigned short format
T
unsigned short usart_getShort(void)

{

char userlnput; /[User's input as a character

int userint; // User's current input converted to
integer

unsigned int add = 0; /I The user's whole input as an integer

unsigned short short_add; // The user's whole input as a unsign. Short

inti; // Loop variable

usart_printf("Please enter your digits:"); // Requests a decimal number
from user

for(i=0; i<5; i++) /Il Get a

digit a max of 5 times (For an unsign. Short)

Final Documentation 148 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

{
userlnput = usart_getc(); Il Get the
user's next digit
if((userInput=="r")||(userIinput=="n")){ /I If the digit is a "return” or
"new line," Break from the loop

break;
}
else if((userinput>="0")&&(userInput<='9")){// If the user has added a
valid digit
userint = userlnput - '0’; /I Save the
current digit in interger form
}
else {

/I 1f the user did not enter a valid digit
usart_printf("That is not a valid digit.");// Print an error message
return 0;

// Return a zero

}
add = add*10 + userlnt; /I Add
the new digit to old total (weighed appropriately)

}

if(add < 32768)
/I If the number is valid
short_add = add; /I Store
it as a Short
else {
/'If the number is too large
usart_printf("Too large for a short.");// Print an error

short_add = add; Il Save
it (truncated) as a Short
}
return short_add,; Il
Return the user's Short

by

Ul

I Function: usart_getByte

I Purpose: reads in a byte in binary form
/I Input: Void

/[Output: The input byte in char format
M|

char usart_getByte(void) {

Final Documentation 149 EE Senior Design 2009-2010

Smart Windows

Daniels, Haunert, Shilling, Spangler

char out_byte = 10000000b; [/l User's input as a character
char input; // User's current input
character
inti; // Loop variable
for(i=0; i<8; i++) { /I Get a digit a max of 5 times (For an
unsign. Short
input = usart_getc(); /I Get the user's next character
if (input =="1") { // Character isa 1
out_byte = (out_byte<<1) & 11111110b; // Move all previous
bits left
out_byte++; /I Add a one to the right-most
bits
}
else if (input=="0"){ /I Character isa 0
out_byte = (out_byte<<1) & 11111110b; // Move all previous
bits left
}
else { /1 1f the character is not a
valid 1 or 0
out_byte = 0; // Return a zero
break; /I Stop asking for bits
}
}
return out_byte; // Return the user's Short
}

M
I Function: usart_putByte
1 Purpose: puts in a byte in binary form
/[Input: The byte to output
/I Output: Void
T
void usart_putByte(char reg) {
if (reg.7 ==1) {usart_putc('1);}
else {usart_putc('0);}

if (reg.6 ==1) {usart_putc('1");}
else {usart_putc('0");}

if (reg.5 ==1) {usart_putc('1);}
else {usart_putc('0);}

Final Documentation 150

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

if (reg.4 ==1) {usart_putc('1);}
else {usart_putc('0");}

if (reg.3 ==1) {usart_putc('1');}
else {usart_putc('0");}

if (reg.2 ==1) {usart_putc('1);}
else {usart_putc('0");}

if (reg.1 ==1) {usart_putc('1');}
else {usart_putc('0");}

if (reg.0 ==1) {usart_putc('1);}
else {usart_putc('0");}

Final Documentation 151 EE Senior Design 2009-2010

Serial Library: usartlib.h
#ifndef USARTLIB_H_
#define _USARTLIB_H_
#include<system.h>

TN
I Smart Windows Project
1l

/! usartlib.h

/I USART function headers
TN

/I USART Function Prototypes
/I See usartlib.c for actual functions

void usart_init(unsigned short rate);
void usart_putc(char c);

Terminal

char usart_getc(void);

Terminal and Echoes it

void usart_receive_enable(void);
finding

void usart_receive_disable(void);
char usart_foundc(void);

driven by interrupt

void usart_printf(char c[]);

Terminal

void usart_putShort(unsigned short dec);
unsigned short usart_getShort(void);
Terminal

char usart_getByte(void);

from Terminal

void usart_putByte(char reg);
Terminal

#endif //_USARTLIB_H_

Final Documentation

Smart Windows
Daniels, Haunert, Shilling, Spangler

I
I
I
I

/I Initializes the EUSART
// Puts a character to the

/I Gets a character from the
// Enables the receiver for char

/I Disables the reciever
// Handles a found character;

/I Prints a character string to

/I Prints a decimal number to Terminal
Il Accepts a decimal number from the

/I Accepts a byte bit by bit

// Puts a byte in binary form to

152 EE Senior Design 2009-2010

EEPROM Library: EEPROMIib.c
#include <system.h>

#include "ZigBeelib.h"

#include "LCDlib_SPI.h"

#include "RTClib.h"

#include "ADlIib.h"

#include "usartlib.h"

#include "EEPROMIib.h"

#include "motorlib.h"

TN

I Smart Windows Project

1l

// EEPROMIib.c

/! Functions for data EEPROM
TN

I/l Function Prototypes are in EEPROMIib.h

char EEPROM _read(char addH, char addL)

{
eeadrh = 00000011b & addH;

eeadr = addL;
eeconl.7 =0;
eeconl.6 = 0;
eeconl.0=1;
char data;
data = eedata;
return data;

¥

Smart Windows
Daniels, Haunert, Shilling, Spangler

I
I
I
I

/I Write the 2 MSB

/I Write the rest of the address
/I Data memory mode

/I Access the EEPROM

/l Read mode

void EEPROM_write(char data,char addH, char addL)

{
volatile bit writeIF@PIR2.4;

eeadrh = 00000011b & addH;
eeadr = addL;

eedata = data;

eeconl.7 = 0;

eeconl.6 =0;

eeconl.2 = 1;

char temp;

temp = intcon.7,

intcon.7 = 0;

Final Documentation

/I Write the 2 MSB
/I Write the rest of the address
/[data to be written
// Data memory mode
/I Access the EEPROM
// Enables writing
// Record global interrupt state

// Diable global interrupts

153 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

eecon2 = 0x55; /I Write sequence

eecon2 = OX0AA;

eeconl.l =1, I/l Write start

while(lwritelF);

writelF = 0;

intcon.7 = temp; [/l Return interrupts to previous state
eeconl.2 = 0; // Diables writing

return;

Final Documentation 154 EE Senior Design 2009-2010

EEPROM Library: EEPROMIib.h
#ifndef EEPROMLIB_H_
#define_EEPROMLIB_H_
#include<system.h>

T T

I Smart Windows Project

1

1l EEPROMIib.h

I Functions for data EEPROM
T

/I Function prototypes for EEPROMIib.c
char EEPROM _read(char addH, char addL);
void EEPROM_ write(char data,char addH, char addL);

#endif /_ EEPROMLIB_H_

Final Documentation

Smart Windows

Daniels, Haunert, Shilling, Spangler

I

155

I
I
I

EE Senior Design 2009-2010

Motors Library: motorlib.c
#include <system.h>
#include "ZigBeelib.h"
#include "LCDIlib_SPI1.h"
#include "RTClib.h"
#include "ADlib.h"

#include "usartlib.h™
#include "EEPROMIib.h"
#include "motorlib.h"

TN

I Smart Windows Project

1l

/! motorlib.c

/! Functions for motor control
TN

/l Function Prototypes in motorlib.h

/I Global volatile bits
volatile bit open_cmd
volatile bit open_limit @PORTE.0;
volatile bit close_cmd @PORTA.5;
volatile bit close_limit@PORTE.1;

volatile bit middle_limit @PORTE.2;

@PORTA.4;

T
1 Function: motor_init

Smart Windows
Daniels, Haunert, Shilling, Spangler

I
I
I
I

I Purpose: Initializes the ports for motors

1 Input: Void

1 Output: Void

M|

void motor_init(void){
trisa.4 = 0;
trisa.5 = 0;
porta.4 = 0;
porta.5 = 0;
trise.0 = 1;
trise.1 =1;
trise.2 = 1;
open_cmd = 0;
close_cmd = 0;

k
M

Final Documentation

156

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

1 Function: motor_open

I Purpose: Opens the window

I Input: Void

I Output: Void

i

void motor_open(void){
open_cmd =1;
while (Topen_limit);
while (Topen_limit);
while (Topen_limit);
while (Topen_limit);
while (Topen_limit);
while (Topen_limit);
while (open_limit);
while (Topen_limit);
while (open_limit);
while (Topen_limit);

open_cmd = 0;
}
T
I Function: motor_close
I Purpose: Closes the window

1 Input: Void

1 Output: Void

i

void motor_close(void){
close_ cmd =1;
while (Iclose_limit);
while (Iclose_limit);
while (Iclose_limit);
while (Iclose_limit);
while (Iclose_limit);
while (Iclose_limit);
while (Iclose_limit);
while (!close_limit);
while (Iclose_limit);
while (!close_limit);
close_cmd =0;

T
Il Function: motor_middle
I Purpose: Middles the window

Final Documentation 157 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

1 Input: Void

I Output: Void

M

void motor_middle(void){

if (open_limit) {

close_cmd =1,
while (middle_limit);
while (middle_limit);
while (middle_limit);
while (Ymiddle_limit);
while (middle_limit);
while (middle_limit);
while (middle_limit);
while (Imiddle_limit);
while (middle_limit);
while (Imiddle_limit);
close_cmd =0;

else if (close_limit) {

open_cmd =1;

while (middle_limit);
while (Imiddle_limit);
while (middle_limit);
while (Imiddle_limit);
while (middle_limit);
while (Imiddle_limit);
while (middle_limit);
while (Imiddle_limit);
while (middle_limit);
while (Imiddle_limit);
open_cmd = 0;

}

else {

motor_open();
close_cmd =1;

while (Imiddle_limit);
while (Ymiddle_limit);
while (Imiddle_limit);
while (Ymiddle_limit);
while (Imiddle_limit);
while (Ymiddle_limit);
while (Imiddle_limit);
while (Ymiddle_limit);
while (Imiddle_limit);
while (middle_limit);
close_cmd =0;

Final Documentation 158 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Final Documentation 159 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Motors Library: motorlib.h
#ifndef MOTORLIB_H_
#define_ MOTORLIB_H_
#include<system.h>

T

I Smart Windows Project I

I /l
1 motorlib.h i

Il Functions for motor control I

T

/I Function prototypes for motorlib.c
void motor_init(void);

void motor_open(void);

void motor_close(void);

void motor_middle(void);

#endif /_MOTOR_H_

Final Documentation 160 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

6.2.2 PC Software

Desktop Application Code- Classes Listed Alphabetically (Python)
AllWindows.py

from future import division
import sys

import time

import os

import platform

from PyQt4.QtCore import *

from PyQt4.QtGui import *

from PyQt4.uic import *

from math import *

#My classes:

from SingleWindow import *

from SendToMicro import *

from RigUp import *
#Multithreading:

from multiprocessing import Process, Lock, Value, Array, Pipe

class AllWindows (QMainWindow) : #QWidget) :
def setMyTitle(self, xxxx):
self.setWindowTitle (xxxXX)

R i

4444444444 NEW BUTTON STUFF ###### 4444444
R i

Commands () .sendSimpleCommand (windowNumber, cmd open, cmd middle,
cmd close, cmd green, cmd security)

def myShowMsg (self, msg):
g = QMessageBox ()
gqg.setText (msqg)
qq.setWindowTitle ("Update!")

