VISION
Camera Controlled System for Mechatronic
Football

Final Report
Electrical Engineering Senior Design - Spring 2013
University of Notre Dame

Lucas De la Fuente Munita
Bryan Dimas
Nicholas Ferruolo
Ryan Hames
Kevin Shetler

Table of Contents

L INEOAUCTION . ..ee e e e e e e 3

2 Detailed Systems REQUITEIMENLScooiietintitiiti e et eieee e 3

3 Detailed Project DEeSCIIPHIONuuiintit ettt e e e e et e e 6
3.1 System Theory of OPerationoouieutiiiitii it e et eveeniens 6
3.2 System Block Diagramoooiiiiiiii e 6
3.3 Subsystem 1 —CMUQCAMA ...ttt e 7
3.4 Subsystem 2 — Board/Microchipooooiuiiiiiii e 11
3.5 Subsystem 3 — Image Tracking Algorithms ..., 12

3.6 Subsystem 4 — Wireless Communicationooueemieeiieeenneeneennenneennenenn. 13

4 System Integration TESHNE ..ottt e e eet e et e e 17
4.1 Testing the SUDSYSIEMS ...ttt e e 17
4.2 Testing the Overall SyStemc.oouiiiiiii e 17
5 User Manual/Installation Manual, 18
5.1 How to Install Productoooiiiiii e, 19
5.2 How to Set Up Productoineii e 19
5.3 Expected Product Operationoo.eiuiuiiiiiate et e e 20
5.4 TroubleShOOtINGvitie e e 20
6 To-Market Design Chan@eso.oiiiiuiiii it 21
03 1 Ted 13 T) PP 22
B APPCIAICES ...ttt ettt e 24

1 Introduction

The Vision project aims to design a camera control system that would be able to track robotic
football players on a playing field. Mechatronic football involves the programming and design of robots
to play a game of football. Over the years the project has evolved and it now involves robots that can
launch a football to be caught by another robot. However, this now creates a large margin of error in
terms of completing passes. This opens the door for new technology to be implemented in order to
improve the mechatronic football game. With the Vision camera control system, live position feedback
sent to the robots would decrease the margin of error in passing and create a more exciting mechatronic
football game. This camera control system project could also lead the way for the robots to be
computer controlled. The system can even applied further than the mechatronic football game; it could

be used in other robotic sport game, with security cameras, and even for autonomous cars.

2 Detailed Systems Requirements

The control system takes bitmap information from the camera via an Universal Asynchronous
Receive/ Transmit (UART) interface where the image information is processed with an algorithm to
determine location of the players. The board then wirelessly sends the locations to the robots as well as
a computer terminal for the user to read. The embedded intelligence has enough processing power to
process the images and derive the x-y coordinates of the objects. It also works in real time,

continuously taking in bitmaps, processing them, and broadcasting the coordinates. It is essential that the

system does not experience lag, for if it does the information will be inaccurate and not improve the
margin of error that we are trying to reduce.

The board itself is powered by plugging it into the wall using an extension cord from the top of
the platform holding the board. The system takes anywhere from 5-9V and regulates it to 3.3V in order
to power the camera and the board. The whole system is powered by this connection. The
microcontroller controls the camera, asking for new bitmaps as needed. This is fairly often given the
pace of robotic football.

The algorithm that processes the bitmap consists of several steps. First it finds the contours of
objects so that it can define what an object is and what the background is. It then filters out the colors
by converting the image to the gray-scale so that it can find all of the red objects for one team and all of
the green objects for the other team. The program then marks the centers of each object with a red
cross for the red objects and a green cross for the green objects. The coordinates of each object will
also be displayed next to these crosses so that the user can read their location and the coordinates can
be transmitted to the robots.

The board design also includes a wireless ZigBee interface which is connected to the board via
a Serial Peripheral Interface (SPI). The wireless communication is responsible for communicating the
information from the board to the robots and to a terminal. Users read off a terminal the team number
and position of the robots. The packets of data are sent continuously from the source to receiver.
Therefore the wireless interface supports the control system working in real time. This accurate,
moment by moment information gives the users greater control over the game as well as the robots a

feedback system to know where they are.

The user interface of this system is a computer terminal running PuTTY, which interfaces to the
microcontroller through the UART. The team number and x-y coordinates are expressed in a table in
the terminal window. The table is switching between displaying team one objects and team two objects.
This eliminates the distraction of scrolling text and allows for the data to be read with greater ease.

The system is installed by suspending the camera and microcontroller from a wooden support.
This allows the camera to face squarely down toward the field. The camera is connected to the
microcontroller with sexed connectors of four and six pins. The camera must be at the appropriate
height to measure the entire field. For the demonstration, the camera is about 35 inches off the ground

which covers a 20 x 24 inch area. The board is programmed before being placed over the field.

3 Detailed Project Description

3.1 System Theory of Operation:

The camera system will be suspended over the playing field with the whole field in view. It runs
continuously so the users can have real time information about the robots. The camera system
communicates with the robots, providing locations using IEEE 802.15.4. The CMUcam4 sends a
640x480 bitmap images in RGB565 binary formatted data to the board via the UART lines. The PIC32
microchip receives this bitmap image and stores it as an image array. The PIC32 then runs its algorithm
to identify colors (players) and provide their exact location on the image. Afterwards the PIC32
converts pixel coordinates to distance coordinates and sends the object team number and coordinates

wirelessly using ZigBee. Each data packet contains the coordinates of every object on a certain team.