gqg.exec_ ()

def handleAutoModeClick (self, n):
Commands () .sendSimpleCommand (windowNumber=n, cmd security=True)
self.myShowMsqg ("Window " + str(n) + " is now in timing mode!')

def handleManualModeClick (self, n):
print "manual mode click for window " + str(n)
def handleEcoModeClick (self, n):

Commands () .sendSimpleCommand (windowNumber=n, cmd green=True)
self.myShowMsg ("Window " + str(n) + " is now in eco mode!")
def handleOpenModeClick (self, n):
Commands () .sendSimpleCommand (windowNumber=n, cmd open=True)
self.myShowMsqg ("Window " + str(n) + " is now opening!")
def handleHalfModeClick (self, n):
Commands () .sendSimpleCommand (windowNumber=n, cmd middle=True)
self.myShowMsg ("Window " + str(n) + " is now going to the
middle!")
def handleCloseModeClick (self, n):
Commands () .sendSimpleCommand (windowNumber=n, cmd close=True)
self.myShowMsqg ("Window " + str(n) + " is now closing!")
def modeClickHandler (self, obName, myInstance):
me = obName + str (myInstance)

Final Documentation 161 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

notme = []
if (obName.count ('auto') < 1):
notme.append ('autoButton' + str (myInstance))

else:

self.handleAutoModeClick (myInstance)
if (obName.count ('manual') < 1):

notme.append('manualButton' + str(myInstance))
else:

self.handleManualModeClick (myInstance)
if (obName.count ('eco’) < 1):

notme.append ('ecoButton' + str(myInstance))
else:

self.handleEcoModeClick (myInstance)
gpb = self.findChild (QPushButton, name=me)
gpb2 = self.findChild(QPushButton, name=notme[0])
gpb3 = self.findChild(QPushButton, name=notme[1l])
gpb.setIcon (QIcon (obName + 'X.png'))
gpb2.setIcon(QIcon (notme[0][0:=1] + '.png'))

gpb3.setIcon(QIcon(notme[1l] [0:-1] + '.png'))

shouldEnable = (obName.count ('manual') > 0)

templ = self.findChild (QPushButton, name="open"” +
str (myInstance))

templ.setEnabled (shouldEnable)

temp2 = self.findChild (QPushButton, name="half" +
str (myInstance))

temp?2.setEnabled (shouldEnable)

temp3 = self.findChild (QPushButton, name="close"” +
str(myInstance))

temp3.setEnabled (shouldEnable)

def modeClickHandler2 (self, obName, myInstance) :
me = obName + str (myInstance)
notme = []
if (obName.count ('open') < 1):
notme.append('open’ + str(myInstance))
else:
self.handleOpenModeClick (myInstance)
if (obName.count ('half') < 1):
notme.append('half' + str (myInstance))
else:
self.handleHalfModeClick (myInstance)
if (obName.count ('close’) < 1):
notme.append('close’ + str (myInstance))
else:
self.handleCloseModeClick (myInstance)
gpb = self.findChild (QPushButton, name=me)
gpb2 = self.findChild (QPushButton, name=notme[0])
gpb3 = self.findChild(QPushButton, name=notme[1l])
gpb.setIcon (QIcon (obName + 'X.png'))
gpb2.setIcon(QIcon(notme[0][0:-1] + '.png
+ n

.png'))
gpb3.setIcon (QIcon (notme[1] [0:-1] ".p

"))

Q IQ

def createMyButton (self, objName, myInstance):
modeButton = QPushButton ()
modeButton.setIcon (QIcon (objName + '.png'))

if (objName.count ('auto')>0): #START OUT IN AUTO MODE

Final Documentation 162 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

modeButton.setIcon (QIcon (objName + 'X.png'))
modeButton.setIconSize (QSize (50,50)) #70
modeButton.setObjectName (objName + str (myInstance))
def miniClickHandle () :

self.modeClickHandler (objName, myInstance)
self.connect (modeButton, SIGNAL('"clicked()'"), miniClickHandle)
return modeButton

def createMyButton2 (self, objName, myInstance):
modeButton = QPushButton ()
modeButton.setEnabled (False)
modeButton.setIcon (QIcon (objName + '.png'))
modeButton.setIconSize (QSize (50,50)) #70
modeButton.setObjectName (objName + str (myInstance))
def miniClickHandle () :
self.modeClickHandler?2 (objName, myInstance)
self.connect (modeButton, SIGNAL('"clicked()'"), miniClickHandle)
return modeButton

def makeWholeVlayoutButtonSet (self, myInstance):

vlayout = QVBoxLayout ()

hlayout = QHBoxLayout ()

hlayout.addWidget (self.createMyButton ('autoButton',
myInstance))

hlayout.addWidget (self.createMyButton ('manualButton’,
myInstance))

hlayout.addWidget (self.createMyButton ('ecoButton', myInstance))

hlayout2 = QHBoxLayout ()

hlayout2.addWidget (self.createMyButton2 ('open', myInstance))

hlayout2.addWidget (self.createMyButton2 ('half', myInstance))

hlayout2.addWidget (self.createMyButton2 ('close’, myInstance))

vlayout.addLayout (hlayout)

vlayout.addLayout (hlayout?2)

return vlayout

igssdsddsssasadddsadasddiasadadiiaaaand st
igsadaddsssasaddisaddsdsisaadadsasaadnd ittt
FHEFHFE R H A A AR AR R

def pullDescriptionFromFile (self, myFile):
if os.path.exists(myFile) == False: #if something went wrong
return " (None)"
with open (myFile, "r") as f:
Ins = f.read()
f.close ()
Ins = Ins.split("\n'")
if(len(lns) > 1):
return str(lns[0])
return " (None)"
def reloadNames (self) :
print "reloadNames"

f list = []
for £ in os.listdir(os.getcwd()):
if str(f).split('.")[1l] == "settings":

f list.append(f)
for i f in range(len(f list)):

e

Final Documentation 163 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

with open(f list[i f],"r") as f:
linez = f.read()
f.close ()

#
#
#
linez = linez.split ("\n")
#
#
#
s

if(len(linez) > 1):
myTempTitle = str(linez[0])
self.findChild(QLabel, "myLabel " +
str(i f)) .setText (myTempTitle)
def myClickHandler (self) :
for z in range (self.myNumberOfButtons):
if self.findChild (QPushButton,

QString ("myWindowButtons "+str(z))) == self.focusWidget():
f2 = SingleWindow (winID = self.listOfWindowIDs[z])
f2.show ()
#self.connect (self.visibleRegion(),
SIGNAL ("clicked()"), self.reloadNames)
return

def __init_(self, parent=None, i am reloading=False,
refresh text=' '):
S A
ws = Commands () .setup ()
RigUp () .matchSettingFiles (ws)
light readings = Commands () .getLightSensorReadings ()
FHAFHH AR H AR AR A AR H AR AR AR A
if (i_am reloading == False):
super (AllWindows, self). init (parent)
self.setWindowTitle ("SmartWindows! Click a window to change
manual time settings...")
self.resize (QSize (600,200))
self.addMyMenuBar ()
bigvlayout = QVBoxLayout ()
hlayout = QHBoxLayout ()
hlayout.setObjectName ("myVLayout")
listOfSettingsFiles = []
listOfWindowIDs = []
listOfWindowNames = []
for £ in os.listdir (os.getcwd()) :

if str(f).split('.'")[1l] == "settings':
listOfSettingsFiles.append(f)
listOfWindowIDs.append (str (f) .split('. ") [0])

listOfWindowNames.append(self.pullDescriptionFromFile (f))
myWindowTuple = zip(listOfSettingsFiles, listOfWindowIDs,
listOfWindowNames)
self.myNumberOfButtons = len(listOfSettingsFiles)
self.listOfWindowIDs = listOfWindowIDs f#save this for later (in
click handler)
HHEHEHEESEHSES Tf we have no windows #H##H#####H#H4HHS
if(len (myWindowTuple) == 0):
myButton = QPushButton ()
myButton.setIcon(QIcon("no windows.jpg"))
myButton.setIconSize (QSize (500,312))
hlayout.addWidget (myButton)
FHFF A A
#"getLightSensorReadings" returns light sensor 0, battery
sensor 0, light sensor 1, battery sensor 1, etc....

Final Documentation 164 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

for mwt in range (len (myWindowTuple)) :

miniVerticallayout = QVBoxLayout ()

myButton = QPushButton ()

myButton.setIcon (QIcon ("windowPic.png'))

myButton.setIconSize (QSize (170,170)) #was 150,150

myButton.setObjectName ("myWindowButtons "+str (mwt))

self.connect (myButton, SIGNAL('"clicked()"),
self.myClickHandler)

myLabel = QLabel ()

myLabel.setObjectName ("myLabel " + str(mwt)) #36 / 48 / 60

myLabel.setFont (QFont ("ChopinScript"))
#HAH A

myLabel.setText ("" 4+ ws[mwt] + "")

myLabel.setAlignment (Qt.AlignHCenter)

Light readout...

myLabel?2 = QLabel ()

myLabel2.setObjectName ("I1ight " + str(mwt)) #36 / 48 / 60

myD = 1.0*light readings[2*mwt] #i just made a variable
called my D. lolz. it stands for double tho.

myD = 100.*myD/255.

myLabel2.setText ("<h3>Light: " +
str(myD) [0:4] + "&" + "</h3>")

myLabel2.setAlignment (Qt.AlignHCenter)

Battery readout...

myLabel3 = QLabel ()

myLabel3.setObjectName ("battery " + str(mwt)) #36 / 48 / 60

myD2 = 1.0*light readings[2*mwt+1] #i just made a variable
called my D. lolz. it stands for double tho.

myD2 = 100.*myD2/170.

cut off = 75;

if (myD2 > cut off):

myLabel3.setText ("<h3>Battery: " +
(str (myD2) + " ")y [0:4] + "% (Ok)" + "</h3>")
else:
myLabel3.setText ("<h3>Battery: " +
(str (myD2) + " ™ [0:4] 4+ "& (LOW!)" +

"</h3>")
myLabel3.setAlignment (Qt.AlignHCenter)
s E A AL AL EAE LA
miniVerticallLayout.addWidget
miniVerticallLayout.addWidget
miniVerticallLayout.addWidget
miniVerticallayout.addWidget

myLabel)

myButton)
myLabel?2)
myLabel3)

—~ e~~~

miniVerticallLayout.addLayout (self.makeWholeVlayoutButtonSet (mwt))
#BUTTONS
#///////////// add border ?
hlayout.addItem(miniVerticalLayout)
gw = QWidget ()
FHAH SRS
bigvlayout.addLayout (hlayout)
refreshButton = QPushButton ()
refreshButton.setBaseSize (100, 100)
refreshButton.setIcon (QIcon ("refresh2.png'))
refreshButton.setIconSize (QSize (100,100))
myLabel?2 = QLabel ()

Final Documentation 165 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

myLabel?2.setFont (QFont (""ChopinScript"))
myLabel2.setText ("Refresh")
myLabel2.setAlignment (Qt.AlignHCenter)
myLabel2.setObjectName ("refreshLabel")
bigvlayout.addWidget (myLabel?2)
reflabel = QLabel ()
reflabel.setAlignment (Qt.AlignHCenter)
reflLabel.setText (refresh text)
bigvlayout.addWidget (reflLabel)
bigvlayout.addWidget (refreshButton)
def refreshClickHandle () :
xxyy = "<h4>" + time.asctime () + "</h4>"
self. 1init (parent, i _am reloading=True,
refresh text=xxyy)
self.connect (refreshButton, SIGNAL("clicked()"),
refreshClickHandle)
qw.setLayout (bigvlayout) fwas "gw.setLayout (hlayout)"
self.setCentralWidget (gw)

def addMyMenuBar (self) :
#First create all actions:

quitAction = self.createAction("&Quit",
self.close, "Ctrl+Q", "filequit'", '"Close the application')
delWinAction = self.createAction("&Delete ALL Windows'",

self.deleteWindowClick, "Ctri+D", "deletewindow', "Remove a Window')
#was self.syncTimeClick

syncTimeAction = self.createAction ("&Sync Module\'s Time",
self.sendMyCurrentTime, "Ctrl1+S", "synctime", "Synchronize the Time')
howToUseAction = self.createAction ("&How to Use',

self.howToUseClick, "Ctrl+H", "howtouse', "User help content')
#Now create all menu categories:

fileMenu = self.menuBar () .addMenu ("¢File')
optionsMenu = self.menuBar ().addMenu ("&Options')
helpMenu = self.menuBar () .addMenu ("&¢Help')

#Now add actions to menu categories:
fileMenu.addAction (quitAction)
optionsMenu.addAction (delWinAction)
optionsMenu.addAction (syncTimeAction)
helpMenu.addAction (howToUseAction)
#A helper function:
def createAction (self, text, slot=None, shortcut=None, icon=None,
tip=None, checkable=False, signal="triggered()"):
action = QAction (text, self)
if icon is not None:
action.setIcon (QIcon(":/%s.png" % icon))
if shortcut is not None:
action.setShortcut (shortcut)
if tip is not None:
action.setToolTip (tip)
action.setStatusTip (tip)
if slot is not None:
self.connect (action, SIGNAL (signal), slot)
if checkable:
action.setCheckable (True)
return action
def sendMyCurrentTime (self) :

Final Documentation 166 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Commands () .sendCurrentTime (waitAfter=False)
gg = QMessageBox ()

qq.setText ("Current time set!')
qq.setWindowTitle ("Update!")

gqg.exec_ ()
def deleteWindowClick (self) :
Commands () .sendEraseAllWindowsCommand ()

gqg = QMessageBox ()
qq.setText ("All windows have been removed");
gg.setWindowTitle ("Update!")
gqg.exec_ ()
def howToUseClick (self):
gmb = QMessageBox ()
gqmb.setText ("<hl>HOW TO

USE</hi>\n\n\n<img src=\"imconfus.jpg\" width=\"346\"

height=\"300\" />")
qmb.setWindowTitle ("Connection')

gmb.setIcon (QMessageBox.Warning)
gmb.addButton (QString ("Alright!"), QMessageBox.AcceptRole)
gmb.addButton (QString ("Explains it alll!"),

QMessageBox.RejectRole)
gmb.addButton (QString ("Terrific!"), QOMessageBox.ActionRole)

gmb.addButton (QString ("Amazing!"), OMessageBox.HelpRole)
gmb.exec_ ()

Commands.py
import time
from SendToMicro import *

#Commands to call from other classes:
#--sendSimpleCommand
#--sendNewAlarmTimes
#--sendWindowName

#--sendCurrentTime
#--getLightSensorReadings
#--sendEraseAllWindowsCommand

class Commands:

#For window time setting:
WINDOW TIMES PER WINDOW = 8
WINDOW TIMES FILLER = 255
#For sending simple commands:

CMD OPEN =0
CMD MIDDLE = 1
CMD CLOSE =2
CMD_GREEN = 3
CMD SECURITY = 4

#"strTimeToBCD" aids in converting times (strings) to BCD
def strTimeToBCD (self, strTime) :
if(len(strTime) < 2):

Final Documentation 167 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

strTime = '0' + strTime
intTime partl = int(strTime[0])
intTime part2 = int(strTime[l])

myBCD = 16*intTime partl + intTime part2
return myBCD

def intTimeToBCD (self, intTime) :

intTime partl = int (intTime/10)
intTime part2 = int (intTime%10)

return int (16*intTime partl + intTime part2)

ffomm Category A Commands-----———————————————
#"setup" returns an array of window name
def setup(self):

stme = SendToMicrokEfficient ()

stme.setup ()

C= r

C2= r

windowNumbers = []

windowNames = []

print 'STARTING SETUP'

#send a zero, pause, then a one

stme.send(chr(0)) # 0 = listen for command
X = stme.receive (1)
print "x = " + str(ord(x))
time.sleep(1l.3)
time.sleep (3)

stme.send(chr (254)) # 254 = start up
y = stme.receive (1)

print "y = " + str(ord(y))
print 'ready to receive windows...',
for i in range(10):

print .’

c = stme.receive (1)

print "c = " + str(ord(c))

if (¢ == chr (255)):

break
print '17,
c2 = stme.receive (10)

windowNumbers.append (c)
windowNames.append(c2)
#stme.receive (1) #final stop byte
print 'FINISHED WITH SETUP'
return windowNames
return windowNames, windowNumbers

fomm Category B Commands-----—-—————————————
#"sendSimpleCommand" sends either open/middle/close/green/security
def sendSimpleCommand (self, windowNumber, cmd open=False,
cmd middle=False, cmd close=False, cmd green=False,
cmd_security=False) :

mType = 'c’
mWho = windowNumber
mDataArr = [0,0,0,0,0,0,0,0,0,0]

#Figure out which command:

Final Documentation 168 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

cmd = -1
if (cmd open == True):
cmd = self.CMD OPEN
elif (cmd middle == True):
cmd = self.CMD MIDDLE
elif (cmd close == True):
cmd = self.CMD CLOSE
elif (cmd _green == True):
cmd = self.CMD GREEN
elif (cmd security == True):
cmd = self.CMD SECURITY
if(cmd == -1):
print "sendSimpleCommand error: no valid command sent"
return
mDataArr[0] = cmd

self.send generic b command (type=mType,who=mWho,dataArr=mDataArr)

#"sendNewAlarmTimes" sends all the alarm times for a window
#times is an array (of length 8) of a 5-tuple of command, sec, min,
hr, days

#NOTE: sec, min, hr will be taken in normal, then converted to BCD
#NOTE: IT REDIRECTS TO sendNewAlarmTimes2, THIS IS NO LONGER USED!
def sendNewAlarmTimes (self, windowNumber, times):

self.sendNewAlarmTimes2 (windowNumber, times)

1if(0 == 1):

if len(times[0]) != 5:
print "WRONG NUMBER OF TIMES! I WANT A TUPLE WITH 5

ELEMENTS"
#tell it that we are setting alarms:
print "about to send generic b command...",
self.send generic b command (type='a', who=windowNumber)
print "done."
#set up communication class
stme?2 = SendToMicroEfficient ()
stme2.setup ()
#get a confirmation 'a':
if (stme2.receive(l) !'= 'a'):
print 'Warning: got unexpected alarm response'
else:
print 'Got expected alarm response'’
S A A
#check object types
for k in range(5):
if (isinstance(times[0] [k], int) == False):
print "WARNING: expected tuple element " + str(k) +
" to be an int"
SRR AR A AR LR R AR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE LR
happycounter = 1
#tell it what alarms we are setting:
for t in times:
#Convert to BCD. open/close, sec, min, hr, day
t2 = chr(t[0]), chr(self.intTimeToBCD(t[1])),
chr(self.intTimeToBCD(t[2])), chr(self.intTimeToBCD(t[3])), chr(t[4])
for tt in t2:
stme2.send (tt)

Final Documentation 169 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

#//11/7717777
print "send byte number " + str (happycounter)
happycounter += 1
#//17/77771777
time.sleep(.2)
#fill it up to 8:
extraFillerTimes = self.WINDOW TIMES PER WINDOW -
len (times)
for i in range(extraFillerTimes) :
for j in range(5):
stme2.send (chr (self.WINDOW TIMES FILLER))
#//11/7717777
print "send FILLER byte number " +
str (happycounter) + " that is equal to the byte value " +
str (self.WINDOW TIMES FILLER)
happycounter += 1
#//11/71171777
time.sleep(.2)

def sendNewAlarmTimes2 (self, windowNumber, times):
Pad "times" to be a 2D 8 x 5 matrix
if len(times[0]) != 5:
print "WRONG NUMBER OF TIMES! I WANT A TUPLE WITH 5
ELEMENTS"
while len(times) < 8:
times.append((self.WINDOW TIMES FILLER,
self.WINDOW TIMES FILLER, self.WINDOW TIMES FILLER,
self.WINDOW TIMES FILLER, self.WINDOW TIMES FILLER))
Send the first command that we are sending an alarm
print "starting..."
print "type is " + str(type(times[0][0]))
for n in range(4): #up to 4 because it sends two each time
print -

print "sending alarms " + str(2*n) + " and " + str(2*n + 1)

print "BEFORE bcd...",
print str(times[2*n])
print "AND"
print str(times[2*n+1])
print "then after..."”
two _alarms = []
if(times[2*n] [0] !'= 255): #if it's not a filler
two _alarms.append(times[2*n] [0])
1 open/close do NOT convert
two_alarms.append(self.intTimeToBCD (times[2*n] [1]))
1 sec convert to BCD
two _alarms.append(self.intTimeToBCD (times[2*n] [2]))
1 min convert to BCD
two_alarms.append(self.intTimeToBCD (times[2*n] [3]))
1 hr convert to BCD
two_alarms.append(times[2*n] [4])
1 day do NOT convert
else: #if it IS a filler
two_alarms.append (255)
two_alarms.append (255)

Final Documentation 170 EE Senior Design 2009-2010

if(t
2 open/close
2 sec

2 min

else:

prin
C:
if(n

Smart Windows
Daniels, Haunert, Shilling, Spangler

two _alarms.append (255)

two alarms.append (255)

two alarms.append (255)

1mes[2*n+1][0] = 255):

two alarms.append(times[2*n+1][0])
do NOT convert

two_alarms.append(self.intTimeToBCD (times[2*n+1][1]))
convert to BCD

two_alarms.append(self.intTimeToBCD (times[2*n+1][2]))
convert to BCD

two_alarms.append(self.intTimeToBCD (times[2*n+1][3]))
convert to BCD

two_alarms.append(times[2*n+1] [4])

do NOT convert

#if it IS a filler

two_alarms.append (255)

two_alarms.append (255)

two_alarms.append(255)

two_alarms.append(255)

two_alarms.append (255)

t str(two_alarms) ###f##dsadttaas
717
== 1):
c = 127
(n == 2)
c = 37
(n == 3)
c = "4

self.send generic b command (type=c, who=windowNumber,
dataArr=two_alarms, endConfirmation=True) #type will be 1,2,3,4 (which

are all 'alarm'
prin

commands too)
t "listening for response..."

print "Done send alarms"

#"sendWindowName"
def sendWindowName (self, windowNumber, windowName) :

print "~~~ SENDING WINDOW NAME~~~~~~ "
#make windowName at least 10 characters long:
windowName = windowName + " "
myDataArr = []

for ii in range(10):

myDa
self.sen
dataArr=myDataAr

taArr.append (ord(str (windowName) [11]))
d generic b command(type='n', who=windowNumber,
r)

print "done sending name"