3.2 System Block Diagram:

As stated above, the camera system can be broken up into four subsystems. The CMUCam4
subsystem deals with capturing an image and sending a bitmap of that image to the computer. The
board/microchip subsystem controls the camera sending and receiving images and storing and
processing the images. The image tracking algorithm subsystem is responsible for determining the
contours of objects to define what a continuous object is, filter the color to find the differently colored
pieces, and determine the coordinates of the objects that are being tracked. The wireless
communication subsystem uses the SPI interface to communicate to the ZigBee board and is
responsible for sending the identification and location of the objects being tracked. This information is
sent to every robot and to a terminal so a user can read it.

Vision Camera
Control System

[Image Tracking] [Board/Microchip] [Wireless J CMUCam4]

Algorithm Communication
Object Color Camera Output (

J. . Input P Zighee SPI Lenses || Sensor
Define Filter Interface

Interface L
Obtain Pixel Outputto
. Data
Coordinates Processin Computer /
of Objects & Robot

Figure 1: System block diagram
3.3 Subsystem 1 - CMUCam4:

The first subsystem in the Vision camera control system is most importantly, the camera. The

CMUcam4 is a fully programmable embedded computer vision sensor. It contains a Parallax P§X32A
processor that is connected to an Omnivision 9665 CMOS camera sensor module. The CMUcam4 is
open source programmable and is low-cost; low power that doesn’t require a PC to program. The
CMUcam4 can perform various on-board vision processing tasks that include color tracking, image
statistics, and a histogram in real time. However, for our purposes, we treated the camera as a black
box that only supplies an RGB bitmap.

CMUcam4 Key Features
Fully open source and programmable
VGA resolution (640x480) RGB565/YUV655 color sensor
Image processing rate of 30 frames per second
Raw image dumps over serial (640:320:160:180) x (480:420:120:60) image resolution
Segmented image capture for tracking visualization (over serial)
I/O Interface TTL UART (up to 250,000 baud -19200 baud by default)

CMUcam4 Applications

Automotive (lane detection)

Buildings (occupancy sensing, light metering)

Education (interactive toys, video display)

Manufacturing (product inspection)

Robotics (robot navigation, object detection, object recognition, object tracking, servo control)
Surveillance (digital camera, data logging, sensor networks)

As the above features and applications show, the CMUcam4 was an ideal choice for what we
set out to accomplish. The CMUcam4 works extremely well with robotics, and can accomplish all the
features that we want in object detection, object recognition, and object tracking. The main reason we
chose the CMUcam4 was because of the UART serial communication. We needed a camera that could

communicate with a PIC32 microchip via [2C, UART, or SPI. After researching various cameras and

camera sensors we came to the conclusion that the CMUcam4 would be provide an adequate image for
our purpose and could be ported with a PIC32. Since it is also low cost, we could scale our system to
cover a larger area and provide more accurate data due to the higher resolution that would be supplied
by using multiple cameras.

We only planned for the CMUcam4 to send bitmap images to the PIC32 but it also has more
functions than sending a bitmap image. It currently has over fifty commands. Commands sent to the
camera can adjust to brightness and contrast, auto gain and auto white balance, run in black and white
and negative mode, change baud rate, run television commands, color tracking for up to eight objects,
and save to an SD slot. So the CMUcam has the object tracking capabilities already but we wanted to
go learn about the algorithms ourselves. It also gives us more freedom to analyze images instead of

relying on the tracking capabilities of the camera.

2-Pin Arduino Shield Connector

L1

eeeeeere @ereeere
) eun T W) Povered O F
(oD -

D) | POE @ 7, cnucans (D) v
[+4

Arcuing $hield

T UULCRUCER.Org w
:
i i]
TU ik o B o - - mEEE REaE

o) © [-

4-Pin Prop Clip/Plug
Connector and 6-Pin
Arduino Adagter
Connector

uSD Card Connector

2-Pin Power Power LED

Connector and DC v | e) Auxiliary LED
Barrel Jack |

ﬁ PanS$ervo Tik Serve

[= Col
Reset Button 6-Pin Power
[Also resets the Arduino] Connector

Fig. 2 CMUcam4 Board Layout

CMUcam4 functions are enabled by porting in the portable serial and timer wrapper library.
CMUcam4 is typically programmed by using Arduino programming environment but for Senior Design,
Arduino’s are not allowed. Since CMUcam4 is open source, it means that anyone can program and
communicate with the CMUcam4 as long as they have a C/C++ environment and a
microcontroller/microchip with serial communication. For our project, we chose the PIC32 microchip
as we had the most experience working with MPLAB X integrated development environment.

The first step in communicating and sending commands to the camera is downloading and
porting in the portable serial and timer wrapper library. This header file and cpp file contain the functions
necessary for the camera to communicate with a device using serial lines. The functions in these files are

written in C++ code but the functions are meant for Arduino’s. So same functions in these files had to

be rewritten in order to be compatible with the PIC32 and use the standard libraries in MPLAB X.