#"sendCurren

tTime" sends the current time to the head module

def sendCurrentTime (self, waitAfter=True):

print "~ SENDING CURRENT TIME

1t = time.localtime ()

sec_bcd = self.strTimeToBCD(time.strftime('3S’,1t))
min bcd = self.strTimeToBCD(time.strftime('sM',1t))
hour bcd = self.strTimeToBCD (time.strftime('3H',1t))
day = int(time.strftime('8w',1t)) + 1

mType = 't' # 't' = time

Final Documentati

on 171 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

mWho = 255 # 255 = all modules
mDataArr = [0,0,0,0,0,0,0,0,0,0]
mDataArr[0] = sec _bcd # datal0] = sec
mDataArr[l] = min bcd # datal[l] = min
mDataArr([2] = hour bcd # datal[2] = hr
mDataArr[3] = day

self.send generic b command (type=mType,who=mWho,dataArr=mDataArr)
#H#f####4444 TODO: don't always wait here

light sensor 1,

e

if (waitAfter == True):
time.sleep (3)

#"getLightSensorReadings"
battery sensor 1,
def getLightSensorReadings (self) :

returns light sensor O,
etc....

battery sensor O,

self.send generic b command (type='1",who=255)

windowReadings = []
stme = SendToMicroEfficient ()
stme.setup ()
x = -1
while True:
x = ord(stme.receive(l))
if(x == 255):
break
else:

windowReadings.append (x)

print
return windowReadings

#"sendEraseAllWindowsCommand"

"light sensor readings = " + str(windowReadings)

erases all windows

def sendEraseAllWindowsCommand (self) :
self.send generic b command (type='e', who=255)

#"send generic b command" sends out a category b command

type must always be specified
who is the window

dataArr is the 10 bytes to send

(by default all windows)

(by default all zeros)

def send generic_b command(self, type, who=255,
dataArr=[(0,0,0,0,0,0,0,0,0,0], endConfirmation=False):

#format first 3 bytes
byte ¢ = chr(0)
byte b = chr (who)
byte b = chr (ord(who))
FhHHSH AR H AR A
byte a = type
if isinstance(type, int):
byte a = chr (type)
else:
byte a = type
FHAEH SRS
#prep for send
stme = SendToMicroEfficient ()
stme.setup ()

#int cast,

in case passed as string

#Send Byte C / Get Confirmation

stme.send (byte c)
stme.receive (1)

Final Documentation

172

EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

time.sleep(1l.3)

#Send Byte B / Get Confirmation

stme.send (byte D)

stme.receive (1)

time.sleep(.3)

#Send Byte A / NO Confirmation

stme.send (byte a)

time.sleep(.3)

#Send the 10 data bytes with delay / NO Confirmation

for i in range (10):
stme.send (chr (data’Arr[i]))
time.sleep(.2)

if (endConfirmation == True) :
cc = stme.receive(l)
if(cc == 'a'):

print "Got positive confirmation of a"
time.sleep(.2)

ConvertTimes.py
class ConvertTimes:
def convert(self, stuffToWrite):

stuffToSend = stuffToWrite.split('\n'") [1:]
bigArr = []
for x in stuffToSend:
xx = x.split (', ")
if (len(xx) == 4):
tt = int(xx[3]), 0, int(xx[2]), int(xx[1l]), int(xx[0])

bigArr.append (tt)
print str(bigArr)
return bigArr

main.py
#Libraries:
from future import division
import sys
import time
import os
import platform
import d2xx
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from PyQt4.uic import *
from math import *
#My classes:
from SplashForm import *
from AllWindows import *
from SendToMicro import *

Final Documentation 173 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

#import Commands

from Commands import *
from RigUp import *
FHHAFHH R AR H AR H AR H S HSH
import urllib

HHAEFHF AR ARSI

#Multithreading:
from multiprocessing import Process, Lock, Value, Array, Pipe

class WholeProgram:

FHF A S S
iE s T T AL EEE
def checkForWindowChanges (self) :
def getStateOfWindowX (i) :

STATE OPENED = -1

STATE MIDDLE = 0

STATE CLOSED = 1

theurl =
'"http://129.74.154.171/0observer/media.php?id=1267301014&uid=5619109"'

if 1 !'= 1:

theurl =

'http://129.74.154.171/0observer/media.php?id=12673694854uid=5619109"'

f = urllib.urlopen (theurl)

s = f.read()
f.close ()
#<RATING user rated="-1" up count="0" down count="1"/>
iStart = s.find('user rated’)
iEnd = s.find('up count’)
s = s[iStart:iEnd]
print s
if(s.count('-1") > 0):

return STATE_OPENED
elif(s.count('1") > 0):
return STATE_CLOSED
else:
return STATE MIDDLE
print 'Starting checkForWindowChanges...'

while True:

winl old state = getStateOfWindowX (1)

winl current state = getStateOfWindowX (1)

win2 old state = getStateOfWindowX (2)

win2 current state = getStateOfWindowX(2)

while ((winl old state == winl current state) and
(win2 old state == win2 current state)):

winl current state = getStateOfWindowX (1)
win2 current state = getStateOfWindowX(2)

print '.',
time.sleep(.5)
if (winl old state != winl current state): #window 1 command
sent
if winl current state == -1:
Commands () .sendSimpleCommand (0, cmd open=True)

elif winl current state ==

Final Documentation 174 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Commands () .sendSimpleCommand (0, cmd middle=True)
else:
Commands () .sendSimpleCommand (0, cmd close=True)
print 'Window 1 has a new state.... ' +
str(winl current state)
elif (win2 old state != win2 current state): #window 2
command sent
if win2 current state == -1:
Commands () .sendSimpleCommand (1, cmd open=True)
elif winZ current state ==
Commands () .sendSimpleCommand (1, cmd middle=True)
else:
Commands () .sendSimpleCommand (1, cmd close=True)
print 'Window 2 has a new state.... ' +

str(win2 current state)
R EEEE R R R
igdddsaa st aaR i

#This function does opening animation
def openingAnimation (self):
app = QApplication(sys.argv)
app.quitOnLastWindowClosed ()
sform = SplashForm()
sform.show ()
app.exec_ ()

FH A A A A A A R R R
#

#This function constantly listens for incoming microcontroller
commands :

def constantlListening(self):
while (1) :
xyz = SendToMicro () .receive ()

print xyz,

sys.stdout.flush ()

print str(self.fl)
self.fl.setWindowTitle ("TEST")

Y

igsadsdddsssdaddissddddddsssdssddssadadddidaaadddsiataaadianaRR R Eddi
#

def __init (self):
########4#0ne of these is to listen for android, the other is
the regular programi#
with open('alternate.txt', 'r') as f:
type = f.read() .strip()

FHEFHFEE AR AR R R R R A A R A R R R A R R R R R
HHEFAAEESESS

type = "1 #//////////////////// TO DISABLE ANDROID LISTENING
/1777777777 7777777
if type == '0':
lternate.txt', 'w') as f:

with open (

'a
type f.write('1")

Final Documentation 175 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

android = Process (target=self.checkForWindowChanges())
android.start ()

else:
with open('alternate.txt',

type = f.write('0")

app = QApplication(sys.argv)
app.quitOnLastWindowClosed ()
fakeComm = Process (target=self.openingAnimation)
fakeComm.start () #start splash screen
self.fl = AllWindows () #wait for real stuff to happen
fakeComm.terminate () #kill splash screen
self.fl.show()
app.exec_ ()
print "done.

w') as f:

n

if name == ' main
wp = WholeProgram()
print "got here"

L

RigUp.py
import os
class RigUp:
noisy = True
def matchSettingFiles (self, myMicros2, noisy=False):

print "myMicrosZ = " + str(myMicros2)
if noisy == False:
self.noisy = True
noisy = True
myMicrosComb = str (myMicros2)
for w in range(10): #maximum number of window modules is 10
if str(myMicrosComb) .count (str(w)) > 0: #if that settings

file exists
if w < len(myMicros2):
if os.path.exists(os.path.join(os.getcwd (), str(w) +
".settings')):
self.dprint(str(w) + '.settings exists... write
name just in case...')
with open(str(w)+'.settings', 'r') as f:
xx = f.read()
f.close()
xx2 = xx.split('\n")
with open(str(w)+'.settings', 'w') as £f2:
for j in range(len(xx2)):
if(3 == 0):
f2.write (myMicros2[w] + '\n'")
else:

Final Documentation 176 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

f2.write (xx2[71)
f2.close ()
else:
self.dprint(str(w) + '.settings does NOT exist...
creating it now....')
with open(str(w) + '.settings', 'w') as fopenfile:
fopenfile.write (myMicros2[w])
print "putting in file " + myMicros2[w]

S
fopenfile.close()
else:
if os.path.exists(os.path.join(os.getcwd (), str(w) +
".settings')):
self.dprint (str(w) + '.settings exists... i will
have to remove it..."')
print str(w) + '.settings exists... 1 will have to
remove it...'
os.remove (os.path.join (os.getcwd (), str(w) +
".settings'))
else:
self.dprint(str(w) + '.settings does NOT exists...
good...")
def dprint(self, msgqg):
if self.noisy == True:
print msg
else:
print '7,
SendToMicro.py
import time
import d2xx

class SendToMicro:
def send(self, userInput, noisy = False):
d = d2xx.listDevices (d2xx.0PEN BY DESCRIPTION) # list devices
by description, returns tuple

if (noisy == True):
print "Devices found: " + str(d)
try:
h = d2xx.open (d.index ('FT232R USB UART',)) #get the one we

want
h.setBaudRate (d2xx.BAUD 57600)
h.setDataCharacteristics (d2xx.BITS 8, d2xx.STOP BITS 1,
dZXX.PARITY_NONE)
for i in range(len(userInput)):
h.write (userInputl[i])
h.read (2)
except ValueError:
print "Microcontroller not recognized"
def receive(self, bytesToLookFor = 1, noisy = False):
if not isinstance (bytesToLookFor, int):
print "epic fail"
return -1
d = d2xx.listDevices (d2xx.0OPEN_BY DESCRIPTION) # list devices
by description, returns tuple
if(noisy == True):

Final Documentation 177 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

print "Devices found: " + str(d)
try:
h = d2xx.open(d.index ('FT232R USB UART',)) #get the one we
want
h.setBaudRate (d2xx.BAUD 57600)
h.setDataCharacteristics (d2xx.BITS 8, d2xx.STOP BITS 1,
dZXX.PARITY_NONE)
time.sleep(.01)
x = h.read(bytesToLookFor)
except ValueError:
print "Microcontroller not recognized"
finally:
return x
def microcontrollerIsHookedUp (self) :
d = d2xx.listDevices (d2xx.0PEN BY DESCRIPTION) # list devices
by description, returns tuple
try:
h = d2xx.open(d.index ('FT232R USB UART',)) #get the one we

want
return True
except ValueError:
return False

class SendToMicroEfficient:
def setup(self):
d = d2xx.listDevices (d2xx.0PEN BY DESCRIPTION) # list devices
by description, returns tuple
try:
self.h = d2xx.open(d.index ('FT232R USB UART',)) #get the
one we want
self.h.setBaudRate (d2xx.BAUD 57600)
self.h.setDataCharacteristics (d2xx.BITS 8,
d2xx.STOP_BITS 1, d2xx.PARITY NONE)
except ValueError:
print "EPIC FAIL"
def send(self, userInput):
print str(ord(userInput[0]))
for i in range(len(userInput)):
self.h.write (userInput[i])
def receive (self, bytes):
return self.h.read(bytes)