The way the code flows the main source file will call the CMUcom4 (communication) header
file and the CMUcom4 cpp file (functions library). The CMUcom4 communication header file defines
many important communication features such as the buffer size, the serial port, bits and strings. These
are done through wrapper functions. The CMUcom4 functions library file was where the most changes
had to be made. Many of the functions within the file were written in Arduino C++. This means that
although the functions are part of the standard C++ libraries, most of the code is preprocessed, so any
other microcontroller/microchip would be unable to compile the code because it is missing precompiled
code. So we had to rewrite all the functions in Arduino C++ to common C++ code that can be used for
the Microchip. The functions library therefore was rewritten in to open the PIC32 serial port to the
CMUcam4, read a byte from the PIC32 serial port, write a character to the PIC32, write a string to the
PIC32, sending data, and a timer. We threw out functions meant for Arduino that we did not need such
as the flush, peek, and closing the serial port.

So the main file, would call the header file and functions library, among other header files, in
order to send commands to the CMUcam4 through the PIC32 UART and receive data in return.
Sending commands to the PIC32 was simple as each command to the camera is only two characters
are needed to make the camera accomplish a function. So for our purpose we needed an RGB bitmap
image of 640 x 480. So the command to the camera “Send Frame” and would be sent as “SF 0 0.”

We write the characters using the printf C function terminated with a /r (which would tell the camera it
was the end of the command). The camera would then send an RGB bitmap as an array of characters

through the serial port back to the PIC32. In order to accomplish the command, header file and

10

functions library need to be in the project folder and need to be rewritten for the PIC32 to function,
otherwise it would not work.

Using the PIC32 kit board we tested this process. We would connect the camera RX1 and
TX1 ports to the UART 6 port on the kit board. We would then port in the proper files into MPLAB X
and compile the code. We would program the PIC32 using the Pickit 3 programmer, which would
connect to the PIC32. The PIC32 would then run this code and send the command to the camera,
which would then receive the data and store it. For our designed board, we would communicate to
UART 4 serial lines. Program the PIC32 and upload the same code using the Pickit3. Subsystem 2 is
processed by the data received.

We followed the steps described above in order to program the CMUcam4 through the PIC32
via UART serial lines. The first problem we ran into was converting the functions and language
CMUcom4.cpp and CMUcom4.h files from Arduino based C++ language to C++. Functions that were
associated in those files called functions that were not available in the standard library in MPLAB X.
There were also functions that we did not understand and could not replicate. Therefore we rewrote the
entire header and cpp file, eliminating all the code associated with each function, and putting in our own
functions related to the PIC32 that would accomplish the same thing. After a long period in trial and
error and consulting other programmers, we finally got our code to compile and build without any
errors. We then moved on to the next step which was to connect the CMUcam4 to the PIC32 Kit
board and send a simple command to the camera. We initially attempted to try this by using Putty
program on the computer to send a command and receive data in return, but Putty returns a /n after

each command and CMUcam4 needs a /r after each command. So we attempted to send commands

11

directly to the camera without any visual aid (Putty) and not knowing if we receive data in return. Our
CMUcam4 project would compile and would program the PIC32 kit board to send the command. We
would not receive any data in return. So we checked the signal on the PIC32 kit board and CMUcam4
and we would detect the signal being sent to the CMUcam4. We detected that the CMUcam4 was
working, because it would have a busy signal, that could be stopped if the Reset button was held. This
was the road block that we were unable to overcome. After countless efforts to rethink, and approach
the same process from a different angle, our efforts were not met with success and we could not
program and receive data from the CMUcam4. This is one of the reasons why our system did not work

as originally planned.

3.4 Subsystem 2 — Board/Microchip:

The board requires a power source of 3.3V so as to keep the entire system running. This
voltage will be enough to power the camera, board, and communication system without issue. The
board must be plugged in using a wall charger provided to power the system.

The board also contains several ports to the various components of the system. One of these
ports connects to the CMUcam4 through a 4 pin header labeled CMUCAM on the board to the six pin
header on the CMUcam4 board. Only 3 connections need to be made, between the transmit and
receive on the camera and board and to ground. Another port connects to the wireless communication
system by using a 10 pin header labeled ZIGBEE to connect the wireless communication system to the
SPI interface from the microcontroller. There is also a port called TEST1 on the board that can be used
to test the functionality of the board and for troubleshooting. This three pin header connects to the

microcontroller in a manner such that one would be able to make sure that the microcontroller is

12

functional and use it for debugging. A port for an FPGA is also built into the board if someone would
want to use that instead of processing the images on the microcontroller itself. The 4 pin header labeled
FPGAT1 on the board can be used to make a connection to any FPGA that one may wish to use

Below in Figure 3 is a picture of the board that has been finished, but does not have the part

soldered into place yet.

0020

Figure 3: Picture of board
The microcontroller that was used is the PIC32MX695F512L microcontroller. We chose this
microcontroller because we had experience using it and because it would have enough power to store

and process the images that would be sent to it. The microcontroller is shown below in Figure 4.