SingleWindow.py
import sys
import time
import os
import platform
import d2xx
#from PyQt4.QtCore import *
from PyQt4.QtCore import Ot
from PyQt4.QtCore import SIGNAL
from PyQt4.QtCore import QSize
from PyQt4.QtCore import QTime
from PyQt4.QtGui import *
from PyQt4.uic import *
from math import *
from Commands import *

Final Documentation 178 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

from ConvertTimes import *

class SingleWindow (QWidget) :
- Get a bit from a number---------
def getBit(self, num, bitNumFromLeft) :
if bitNumFromLeft ==
return int (bool (num & 0b10000000))
if bitNumFromLeft ==
return int (bool (num & 0b01000000))
if bitNumFromLeft ==
return int (bool (num & 0b00100000))
if bitNumFromLeft ==
return int (bool (num & 0b00010000))
if bitNumFromLeft ==
return int (bool (num & 0b00001000))
if bitNumFromLeft ==
return int (bool (num & 0b00000100))
if bitNumFromLeft ==
return int (bool (num & 0b00000010))
if bitNumFromLeft ==
return int (bool (num & 0b00000001))
fomm————— Get a "day module"------————————-—
def getDayModule (self, timestampCounter, whichDay, b0=0, bl=0,
pb2=0, b3=0, enabled=False): #returns QVBoxLayout of a day
myMaxHeight = 18
myMaxWidth = 25
myMaxWidth2 = 85
myMaxWidth3 = 65
dayNamez =
["Enabled"’ "M"’ "T"’ "W"’ I!Lh", "F"’ "&", "&"’ "Tlme "’ "Type "’ "Byte O"’ ”Byte
1 "’ "Byte 2"’ "Byte 3"]
xR L
dayName = dayNamez [whichDay% (len (dayNamez))]
FA A
miniVLayout = QVBoxLayout () #vertical layout
tempQL = QLabel ()
tempQL.setText (dayName)
tempQL.setMaximumHeight (myMaxHeight)
if whichDay == 0: #"enabled"
x = QCheckBox ()
x.setMaximumHeight (myMaxHeight)
x.setMinimumWidth (myMaxWidth + 40)
if (enabled) :
x.setChecked (True)
else:
x.setChecked (False)
if whichDay > 0 and whichDay <= 7: #"M-Su"
x = QCheckBox ()
x.setMaximumWidth (myMaxWidth)
#byte 1 tells us how to fill in the days of the week
HHfhd At d Attt ad At a Attt a4 44
if self.getBit (b0, whichDay) ==
x.setChecked (True)
FHFF AR b
if self.getBit (b0, whichDay+1l) ==
x.setChecked (True)

Final Documentation 179 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

FHFF AR h A
if whichDay == 8: #"Time"
x = QTimeEdit ()
X .setMaximumWidth (myMaxWidth?2)
#byte 2 tells us how to fill in the hour. and byte 3 the
minute.
x.setTime (QTime (bl,b2))
if whichDay == 9: #"Type"
x = QComboBox ()
x.addItem ("Open')
x.addItem ("Middle)
x.addItem("Close")
X .setMaximumWidth (myMaxWidth?2)
#byte 3 tells us if it is an open or close operation
if b3 ==
x.setCurrentIndex (0)
else:
x.setCurrentIndex (1)
if whichDay >= 10 and whichDay <= 13: #"Bytes 0-3"

x = QLabel ()

if whichDay == 10: #byte 0
x.setText (str (b0))

if whichDay == 11: #byte 1
x.setText (str (bl))

if whichDay == 12: #byte 2
x.setText (str(b2))

if whichDay == 13: #byte 3

x.setText (str (b3))
x.setMaximumWidth (myMaxWidth3)
x.setMinimumWidth (45)
tempQL.setLayoutDirection (Qt.RightToLeft)
x.setLayoutDirection (Qt.RightToLeft)
x.setMaximumHeight (myMaxHeight)
x.setObjectName (dayName.strip() + " " + str(timestampCounter))

if whichDay >= 1:
x.setEnabled (enabled)
def miniAndyClick() :
self.allOtherClicks (x.objectName ())
self.connect (x, SIGNAL("clicked()"), miniAndyClick)
self.connect (x, SIGNAL("timeChanged (QTime) "), miniAndyClick)
self.connect (x, SIGNAL("currentIndexChanged(int)"),
miniAndyClick)
miniVLayout.addWidget (tempQL)
miniVLayout.addWidget (x)
return miniVLayout
- Get a "week module"-—-———--—--——————————
def getWeekModule (self, timestampCounter, bytel=0, byte2=0,
byte3=0, byte4=0, enabled=False):
myWeek = QHBoxLayout () #horizontal layout
for i in range(14):

myWeek.addItem(self.getDayModule (timestampCounter,i,bytel,byte2,byte3,b

yted,enabled))
return myWeek

Final Documentation 180 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

#--—--Deal with Submit button click (save to file, send to
microcontroller)—-—---
def submitButtonClicked (self) :
#figure out stuff to write
stuffToWrite = self.getDescription() + "\n"
for i in range(0,100):
tempChild = self.findChild (QCheckBox,
name="Enabled "+str(i))
if tempChild == None:
break
else: #the row exists...
if (tempChild.isChecked()): #and the row is enabled...
stuffToWrite += self.findChild(QLabel, name="Byte
0 "+str(i)).text() + ", "
stuffToWrite += self.findChild(QLabel, name="Byte
1 "+str(i)).text() + ", "
stuffToWrite += self.findChild(QLabel, name="Byte
2 "+str(i)).text() + ", "
stuffToWrite += self.findChild(QLabel, name="Byte
3 "str(i)).text() + "\n”
#write it to file
myFname = str(self.myWinID) + ".settings"
with open (myFname, "w'") as f:
f.write (stuffToWrite)
f.close ()
FHFFFFFFFAAAAAAAA 444 SEND TO MICROCONTROLLER
TS LR ek

bigArr = ConvertTimes () .convert (stuffToWrite)
Commands () .sendCurrentTime ()

time.sleep (3)

Commands () . sendNewAlarmTimes (int (self.myWinID), bigArr)

FhAHSH AR H AR H AR H AR S
#H##

#send to microcontroller (DEBUGGING: output messagebox)

message = QMessageBox ()

message.setText ("Finished. \n" \

+"\nThe following was sent and recorded

locally...\n" + stuffToWrite)

message.addButton ("Accept", QMessageBox.AcceptRole)

message.exec_ ()

#get rid of the "must save changes" warning:

(self.findChild (QLabel, name="TitleLabel'")) .setText ("<hZ2>Window
Times:</h2>")

def exitClicked(self):
self.close()

fomm Get Window Description---------————-
def getDescription (self):
if self.myWinDesc != None:

return self.myWinDesc
myFname = str(self.myWinID) + ".settings"
if os.path.exists (myFname) == False:
return " (None)"
with open (myFname, "r") as f:
1Ins = f.read()

Final Documentation 181 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

f.close()
Ins = lns.split("\n")
if(len(lns) >= 1):
self.myWinDesc = str(lns[0])
return self.myWinDesc
return " (None)"
- Load from file (called within init)------
def loadFromFile (self, vlayout):
myFname = str(self.myWinID) + ".settings"
timestampCounter = 0
if os.path.exists (myFname) == True: #if the settings file
exists
with open (myFname, "r") as f:
Ins = f.read()
f.close()
Ins = lns.split('\n")
if(len(lns) > 1): #if there's more than 1, first is
description, toss it
Ins = 1Ins[1:]
for 1n in lns: #allow ANY number to be loaded from file...
In = 1ln.strip()
In = 1ln.split("”,")
if len(ln) ==

try:
i0 = int(1In[0])
il = int(In[1])
i2 = int(1In[2])
i3 = int(1In[3])

vlayout.addItem(self.getWeekModule (timestampCounter,i0,1i1,12,1i3,enabled
=True))
timestampCounter += 1
except:
pass #ignore lines where parsing failed...
#And now add some blank ones to get up to 8
else:

QMessageBox.warning (None, 'No settings file found...', "No
settings file was found in the local folder.\n\nA blank template will
be loaded.')

while timestampCounter < 8:
vlayout.addItem(self.getWeekModule (timestampCounter))

timestampCounter += 1

- Deal with all clicks--—-——=---——-
def allOtherClicks (self, obName): #only called when state is
changed
xtitle = self.findChild(QLabel, name="TitleLabel')
xtitle.setText ("<h2>Window Times: <font color = \"red\"
size=\"4\">(Please click \"Apply Changes\" to load new times onto
window)</h2>")

timestampNumStr = obName.split (" ") [1]

objectType = obName.split (" ") [0]

dayNamezl — [HM", HT", HW", HTE n, "F", "Sa n, "SU"]

- If this in an Enable click, do appropriate
enabling/disabling-----

if objectType == "Enabled": #flip state of associated objects

Final Documentation 182 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

newState = self.findChild (QCheckBox,
name=obName) .isChecked ()
for dayName in dayNamezl:
self.findChild (QCheckBox,
name=dayName+" "+timestampNumStr) .setEnabled(newState)
self.findChild (QTimeEdit,
name="Time "+timestampNumStr) .setEnabled(newState)
self.findChild (QComboBox,
name="Type "+timestampNumStr) .setEnabled(newState)
for iii in range(4):
self.findChild (QLabel, name="Byte

"+str(iii)+" "+timestampNumStr) .setEnabled(newState)
return
#———- If this is a "time" click, update bytes 1 and 2
if objectType == "Time':
tempTimeObj = self.findChild(QTimeEdit, name=obName)
myQTime = tempTimeObj.time () #returns a "QTime

#byte 1 is hour:
(self.findChild (QLabel, name="Byte
1 "+timestampNumStr)) .setText (str (myQTime.hour()))
#byte 2 is minute:
(self.findChild (QLabel, name="Byte

2 "+timestampNumStr)) .setText (str (myQTime.minute()))
return
#————- If this is an "open/close" click, update byte 3
if objectType == "Type':

(self.findChild (QLabel, name="Byte
3 "+timestampNumStr)) .setText (str((self.findChild(QComboBox,
name=obName)) .currentIndex()))
return
=== If this is M-F click, update byte 0
if dayNamezl.count (objectType) >= 1:
M checked = int(self.findChild (QCheckBox,
name="M "+timestampNumStr) .isChecked())
T checked = int (self.findChild (QCheckBox,
name="T7T "+timestampNumStr) .isChecked())
W _checked = int(self.findChild (QCheckBox,
name="}W "+timestampNumStr) .isChecked())
Th checked = int(self.findChild (QCheckBox,
name="Th "+timestampNumStr) .isChecked())
F checked = int (self.findChild (QCheckBox,
name="F "+timestampNumStr) .isChecked())
Sa_checked = int(self.findChild(QCheckBox,
name="Sa "+timestampNumStr) .isChecked())
Su_checked = int(self.findChild(QCheckBox,
name="Su "+timestampNumStr) .isChecked())
addItUp = Su checked + 2*M checked + 4*T_ checked +
8*W_checked
addItUp += 16*Th checked + 32*F checked + 64*Sa checked
(self.findChild (QLabel, name="Byte
0 "+timestampNumStr)) .setText (str (addItUp))
return
def changeDescClicked (self):
myTuple = QInputDialog.getText (None, 'Change Name', 'Please enter
a Name\n (Name will be truncated to 10
characters) ',QLineEdit.Normal, self.getDescription())

Final Documentation 183 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

if myTuple[l] == True: #user didn't hit cancel

xtitle = self.findChild(QLabel, name="TitleLabel)

xtitle.setText ("<h2>Window Times: <font color = \"red\"
size=\"4\">(Please click \"Apply Changes\" to load new times onto
window)</h2>")

tempDesc = myTuple[O0]

if len(tempDesc) > 30:

tempDesc = tempDesc[0:30]

(self.findChild (QLabel, name="WindowNameLabel")) .setText (\
"<h2>Window Desc: <font color = \'"green\"
size=\"5\">g¢ldquo;" + tempDesc +"”</h2>")
self.myWinDesc = tempDesc
Commands () . sendWindowName (windowNumber=int (self.myWinID),

windowName=self.myWinDesc)

def __init__ (self, parent=None, winID = None) :
super (SingleWindow, self). init (parent)
self.myWinID = winID
self.myWinDesc = None
self.setWindowTitle ("Set window change times')
self.resize (QSize (300,500))
vlayout = QVBoxLayout ()
vlayout.setObjectName ("myVLayout")

#Create "Window ID" Label:

WindowID glabel = QLabel ()

WindowID glabel.setText ("<hZ>Window ID:

 ,; ,; ,; ,; |\

"+str (winlD)+"</h2>")

WindowID glabel.setObjectName ("IDLabel")

WindowID glabel.setMaximumHeight (30)

vlayout.addWidget (WindowID glabel)

#Create "Window Description" Label:

WindowName glabel = QLabel ()

WindowName glabel.setText ("<hZ>Window Desc: <font color =
\"green\"
size=\"5\">¢ldquo;"+self.getDescription()+"&rdquo,;</h2>")

WindowName glabel.setObjectName ("WindowNameLabel')

WindowName glabel.setMaximumHeight (30)

#Create "Change Description" Button:

WindowDesc button = QPushButton ("Change Description)

WindowDesc button.setObjectName ("changeDescButton")

WindowDesc button.setMaximumHeight (30)

WindowDesc button.setMaximumWidth (150)

WindowDesc button.setLayoutDirection (Qt.RightToLeft)

self.connect (WindowDesc button, SIGNAL("clicked()'"),
self.changeDescClicked)

#Mini horizontal layout and add:

minihlayoutl = QHBoxLayout ()

minihlayoutl.addWidget (WindowName glabel)

minihlayoutl.addWidget (WindowDesc_button)

vlayout.addItem (minihlayoutl)

#Add "Window Times" Label:
Title glabel = QLabel()
Title glabel.setText ("<h2>Window Times:</h2>")

Final Documentation 184 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Title glabel.setObjectName ("TitleLabel')

Title glabel.setMaximumHeight (30)

vlayout.addWidget (Title glabel)

#Load up the old times from file:

self.loadFromFile (vlayout)

#Add "Apply Changes" Button:

submitButton = QPushButton ("Apply Changes'")

self.connect (submitButton, SIGNAL("clicked()'"),
self.submitButtonClicked)

submitButton.setMaximumWidth (140)

submitButton.setLayoutDirection (Qt.RightToLeft)

vlayout.addWidget (submitButton)

#Add "Exit" Button:

exitButton = QPushButton ("Exit")

self.connect (exitButton, SIGNAL('"clicked()'"), self.exitClicked)

exitButton.setMaximumWidth (140)

exitButton.setLayoutDirection (Qt.RightToLeft)

vlayout.addWidget (exitButton)

#Add spacer

mySpacer = QLabel ()

vlayout.addWidget (mySpacer)

#Set layout

self.setLayout (vlayout)

SplashForm.py
from future import division
from PyQt4.QtCore import *
from PyQt4.QtGui import *
from PyQt4.uic import *
from math import *
#new:
import platform
import d2xx

class SplashForm (QWidget) :
def __init__(self, parent=None) :
self.paused = False ####H#HH4444444444444FFFFFFFFFFFSHA

super (SplashForm, self). 1init (parent)
self.current pic number = 0

nAcross = 20

nDown = 10

layout = QGridLayout ()

self.QL = []

self.QL logo = QLabel()
self.QL logo.setPixmap (QPixmap ("windowLogo.png'))
layout.addWidget (self.QL logo,1l,1,nDown-1,nAcross-1)
for i in range (0,nAcross):
self.QL.append (QLabel ())
self.QL[-1].setPixmap (QPixmap ("dot0.png"))
layout.addWidget (self.QL[-1],0,1)
for i in range (0,nDown) :
self.QL.append (QLabel ())
self.QL[-1].setPixmap (QPixmap ("dot0.png"))
layout.addWidget (self.QL[-1],1i,nAcross)
for i in range (nAcross,0,-1):
self.QL.append (QLabel ())
self.QL[-1].setPixmap (QPixmap ("dot0.png"))

Final Documentation 185 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

layout.addWidget (self.QL[-1],nDown, i)
for i in range (nDown,0,-1):
self.QL.append (QLabel ())
self.QL[-1].setPixmap (QPixmap ("dot0.png"))
layout.addWidget (self.QL[-1],1,0)
loadMsg = QLabel (""<i>Establishing
window communications. Please Wait...</i>")
layout.addWidget (loadMsg, 9,1,1,20)
self.setWindowFlags (Qt.SplashScreen)
self.setlLayout (layout)
#for waiting and updating the GUI
self.timer = QBasicTimer ()
self.step = 20 + 20 + 10 + 5
self.timer.start (60, self)
def timerEvent (self,event) :
if (self.paused == False): ####44H4H444444444444
self.step += 1
self.advanceSplashScreenGraphic (self.step)
def advanceSplashScreenGraphic(self, 1i):
self.QL[i%len(self.QL)].setPixmap (QPixmap ("dot" +
str(self.current pic number) + ".png'"))
if 1%(20 + 20 + 10 + 10) ==
self.current pic number = (self.current pic number + 1)%5
def pause (self) : ########HHHHHHHH4H4444
self.paused = True
def resume (self): #####4#H#4444H4444H444
self.paused = False

Final Documentation 186 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

6.2.3 Android Software

package nd.s

import java.
import java.
import java.
import java.
import java.

Google Android Code

SmartWindows. java
eniordesign;

io.BufferedReader;
io.InputStreamReader;
net.HttpURLConnection;
net.URL;

util.List;

import andro
import andro

id.app.Activity;
id.content.Intent;

import andro
import andro
import andro
import andro
import andro
import andro
import andro
import andro
import andro
import andro

id.os.AsyncTask;

id.os.Bundle;

id.util.Log;

id.view.Menu;

id.view.MenuInflater;

id.view.Menultem;

id.view.View;
id.view.MenuItem.OnMenultemClickListener;
id.view.View.OnClickListener;
id.widget.AdapterView;

import andro
import andro

id.widget.Button;
id.widget.Gallery;

import andro
import andro
import andro

id.widget.TextView;
id.widget.Toast;
id.widget.AdapterView.OnItemClickListener;

public class

//****
public
public
public
public
public

public
public
public
public
public
public
"http://129.
246c8917-561

public
CMD_OPEN;

public
CMD_MIDDLE;

SmartWindows extends Activity implements OnClickListener ({

Rt iR b I b b b b b Sb b S a2 CONSTANTS Rt S e I b b b b b Sb b S 2 b b b b (i i g 4
int WIN 1 = 1;

int WIN 2 = 2;

int MY OPEN = -1;

int MY MIDDLE = 0;

int MY CLOSE = 1;

String WIN 1 ID = "1267301014";
String WIN 2 ID = "1267369485";
String CMD_ OPEN = "&rating=-1";
String CMD MIDDLE = "&rating=0";
String CMD CLOSE = "&rating=1";

String CMD CORE =
74.154.171/0observer/submit rating.php?skey=041a09cd46ac0093
91095uid=56191098&mid=";

String COMP_CMD OPEN WIN 1 = CMD CORE + WIN 1 ID +

String COMP_CMD MIDDLE WIN 1 = CMD CORE + WIN 1 ID +

Final Documentation 187 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

public String COMP_CMD CLOSE WIN 1
CMD CLOSE;

public String COMP_CMD OPEN WIN 2
CMD_OPEN;

public String COMP_CMD MIDDLE WIN 2
CMD MIDDLE;

public String COMP_CMD CLOSE WIN 2 = CMD CORE + WIN 2 ID +
CMD_CLOSE;

//***********~)<**~)<**~)<**~)<~)<~)<~)<~)<~)<~)<**~)<**~)<************************

CMD CORE + WIN 1 ID +

CMD _CORE + WIN 2 ID +

CMD CORE + WIN 2 ID +

Button oButton = null;
Button mButton = null;
Button cButton = null;

TextView win name label = null;

//Set on menu item click

public int currentWindow = 1;

public int currentCommand = -1;

//Set after button click, before Async task begins

public String currentUrlStr = "n,
@Override

public void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.window 1 xml) ;

win name label = (TextView)
this.findvViewById (R.id.windowNameLabel) ;
win name label.setTextSize((float) 26.0);

oButton = (Button) this.findViewById(R.id.openButton) ;
mButton (Button) this.findViewById(R.id.middleButton) ;
cButton (Button) this.findViewById(R.id.closeButton);

oButton.setTag ("openButton") ;
mButton.setTag ("middleButton") ;
cButton.setTag("closeButton");

oButton.setOnClickListener (this) ;
mButton.setOnClickListener (this) ;
cButton.setOnClickListener (this) ;

@Override
public void onClick (View v) {
if(v.getTag () .toString() .contains ("open")) {
this.currentCommand = -1;
new asyncO () .execute("");
Toast t = Toast.makeText (this, "Open command
sending...", Toast.LENGTH SHORT) ;
t.show();
}else if (v.getTag () .toString () .contains ("middle")) {
this.currentCommand = 0;
new asyncO () .execute("");
Toast t = Toast.makeText (this, "Middle command
sending...", Toast.LENGTH SHORT) ;

Final Documentation 188 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

t.show () ;
}else if (v.getTag () .toString () .contains("close™)) {
this.currentCommand = 1;
new asyncO () .execute ("");
Toast t = Toast.makeText (this, "Close command
sending...", Toast.LENGTH SHORT) ;
t.show();

[/ FxFAFF A F AR KA FAxFA JRL get (within AsyncTask wrapper)
kAhkkhkkhkkhkhkhkkhkkrkhkhkkkk*k

public class async0O extends AsyncTask<String, String, String> {

URL url = null;

HttpURLConnection urlConn = null;
InputStreamReader isr = null;
BufferedReader in = null;

String inputLine = null;

boolean epicFail = false;

protected void onPreExecute () {

if ((SmartWindows.this.currentCommand == -1) &&
(SmartWindows.this.currentWindow == 1))
SmartWindows.this.currentUrlStr =
COMP_CMD OPEN WIN 1;
else if((SmartWindows.this.currentCommand == 0) &&
(SmartWindows.this.currentWindow == 1))
SmartWindows.this.currentUrlStr =
COMP CMD MIDDLE WIN 1;
else if((SmartWindows.this.currentCommand == 1) &&
(SmartWindows.this.currentWindow == 1))
SmartWindows.this.currentUrlStr =
COMP CMD CLOSE WIN 1;
else if((SmartWindows.this.currentCommand == -1) &&
(SmartWindows.this.currentWindow == 2))
SmartWindows.this.currentUrlStr =
COMP CMD OPEN WIN 2;
else if((SmartWindows.this.currentCommand == 0) &&
(SmartWindows.this.currentWindow == 2))
SmartWindows.this.currentUrlStr =
COMP CMD MIDDLE WIN 2;
else if((SmartWindows.this.currentCommand == 1) &&
(SmartWindows.this.currentWindow == 2))
SmartWindows.this.currentUrlStr =
COMP _CMD CLOSE WIN 2;

super.onPrekExecute () ;