13

Figure 4: Picture of the PIC32MX695F512L microcontroller

3.5 Subsystem 3 — Image Tracking Algorithms:

The image tracking algorithms were first developed in Matlab, using the Image Processing
Toolbox. Our objective was to make a function that was simple enough to be implemented in a
microcontroller while also complex enough to be able to recognize a number of elements and be able to
split them into two categories, that is, two distinct football teams.

We discovered that the Image Processing Toolbox provided great functions for tracking objects
in still cameras. In general, to tracking images, given a still camera, requires not only to identify an object
but also to recognize it in future frames; hence in order to do this we must address each of these issues
separately. The former - identify the presence of an object - is done through a combination of several
methods like edge identification and background comparison. The latter is done through several
predictive methods which address different levels of complexity, like changes in light (a camera
overlooking a street) or objects that disappear at times because of blocking objects.

Given the range of possible approaches and the necessity of our project we decided that a color

14

filter would be the most appropriate way to achieve the result we wanted. For the two different teams
we identified them by color and established a certain threshold that distinguishes them from the rest.
Even better, we used the colors red and green avoiding complex calculations in the microcontroller
because pure red and green channels are in the bitmap file.

The final algorithm works as follows:

-After obtaining the image it extracts either the red channel or the green channels and compares it to the
gray scale of the image. This is a pixel-wise operation that yields another bitmap with areas where red
or green is more intense.

-The resulting bitmap is put through a binary threshold filter, which makes pixels above the threshold
white and the rest of them black. This process creates a binary file with our areas of interest in white.
-A contour function is applied. This function labels any threshold above certain number of pixels and
returns the center of each figure found. Since both red and green channels are analyzed in parallel this
algorithm is applied twice to different binary bitmaps yielding two variable vectors in which each vector

represents a team and each element is the coordinate of an object found.

3.6 Subsystem 4 — Wireless Communication:

The centers of the contours must now be turned into positions on the field of play and
transmitted to the robots. For the demonstration, a square inch is 20 x 20 pixels, the entire field being
20 x 24 inches. Therefore, simply dividing the y-coordinate pixel position by 20 provides the number of
inches the object is up from the bottom. Likewise, dividing the x-coordinate pixel position by 20 gives
the number of inches from the left hand side of the field.

Applied to a larger scale, we calculated that a 16° x 20’ rectangle could reasonably be covered

15

by one camera. To encompass the entire field, four cameras will adequately cover everything. These
bitmaps from each camera would be concatenated to make one large bitmap of high resolution. While
the mounting and positioning of the cameras in Stepan Center could offer some logistical challenges,
other than this the camera system is easily scalable to a very large field barring processor limitations.
Now the team identifier, x-coordinate, and y-coordinate must be broadcast to the robots. We
decided to use a ZigBee transmitter which follows IEEE 802.15.4 standard. The ZigBee transmitter
interfaces to the microcontroller using SPI. Under this serial communication method, the microcontroller
was the master with the ZigBee as a slave. They shared a common clock provided by the
microcontroller and operated in eight bit mode. The clock is divided so that the baud rate is 57600, but
it can be adjusted if needed. As the code indicates, to communicate with the Zigbee card first the SPI
must be initialized, then certain registers in the Zigbee daughter card must be set so it is initialized. After
this, commands are sent out by writing to a state register.

Figure 7-1. Basic Operating Mode State Diagram (for State Transition Timing Data Refer to Table 7-1)

P_ON

(Power-on after VOD)

XOSC=0ON
Pull=ON

SLEEP
(Sleep State)

XOSC=OFF
Pull=0FF

(from all states)

A
X 2
. a7 RST=L

»

TRX_OFF
(Clock State)

13 RS8T=H

FORCE_TRX_OFF (12

(all states except SLEEP) (all states except P_ON)

XOSC=ON
Pull=0OFF

end /" BUSY_TX

(Receive State)

(Transmit State)

TX_START

-g or
SLP_TR=H
2 g &
0 !a § 4,\.‘
[} ,9\‘3 &

Legend:
Blue: SPI Write to Register TRX_STATE (0x02)
Red: Control signals via IC Pin
Green: Event
Basic Operating Mode States
X State transition number, timing data in Table 7-1

(Rx Listen State)
CLKM=OFF

16

Figure 5: ZigBee Module State Diagram

The primary states used in our system are PLL_ ON, BUSY TX, RX ON, and BUSY RX.
The command to change states was issued by writing to the TRX STATE register. You could then
check which state the system was in by reading the TRX STATUS register. For transmission the
buffer was written to (different method than adjusting registers), PLL_ ON was initiated, and once the
antenna locked, a transmission was started by writing TX START. Likewise for receive, the interrupt
was generated when an incoming transmission was sensed, and then the receiver would transition from
RX ON to BUSY RX.

The information was transmitted using the structure outlined by 802.15.4. As exhibited by
figure six, there are many parameters that must be sent before the actual payload data. These
precursors such as the PAN ID are set in the registers to ensure that it is properly transmitting, but they

are also sent along with the data.

Figure 8-2 |IEEE 802.15.4-2003 Frame Format — MAC Layer Frame Structure

| MAC Protocol Data Unit (MPDU)

MAC Header (MHR) ‘ MAC Service Data Unit (MSDLI) ‘ MAC Footer (MFR)
Frame Control Sequence
| Field Number | Addressing Fieids | MAC Payload | FCS
1 octet
Destination Destination Sourcs Source CRC-16
PAN D address PAN ID address
0/4/5/8M10M12/14/16M1 8720 octets 2 octets

Sec. Frame ACK PAN Destination Source
Enabled | Pending | required | Compr. Reserved addressing mode Re: addressing mode

n|:[2 3 | 4 5 | s 7 8 a | 10 11 wl‘a 1al15

Frame Type

2 octets

Figure 6: Transmission Frame Structure

The payload data was of the form # payload bytes,Team #, x1,y1,x2,y2,x3,y3,x4,y4. Once the

17

positions are received, the robots could go on to make decisions based on this data. For demonstration

purposes, we displayed the team positions on the terminal with PuTTY via the microcontroller UART

lines at a baud rate of 57600. Below is a screenshot from the demonstration, notice how the PuTTY

settings are different from normal. The configuration settings can be found in the appendix.

B Vison Group Obiect Psiion

Tean X-Position (in) Y-Position (in)
1 1 5

! b
J !
4 b

Il el el e

Figure 7: Terminal Window

4 Systems Integration Testing

4.1 Testing the Subsystems:

B0 =0]

To test the functionality of our color tracking algorithm we used Matlab again, this time in

combination with the camera integrated in our laptops; this methodology allowed us to test the tracking

of several objects and how to adjust the filter’s thresholds under different light conditions as well as see

how each filter changed the original image.

18

For the wireless distribution of the positions, the send and receive functions were tested with
ZigBee sender and sniffer modules. These modules either sent a known packet of data, or would listen
to and display received data via PuTTY. If data is not being displayed on the screen, the UART
connection may be compromised. Ensure that the UART is properly connected and that the baud rate
is 57600. Once it was apparent that either the send or listen function worked, it was possible to test
one with the other. This was the end result functionality and final test, the board attached to the camera
took the positions and sent them to the receiver board which displayed them on the terminal using

PuTTY. The SPI was tested using USBee software which would record and decipher SPI signals.

4.2 Testing the Overall System:

In order to run the camera control system as a whole the user needs to make sure that the
subsystems are communicating in the right manner. To make sure of this the most logical and simple
method is to follow the path of the original image step by step. This one needs to start from the setup
and check for the position of the camera and that its field of vision is appropriate. Next we need to
check the camera is working and connected to the microchip. At this point we can use it’s alternative
port to see that the camera sees confirming that both the range is correct and that the camera is
working. Next comes the microcontroller and the wireless systems. While both of these systems are
separate, it is easier to test them together by a computer that receives the transmissions and checks for
its contents. Depending on the information we can make sure that different levels of processing are being
completed. If it is sending information then the wireless communication system is working, and if this

information comes in the form of pairs of coordinates then the microcontroller is working as well. Finally

19

if all the above is functioning we can have a test player in the field and correlate its position with a

coordinate, and if this matches the whole system is running correctly.

5 Users Manual/Installation Manual

The Installation manual’s objective is to provide an accessible source of information regarding
the overall installation, use and troubleshooting of our product. It is important to notice that the system
as a whole is composed of several subsystems that have complexities of their own and because of this, it
is possible that some of the issues regarding the overall functioning of the product have their explanation
in a particular subsystem; it is important to be able to recognize this type of error and refer to the

functioning of that specific subsystem right away.
5.1 How to Install Product:

The first step to installing the vision system is to make all the necessary connections. This
includes connecting the CMUCam4 to the microcontroller board that will transmit the camera’s data.
Also, the receiving board should be connected to a computer or another screen where the data will be
displayed. All boards need to be connected to a DC power source. The camera also has to option to
be connected via an RCA cable to a television or monitor to display what the camera is seeing.

One thing that is important to note is that the code may need to be adjusted for different light
conditions. The object detection algorithm sets color thresholds to determine whether or not a certain
pixel can be considered that color. The optimal threshold value for finding the objects will vary in

different lighting conditions. The objects will not be found correctly if the algorithm thinks there is more

20

or less of a particular color. These threshold values for each color can be adjusted in the algorithm

code.

5.2 How to Set Up Product:

The product needs to be set up by placing the system underneath the structure above a playing
field. For our testing we placed it about 3 feet above a table in order to get the playing field of a table.
In the future, with upgrades and a better camera, the system can be placed much higher, about 30 feet
above the ground to cover a large area of the field.

During the set up, the camera, board and Zigbee needs to be facing down towards the field.
This is to ensure that the camera is capturing the best image and that the wireless communication is not

being interfered with the structure that holds it.

5.3 Expected Product Operation:

When the product is working correctly, the images captured by the camera will be shown on a
screen, if hooked up. The team number and position will be transmitted to the wireless receiver, which
will display them on PuTTY set to a baud rate of 57600. The transmitted information is also available

to be received by the robots themselves.