}

protected String doInBackground(String... params) {
try {
url = new
URL (SmartWindows.this.currentUrlStr) ;

Final Documentation 189 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

urlConn = (HttpURLConnection)
url.openConnection () ;
isr = new
InputStreamReader (urlConn.getInputStream()) ;
in = new BufferedReader (isr);
inputLine = in.readLine();

in.close () ;
urlConn.disconnect () ;

}catch (Exception e3) {
Log.v("ANDY", "exception 3");

}

return "";

}

protected void onPostExecute (String result) {

String msg;
if (epicFail) {
msg = "Failed to deliver command, sorry";
lelse {
msg = "Sent!";
}
Toast t = Toast.makeText (SmartWindows.this, msg,
Toast.LENGTH SHORT) ;
t.show();

super.onPostExecute (result) ;

}

//‘k‘k*‘k‘k************************* MENU
PR i b 4
@Override
public boolean onCreateOptionsMenu (Menu menu) {
MenulInflater inflater = getMenulInflater();
inflater.inflate(R.layout.menu all media, menu);

MenulItem menu item win 1 = menu.getItem(O0);
Menultem menu item win 2 = menu.getItem(1l);

menu item win 1.setOnMenultemClickListener (new

OnMenultemClickListener () {
@Override
public boolean onMenultemClick (Menultem item) {
if (SmartWindows.this.win name label != null) {
if (currentWindow == 1) { //if we're
already on win 1
Toast t =

Toast.makeText (SmartWindows.this, "Already set to window 1",
Toast.LENGTH SHORT) ;
t.show();
}

else {

SmartWindows.this.win name label.setText ("Window 1");
currentWindow = 1;

Final Documentation 190 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

Toast t =
Toast.makeText (SmartWindows.this, "Now set to window 1",
Toast.LENGTH_SHORT);
t.show () ;
}
}

return true;

) ;

menu_item win 2.setOnMenultemClickListener (new

OnMenultemClickListener () {
@Override
public boolean onMenultemClick (Menultem item) {
if (SmartWindows.this.win name label != null) {
if (currentWindow == 2) { //if we're
already on win 2
Toast t =

Toast.makeText (SmartWindows.this, "Already set to window 2",
Toast.LENGTH_SHORT);
t.show () ;
}

else {

SmartWindows.this.win name label.setText ("Window 2");
currentWindow = 2;
Toast t =
Toast.makeText (SmartWindows.this, "Now set to window 2",
Toast.LENGTH_SHORT);

t.show () ;
}
}
return true;
}
)i

return true;

R.java
package nd.seniordesign;

public final class R {

public static final class attr {

}

public static final class drawable {
public static final int close=0x7£020000;
public static final int half=0x7£020001;
public static final int icon=0x7£020002;
public static final int open=0x7£020003;
public static final int win icon=0x7£020004;
public static final int window 1ogo=0x7£020005;
public static final int window pic=0x7£020006;

}

public static final class id {

Final Documentation 191 EE Senior Design 2009-2010

Smart Windows
Daniels, Haunert, Shilling, Spangler

public static final int closeButton=0x7£050006;
public static final int menu button win 1=0x7£050000;
public static final int menu button win 2=0x7£050001;
public static final int middleButton=0x7£050005;
public static final int openButton=0x7£050004;
public static final int otherLabel=0x7£050002;
public static final int windowNameLabel=0x7£050003;

}

public static final class layout {
public static final int menu all media=0x7£030000;
public static final int window I xmI=0x7£030001;

}

public static final class string {
public static final int app name=0x7£040000;

}

}

menu_all media.xml
<menu xmlns:android="http://schemas.android.com/apk/res/android"
android:name="Context Menu'>

<item
android:id="@+id/menu button win 1"
android:icon="@drawable/win icon"
android:numericShortcut="1"
android:title="Window 1"
>

</item>

<item
android:id="@+id/menu button win 2"
android:icon="@drawable/win icon"
android:numericShortcut="2"
android:title="Window 2"
>

</item>

</menu>

window 1 xml.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout width="fill parent"
android:layout height="fill parent”
. _ _
<ImageView
android:layout width="200px"
android:layout height="100px"
android:src="@drawable/window logo"
android:layout gravity="center"”
/> ;
<TextView
android:id="@+id/otherLabel"
android:layout width="fill parent”
android:layout height="wrap content"
android:text="Press menu to select alternate window..."
/>

<TextView

Final Documentation 192 EE Senior Design 2009-2010

Smart Windows

Daniels, Haunert, Shilling, Spangler

android:layout width="fill parent"
android:layout height="wrap content”
android:text=" "

/>
<TextView
android:id="@+id/windowNameLabel"
android:layout width="fill parent"
android:layout height="wrap content”
android:text="Window 1"
android:gravity="center"”
/>
<ImageView
android:layout width="fill parent”
android:layout height="150px"
android:src="@drawable/window pic"
/> ;
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="horizontal"
android:layout width="fill parent"
android:layout height="200px"

>
<!-- android:src="@drawable/open" -->
<!-- android:src="@drawable/half" -->
<!-- android:src="@drawable/close" -->
<Button
android:id="@+id/openButton"
android:layout width="wrap content"”
android:layout height="wrap content”
android:text="0Open"
android:layout weight="1"
/> a
<Button
android:id="@+id/middleButton"
android:layout width="wrap content"”
android:layout height="wrap content”
android:text="Middle"
android:layout weight="1"
/>
<Button
android:id="@+id/closeButton"
android:layout width="wrap content"”
android:layout height="wrap content”
android:text="Close"”
android:layout weight="1"
/> a
</LinearLayout>
</LinearLayout>
Final Documentation 193

EE Senior Design 2009-2010

6.3 Bill of Materials

Smart Windows
Daniels, Haunert, Shilling, Spangler

Board
Light

Light
Light
Light
Light
Main
Main
Main
Main
Main

Main
Main
Main
Main
Main

Main
Main
Main
Main
Main
Main
Main
Main

Main
Main
Main
Main
Main

Main
Main
Main
Main
Main
Main

Main

Main
Main

Main
Main

Main
Main

Main
Main
Main

Subsyste|

Buttons
Buttons
Buttons
Buttons
Buttons

DC/DC
DC/DC
DC/DC
DC/DC
EEPROM

LCD
LCD
LCD
LCD
Light
Light
Light
Limit
Limit
Limit
Limit
Limit
Limit
ucontrolle
ucontrollel
ucontrollel
ucontrollel
ucontrollel
ucontrolle

ucontrollel

ucontrollel
ucontrollel

ucontrollel
ucontrollel

Power
Power

Power
Power

Power

Part Description
10k Resistor

Photodiode

Molex 3-pin (M)
Molex 3-pin (F)
Molex Crimp Pins
Push Button Switch
10K resistor

Molex 8-pin (M)
Molex 8-pin (F)
Molex Crimp Pins

DC/DC Charge Pump
10 uF Capacitor

100 nF Capacitor
150K Resistor
EEPROM

New Haven Serial Displd
Molex 6-pin (M)

Molex 6-pin (F)

Molex Crimp Pins

Molex 3-pin (M)

Molex 3-pin (F)

Molex Crimp Pins

10K resistor

47 resistor

1k resistor

Molex 6-pin (M)
Molex 6-pin (F)
Molex Crimp Pins
MicroController
10-pin header

10K resistor

Push Button Switch

100 Resistor
1N4148

0.1uF Capacitor

20MHz Ceramic Oscillaty
30pF Capacitor

1M Resistor
Poly Case Project Box

15K Resistor
10K resistor

100K Resistor
DC Power Jack (1.3mm)

DC Power Plug (1.3mm).

Supplie
Stock

Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey

Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey
Digikey

Digikey
Digikey

Digikey
Poly Ca

Digikey
Digikey

Digikey
(M)
(F)

Final Documentation

Part #
Stock

751-1055-1-ND
WM4301-ND
WM2001-ND
WM1114-ND
EG2021-ND
P10.0KCCT-ND
WM4306-ND
WM2006-ND
WM1114-ND

MCP1252-33X501/MS-ND
445-1372-1-ND
PCC1853CT-ND
P150KACT-ND
25LCB40A-I/SN-ND
NHD-0216K3Z-NSW-BBW
WM4304-ND
WM2004-ND
WM1114-ND
WM4301-ND
WM2001-ND
WM1114-ND
P10.0KCCT-ND
P47.0CCT-ND
P1.0KACT-ND
WM4304-ND
WM2004-ND
WM1114-ND
PIC18LF4620-I/PT-ND
Stock

P10.0KCCT-ND
450-1655-ND
P100DACT-ND
1N4148WS-FDICT-ND
490-1723-1-ND

490-4717-1-ND
478-3738-1-ND

P1.0MACT-ND
SL-64P (yes- mounting boss)

P15KACT-ND
P10.0KCCT-ND

P100KATR-ND

PCU

= === === == o

(=] o [=] (=]

(=]

[=R=N=N=N=N===]

=N=N=K=X=]

—_

(==}

[=]k=}

OWU |RCU
1 0
1 0
1 0
1 0
3 0
3 5
3 5
1 1
1 1
8 8
1 1
2 2
1 1
1 1
0 0
0 1
0 1
0 1
0 6
1 0
1 0
3 0
2 0
1 0
1 0
1 0
1 0
6 0
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
2 2
1 1
1 1
1 1
1 1
1 1
1 1
1 1

194

#

Lae]