5.4 Troubleshooting:

In order to solve issues effectively the first step is recognize the subsystem or communication
step which is failing. The easiest process to identify which subsystem is erroneous is to analyze them

separately, that is, to follow the steps outlined in ‘Testing the overall System’. Depending on where the

21

problem “starts” the responses will be different. There are, however, some common errors that will
avoid the complications that a full analysis entails. For example, one simple and common mistake could
be in the light conditions of the camera. If the camera is used in a very dark environment it is very likely
that the camera will not recognize an object at all, and the opposite might happen as well creating in this
case “non-existing players”. Correct light conditions or a modification of the threshold will solve this
issue promptly. Another common issue might be the impossibility to receive any wireless signaling from
the wireless communication system, this might be due to a number of reasons some of them external to
the product itself and should be checked before intervening in the subsystems. For example, the
presence of other wireless signals in the same frequency or the use of a receiver too far away from the
microcontroller could cause problems with receiving the data from the wireless communication system.
These are just particular examples that illustrate that understanding the source of your problem is the
most useful tool always. If the problem can not be easily fixed, please rely on the an overall analysis of

all subsystems.

6 To-Market Design Changes

There are several changes that should be made before sending this project to-market. One of
these possible changes would be to build a more appropriate storing system for the camera system. We
should develop some sort of container to house all of the boards and the camera that would be
suspended over the playing field as opposed to the having all of the boards out in the open. This would
give the product a sleeker and cleaner design, and it would also make the product easier to transport or

move around because there would only be the box as opposed to all the boards and components.

22

Another possible change that could be made to the design would be to design a battery for the
board instead of just plugging it into the wall or to a USB charger. This would allow for the system to be
set up easier because there wouldn’t be wires running all over the place just to power the board. The
system could be placed above the field and there would not have to be any outside connections to the
system. There would be no risk of obstruction from any wires with the field or objects being tracked.
This would also make the product look cleaner, sleeker, be more convenient, and more self contained.

A possible change that could be made to the design would be integrate the system so multiple
cameras could be used together to cover the whole field rather than just the one hanging overhead. This
would allow the cameras to focus on less ground to produce better accuracy in measurements. It would
also make tracking of all of the objects easier because there would be less of them in each frame for
each camera. There would be a need to develop the code so that it knows where each camera is in
relation to another and then be able to combine them all together so that they are like one image of the
field. These changes would allow larger fields to have objects tracked on them and make the product

more versatile rather than forcing all of the fields to be the same size to work properly.

7 Conclusion

Mechatronic Football is an exciting program that has a lot of room for improvement in order to make
the performance by the robots more exciting. The camera system will allow users to create football
plays and use the system to complete plays at a higher rate of succession. The camera system is meant

to improve the communication and tracking of robots, so that when the quarterback robot launches the

23

football, the receiver robot will be able to catch it. While this was the first version in attempting to create
a system compatible with Mechatronic Football, this camera-controlled system also has other
capabilities outside of robotics. The system can be used in buildings to track location and movement of
people, it can be used with systems that launch objects at moving objects, and it can be used to transmit
the location of colored objects. Although our project was not successful in transmitting the RGB bit map
image, we were successful in developing colored object tracking algorithms and transmitting the array
wirelessly. To overcome these obstacles, more research should be done to properly code and send
commands to the camera through a PIC32 and the MPLAB X C++ compiler. The microchip is also not
powerful enough to handle all the coding information to send commands to the camera, receive the data,
process the data, then send it through ZigBee. Our system contains an extra connection that can
communicate with an FPGA through a UART serial connection. Recommendation for FPGA would be
an Altera DE2 as it would be able to handle the code functions necessary to use all the algorithms
necessary for colored object tracking.

If this system reaches a commercial grade, much more work would need to be added in order
to upgrade the camera system and finding a more powerful camera. One option would be to redesign
the CMUcam4, but use the camera sensor to its full power. The camera sensor on the CMUcam4 is
only capturing about 1/8th of its capability. The highest image the CMUcam4 can get is a 640 x 480 but
the Omni camera sensor can go to 5120 x 3840. So the Omni camera sensor can be redesigned with its
own board and serial functionality to function like a CMUcam4 but to its full power. However, that
would require a more powerful microchip and processing power. If the FPGA is added, it would

require a different programming environment outside of MPLAB X and it would have to port into the

24

MPLAB X - PIC32 to be able to communicate with it. We feel this is a good step forward in order to
developing a better, more powerful camera controlled system that can meet the fast and demanding
needs of mechatronic football. Although we were unable to demonstrate a fully functional prototype, all
the subsystems and pieces are there to make the system work, it is just a matter of debugging, and

upgrading the code functions.

8 Appendices

ORIGINAL PORTABLE SERIAL AND TIMER WRAPPER LIBRARY -
C++ ARDUINO CPP FILE

R R st sk st skt s st st skt st st ettt ettt stttk etookostolokostosl okt loloskodslkolokodokokosokkokok ok 0ok

* @file

* Portable serial and timer wrapper library.
*

* @version @n 1.1
* (@date @n 2/7/2013
*

* @authors (@n Kwabena W. Agyeman & Christopher J. Leaf
* (@copyright @n (c) 2013 Kwabena W. Agyeman & Christopher J. Leaf

* @n All rights reserved - Please see the end of the file for the terms of use
*

* (@par Update History:

* @n v0.1 - Beta code - 3/20/2012

* @n v0.9 - Original release - 4/18/2012

* @n v1.0 - Documented and updated release - 8/3/2012

* @n vl.1 - Added support for the Arduino Due, fixed the send frame command,

and fixed a number of compile time warnings - 2/7/2013.
sofcoRcl oo oo ool oR ool ool ioRloclioR R sosRol iRk ook ok

#include "CMUcom4.h"
[tk kR R Rl Rl sl R ookl ok R ook s ok

* Constructor Functions
***/

CMUcom4::CMUcom4()
{

}

_port=CMUCOM4_SERIAL;

CMUcom4::CMUcom4(int port)
{

_port = port;

25

}

[s skt ks sk sk sk sk sk skt stk s koo sk stk stskskk sk skl sk skt stk skslkkoksksksksksisksk sk kRl sk sk okok

* Public Functions
***/

void CMUcom4::begin(unsigned long baud)

{
delayMilliseconds(CMUCOM4 BEGIN DELAY);

#if defined(AVR _ATmegal280)|\
defined(_ AVR_ATmega2560)|\
defined(_ SAM3X8E)
switch(_port)
{
case CMUCOM4_ SERIALL: Seriall.begin(baud); break;
case CMUCOM4_SERIALZ2: Serial2.begin(baud); break;
case CMUCOM4_SERIALZ3: Serial3.begin(baud); break;
default: Serial.begin(baud); break;

}
#else

Serial.begin(baud);
#endif

delayMilliseconds(CMUCOM4 BEGIN DELAY);
}

void CMUcom4::end()

{
delayMilliseconds(CMUCOM4_END_DELAY);

#if defined(AVR ATmegal280)|\
defined(AVR_ATmega2560)|\
defined(SAM3XS8E)
switch(_port)
{
case CMUCOM4_SERIALL: Seriall.end(); break;
case CMUCOM4 SERIAL2: Serial2.end(); break;
case CMUCOM4_SERIAL3: Serial3.end(); break;
default: Serial.end(); break;

)
#else

Serial.end();
#endif

delayMilliseconds(CMUCOM4_END_DELAY);
}

int CMUcomé4::read()

{

#if defined(AVR _ATmegal280)|\
defined(AVR ATmega2560)|\
defined(_ SAM3X8E)
switch(_port)
{
case CMUCOM4_SERIALL: return Seriall.read(); break;
case CMUCOM4_SERIAL2: return Serial2.read(); break;
case CMUCOM4 SERIAL3: return Serial3.read(); break;
default: return Serial.read(); break;

}

#else

#endif
}

return Serial.read();

size_t CMUcom4::write(uint8_t c)

{

#if defined(AVR _ATmegal280)|\

#else

#endif
}

defined(_ AVR_ATmega2560) ||\

defined(_ SAM3X8E)

switch(_port)

{

case CMUCOM4 SERIALL: return Seriall.write(c); break;
case CMUCOM4 SERIAL2: return Serial2.write(c); break;
case CMUCOM4_SERIAL3: return Serial3.write(c); break;
default: return Serial.write(c); break;

}

return Serial.write(c);

size_t CMUcom4::write(const char * str)

{

#if defined(AVR ATmegal280)|\

#else

#endif
}

defined(_ AVR_ATmega2560) ||\

defined(SAM3XS8E)

switch(_port)

{

case CMUCOM4_SERIALL: return Seriall.write(str); break;
case CMUCOM4 SERIAL2: return Serial2.write(str); break;
case CMUCOM4_SERIAL3: return Serial3.write(str); break;
default: return Serial.write(str); break;

}

return Serial. write(str);

size_t CMUcom4::write(const uint8_t * buffer, size t size)

{

#if defined(AVR ATmegal280)|\

#else

#endif
}

defined(AVR_ATmega2560)|\

defined(_ SAM3XS8E)

switch(_port)

{

case CMUCOM4_SERIALL: return Seriall.write(buffer, size); break;
case CMUCOM4_SERIAL2: return Serial2.write(buffer, size); break;
case CMUCOM4_SERIALZ3: return Serial3.write(buffer, size); break;
default: return Serial.write(buffer, size); break;

}

return Serial.write(buffer, size);

int CMUcomé4::available()

{

#if defined(_ AVR_ATmegal280)|\

defined(_ AVR ATmega2560)|\
defined(SAM3XS8E)
switch(_port)

27

{
case CMUCOM4_SERIALL: return Seriall.available(); break;

case CMUCOM4_SERIAL2: return Serial2.available(); break;
case CMUCOM4_SERIAL3: return Serial3.available(); break;
default: return Serial.available(); break;

}
#else

return Serial.available();
#endif
}

void CMUcomé4::flush()

{

#if defined(_ AVR_ATmegal280)|\
defined(_ AVR ATmega2560)|\
defined(_ SAM3XS8E)
switch(_port)
{
case CMUCOM4_SERIALL: Seriall.flush(); break;
case CMUCOM4_SERIAL2: Serial2.flush(); break;
case CMUCOM4 SERIALZ3: Serial3.flush(); break;
default: Serial.flush(); break;

}
#else

Serial.flush();
#endif
}

int CMUcomé4::peek()