W = = DN NN

oo

DD o

-
— = s NN RN N

£ s

S

S

[

W W W

rice/Unit
Stock

$1.44
$1.17
$0.60
$0.27
$0.59
$0.01
$1.30
$0.60
$0.60

Purchase
$1.43
$0.26

Stock

Purchase

$20.75

$1.07
$0.68
$0.27
$1.17
$0.60
$0.27
Stock

Stock
Stock
$1.07
$0.68
$0.27
Purchase:
Stock
Stock
Stock
Stock
Stock
$0.05

Stock
$0.02

Stock
$4.11

Stock
Stock

Stock

Stock

Stock

d

d

d

Cost

$2.88
$2.34
$1.20
$1.62
$6.49
$0.11
$3.90
$1.80
$14.40

$8.58

$0.78

$20.75
$1.07
$0.68
$1.62
$2.34
$1.20
$1.62

$2.14
$1.36
$3.24

$0.20

$0.16

$16.44

Link | Manufacturer | Manufacturer part number

Vishay/Semicon

http://sg ductors TEMT6000X01

http://segf Molex Inc 22-05-3031

http://segf Molex Inc 22-01-3037

http://segf Molex Inc 08-50-0114

http://se] E-Switch PS1024ALBLK

http://se Panasonic - ECQERJ-6ENF1002V

http://segf Molex Inc 22-05-3081

http://sefMolex Inc 22-01-3087

http://sgf Molex Inc 08-50-0114
Microchip

http://s¢] Technology MCP1252-33X501/MS
TDK

http://se} Corporation C2012Y5V0J106Z
Panasonic -

http://sg ECG ECJ-2VF1E104Z
Panasonic -

http://sgd ECG ERJ-6GEYJ154V
Microchip

htip://sg Technology 25LC640A-1/SN
Newhaven

http://s¢] Display Intl NHD-0216K3Z-NSW-BBW

http://seggMolex Inc 22-05-3061

http://sgf Molex Inc 22-01-3067

http://sef Molex Inc 08-50-0114

http://segf Molex Inc 22-05-3031

htip://sg Molex Inc 22-01-3037

http://segf Molex Inc 08-50-0114

http://se Panasonic - ECQERJ-6ENF 1002V
Panasonic -

http://sgd ECG ERJ-6ENF47ROV

http://sg Panasonic - ECQERJ-6GEYJ102V

http://sgf Molex Inc 22-05-3061

http://segf Molex Inc 22-01-3067

http://segf Molex Inc 08-50-0114
Microchip

http://se Technology PIC18LF4620-I/PT

http://se] Panasonic - ECQERJ-6ENF1002V

http://sg} Tyco Electronics | FSMCDAH
Panasonic -

htip://s ECG ERA-BAEB101V

http://sef Diodes Inc 1N4148WS-7-F
Murata
Electronics

htip://sgf North America | GRM219F51H104ZA01D
Murata
Electronics

htip://sg North America | CSTCE20M0V53Z-R0
AVX

http://se] Corporation 08051A300JAT2A
Panasonic -

htip://s ECG ERJ-6GEYJ105V

http://wy Polycase SL640
Panasonic -

htip://s ECG ERJ-6GEYJ153V

http://sef Panasonic - ECQERJ-6ENF1002V
Panasonic -

http://s ECG ERJ-6GEYJ104V

http:/iwd VARIOUS 420ECS

http:/iw JAMECO VALUH G1P639-R

EE Senior Design 2009-2010

Main

Main

Main
Main
Main

Main
Main
Main
Main
Main
Main

Main
Main

Main

Main
Main
Main
Main
Main
Main
Main
Main
Main
Main

Motor
Motor
Motor
Motor
Motor
Motor
Motor

Motor
Motor
Motor
None
None
None
None
None
None
None
None
None
None
None
None

Power

Power

Power
Power
Power

RTC
RTC
RTC
USB
UsB
USB

UsB
USB

USB

UsB

UsB

ZigBee
ZigBee
ZigBee
ZigBee
ZigBee
ZigBee
ZigBee
ZigBee

100 nF Capacitor

22 uF Capacitor

10 uF Capacitor
3.3V Voltage Regulator
Slide Switch

Crystal

Real Time Clock
10K resistor

USB - Serial UART
Ferrite Bead

USB - Type B

4.7k Resistor
10k Resistor

100nF Capacitor

0.1uF Capacitor
4.7uF Capacitor
Antenna (LINX24ANT)
Transceiver Chip
BALLIN 0805
ABRACKY

1uF Capacitor

10pF Capacitor

22pF Capacitor

5.6pF Capacitor

H-bridge (L298)

DC Power Jack (1.3mm)
DC Power Plug (1.3mm)
Molex 4-pin (M)

Molex 4-pin (F)

Molex Crimp Pins

Tyco Screw Terminal

100 nF Capacitor
1N4004 Diode

Poly Case Project Box
Motor

Steal Rod

Microswitch

23" x 42" White Mini Blin}
Rubber Spider
.125ID Hub

.197 ID Hub

8 Battery Holder
NiMH AA Battery
Battery Charger
Photo-interruptor

9-V Battery Holder

Digikey

Digikey

Digikey
Digikey
Digikey

Digikey
Digikey
Digikey
Digikey

Digikey

Digikey
Digikey

Digikey

Digikey
Digikey

Digikey

Digikey
Digikey
Digikey
Digikey

Digikey
M)

(F)

Digikey
Digikey
Digikey
Digikey

Digikey
Digikey
Poly Ca
Solarbof
Lowes

Digikey
Lowes

Jameco
Jameco
Jameco
Digikey
Digikey
Stock

Digikey
Digikey

490-1723-1-ND

490-1719-1-ND

445-1372-1-ND
ZLDO1117G33DICT-ND
EG1903-ND

SER3205-ND
DS1305E+-ND
P10.0KCCT-ND
768-1007-1-ND

151-1121-ND

P4.7KACT-ND
P10.0KCCT-ND

490-1723-1-ND

490-1723-1-ND
490-3901-1-ND

ATB6RF230-ZU-ND

490-1700-2-ND
490-1590-1-ND
490-1591-1-ND
478-1301-1-ND

497-1395-5-ND

WM4302-ND
WM2002-ND
WM1114-ND
A98167-ND

490-1723-1-ND
1N4004FSCT-ND
BF-1502012 (Lid Option)
GM3

Lowes

CKN9940-ND

I 168349
i 162000
F 162288
I 161998
BH48AAW-ND

N703-ND

Stock

425-1971-5

377-1549-ND

Final Documentation

PROMNN S 2 s

= === ===

OO0 0000000000000

RN DB S Ao oo

. Y N N

O = = 00 = R = R

195

-

A a0 00

PROMNN S s

= === ===]

- 00 000000000000

L

BB W W

-

[e = N N N I

NN N

S PR DN NN RN NN

$0.05 $0.60
$0.05 $0.20
$1.43] $5.72
$2.33 $9.32
Stock
$0.32 $0.96
Purchased
Stock
$4.50] $18.00
Stock
$0.93] $3.72
Stock
Stock
$0.05] $0.20
$0.05] $0.20
$0.25 $1.00
Stock
Purchased
Stock
Stock
$0.05] $0.80
$0.22 $1.76
$0.22 $1.76
$0.23] $1.84
Purchased
Stock
Stock
$1.14 $2.28
$0.63] $1.26
$0.27 $3.24
Stock
$0.05| $0.20
Stock
$1.01 $2.02
Purchased
Purchased
$2.27 $9.08
$8.96] $17.92
$1.55
$1.49 $2.98
$1.19] $2.38
$1.91] $3.82
$3.96] $63.36
Stock
Purchased
Stock
$251.54

Smart Windows
Daniels, Haunert, Shilling, Spangler

Murata
Electronics
http://sgNorth America |GRM219F51H104ZA01D
Murata
Electronics
http://sgNorth America |GRM21BR60J226ME39L
TDK
http://se} Corporation C2012Y5V0J106Z
http://sef Diodes Inc ZLDO1M117G33TA
http://sef E-Switch EG1218
Epson Toyocom
http://sef Corporation C-002RX 32.7680K-E:PBFREE
http://sef Maxim Integrated DS1305E+

Panasonic - EC(J

ERJ-6ENF1002V

http://s
hitp:

FTDI

FT232RL R

http://sq EDAC Inc 690-004-221-023
Panasonic -
http://s ECG ERJ-BGEYJ472V
http://sef Panasonic - ECQERJ-6ENF 1002V
Murata
Electronics
http://seNorth America | GRM219F51H104ZA01D
Murata
Electronics
http://seNorth America | GRM219F51H104ZA01D
http://sef Murata Electronif GRM219C81A475KE34D

 http://sd ATBERF230-ZU

EE Senior Design 2009-2010

http://sg Murata Electronif GRM216R61E105KA12D
http://sef Murata Electronid GRM2195C2A100JZ01D
http://sef Murata Electroni{ GRM2195C2A220JZ01D
http://sq AVX Corporation] 08055A5R6CAT2A
STMicroelectron
hitp://sefics L298N
http://wy VARIOUS 420ECS
http://wy JAMECO VALUH G1P639-R
hitp://sef Molex Inc 22-05-3041
http://sefMolex Inc 22-01-3047
http://sgMolex Inc 08-50-0114
http://sef Tyco Electronics | 284392-3
Murata
Electronics
http://sefNorth America | GRM219F51H104ZA01D
http://sef Fairchild Semico] 1N4004
http:/iwy Polycase BF-1502012
hitp://wJ Solarbotics GM3
http://sg C&K Componenf| ZMCHMOL3T
http://wy Levolor LVYCDD2304201D
http://wy VARIOUS M01-0004
http:/fwd VARIOUS 162288
http://wy VARIOUS M01-0002
http://sgg MPD (Memory P|BH48AAW
http://se{ Energizer NH15
http://sef Sharp Microelec GP1S52VJ000F |
http://se)Bud Industries |HH-3449 |

6.4 Data Sheets

Smart Windows
Daniels, Haunert, Shilling, Spangler

The following links lead to data sheet for all major electronic components in our project.
The shorter data sheets have been attached to this report.

Part Description

Digikey Part #

Link

Photodiode 751-1055-1-ND http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=751-1055-1-ND

FTDI Serial

UART 768-1007-1-ND http://search.digikey.com/scripts/DkSearch/dksus.dll?vendor=0&keywords=768-1007-1-ND+
New Haven NHD-0216K3Z- http://search.digikey.com/scripts/DkSearch/dksus.dll?vendor=0&keywords=NHD-0216K3Z-
Serial Display NSW-BBW NSW-BBW+

Crystal Oscillator | SER3205-ND http://search.digikey.com/scripts/DkSearch/dksus.dll?vendor=0&keywords=SER3205-ND+
3.3V Voltage ZLDO1117G33DIC | http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=ZLD0O1117G33DICT-
Regulator T-ND ND

20MHz Ceramic

Oscillator 490-4717-1-ND http://search.digikey.com/scripts/DkSearch/dksus.dlI?Detail&name=490-4717-1-ND
EEPROM 25LC640A-I/SN-ND | http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=25LC640A-I/SN-ND

Photo-interruptor
H-bridge (L298)
ZigBee
Transceiver Chip
Real Time Clock
DC/DC Charge
Pump

MicroController

Final Documentation

425-1971-5
497-1395-5-ND
AT86RF230-ZU-
ND

DS1305E+-ND
MCP1252-
33X501/MS-ND
PIC18LF4620-1/PT-
ND

http://search.digikey.com/scripts/DkSearch/dksus.dll?vendor=0&keywords=425-1971-5+
http://search.digikey.com/scripts/DkSearch/dksus.dll?vendor=0&keywords=497-1395-5-ND+

http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=AT86RF230-ZU-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=DS1305E%2B-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=MCP1252-33X501/MS-
ND

http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=PIC18LF4620-1/PT-ND

196 EE Senior Design 2009-2010

http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=751-1055-1-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?vendor=0&keywords=768-1007-1-ND+
http://search.digikey.com/scripts/DkSearch/dksus.dll?vendor=0&keywords=NHD-0216K3Z-NSW-BBW+
http://search.digikey.com/scripts/DkSearch/dksus.dll?vendor=0&keywords=NHD-0216K3Z-NSW-BBW+
http://search.digikey.com/scripts/DkSearch/dksus.dll?vendor=0&keywords=SER3205-ND+
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=490-4717-1-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=25LC640A-I/SN-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?vendor=0&keywords=425-1971-5+
http://search.digikey.com/scripts/DkSearch/dksus.dll?vendor=0&keywords=497-1395-5-ND+
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=AT86RF230-ZU-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=DS1305E%2B-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=MCP1252-33X50I/MS-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=MCP1252-33X50I/MS-ND
http://search.digikey.com/scripts/DkSearch/dksus.dll?Detail&name=PIC18LF4620-I/PT-ND