{

#if defined(AVR _ATmegal280)|\
defined(AVR ATmega2560)|\
defined(_ SAM3X8E)
switch(_port)
{
case CMUCOM4_SERIALL: return Seriall.peek(); break;
case CMUCOM4_ SERIAL2: return Serial2.peek(); break;
case CMUCOM4 SERIAL3: return Serial3.peek(); break;
default: return Serial.peek(); break;

}
#else
return Serial.peek();
#endif
}
void CMUcom4::delayMilliseconds(unsigned long ms)
{
return delay(ms);
)
unsigned long CMUcom4::milliseconds()
{
return millis();
}
* (@file

* @par MIT License - TERMS OF USE:

* (@n Permission is hereby granted, free of charge, to any person obtaining a

* copy of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the

* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or

* sell copies of the Software, and to permit persons to whom the Software is

* furnished to do so, subject to the following conditions:

* @n

* (@n The above copyright notice and this permission notice shall be included in

* all copies or substantial portions of the Software.

* @n

* @n THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.

kst stttk ok sk sk skokoskosk sk skttt stttk sk skolkokoskosksksstsk stttk ks sk sksk sk stk Rtttk kol sk skl kskokokok ok ok /

MODIFIED PORTABLE SERIAL AND TIMER WRAPPER LIBRARY -
C++ PIC32 FILE

/ %%
* @file

* Portable serial and timer wrapper library.

*

* @version @n 1.1

* @date @n 2/7/2013

*

* @authors @n Kwabena W. Agyeman & Christopher J. Leaf

* @copyright @n (c) 2013 Kwabena W. Agyeman & Christopher J. Leaf

* @n All rights reserved - Please see the end of the file for the terms of use

*

* @par Update History:

* @n v0.1 - Beta code - 3/20/2012

* @n v0.9 - Original release - 4/18/2012

* @n v1.0 - Documented and updated release - 8/3/2012

* @n vl.1 - Added support for the Arduino Due, fixed the send frame command,
and fixed a number of compile time warnings - 2/7/2013.

#include "CMUcom4.h"
#include <stdbool.h>
#include <xc.h>
#include <stdlib.h>
#include <stdio.h>

/ % s s % s s % s s % s s % s %

* Constructor Functions

CMUcom4::CMUcom4()

{
_port=CMUCOM4_SERIAL;

}

CMUcom4::CMUcom4(int port)

{
_port = port;

}

/
* Public Functions

*% * *% *% * *% *% * *% *% * *% *% * *% /

void begin(unsigned long baud)

29

{
//code need to open the PICs serial port to the CMUcam4

U3MODEDbits.BRGH=1;
U3BRG = 128; // Set Baud rate
U3MODEDbits.PDSEL=0;
U3MODEDits.STSEL=0;
U3STADbits. UTXEN=1;
U3STADbits.URXEN=1;
U3MODEDbits.ON=1;

void end()

{
/Icode need to close the PIC?s serial port to the CMUcam4

}

int read()

{
while (U3STAbits.URXDA == 0)

{
}

return(U3RXREG);

//code needed to read a byte from the PIC?s serial port... should return ?1 if no byte

}

int write(uint8_t c) {
while (U3STADbits.UTXBF == 1){
TXSTADbits. TXEN=0;// disable transmission
TXREG-=c; // load txreg with data
TXSTAbits. TXEN=1; // enable transmission
while(TXSTAbits. TRMT==0) // wait here till transmit complete

Nop();
}
}
U3TXREG =¢;

/Icode needed to write a character to PIC32

}

int write(const char * str)

{

//code needed to write a string to PIC32

}

void write(const uint8_t * buffer, size_t size)

{

//code needed to write a buffer to PIC32
void SendD(const char *buffer, UINT32 size)

while(size)

{

30

while('UARTTransmitterIsReady(UART_MODULE_ID))

b
UARTSendDataByte(UART_MODULE_ID, *buffer);

buffer++;
size--;

}

while((UARTTransmissionHasCompleted(UART_MODULE_ID))

’

}
/*int available()
{
int incomingByte = 0; // for incoming serial data

void setup() {

void begin(); // opens serial port

H
void loop() {
// send data only when you receive data:
if (available() > 0) {

// read the incoming byte:
incomingByte = int read();

3

//Get the number of bytes (characters) available for reading from the serial port.

/IThis is data that's already arrived and stored in the serial receive buffer
//(which holds 64 bytes). available() inherits from the Stream utility class.

//meed to check the available function on PIC32 and C++
11}

//int flush()
VA
//fflush(port)

/I code to waits for the transmission of outgoing serial data to complete.
1}

//int peek()
114

/I x = peek(a)

//return 0;

//Returns the next byte (character) of incoming serial data without
//removing it from the internal serial buffer. That is, successive
//calls to peek() will return the same character, as will the next
/lcall to read(). peek() inherits from the Stream utility class.
1}

/*void delayMilliseconds(unsigned long ms)

{

/lcreate a sleep function for the camera
return delay(ms);

31

}

unsigned long milliseconds()

{
/lcreate a timer in millseconds
return millis();

}
*/

/ %%

* @file

* @par MIT License - TERMS OF USE:

* @n Permission is hereby granted, free of charge, to any person obtaining a

* copy of this software and associated documentation files (the "Software'"), to

* deal in the Software without restriction, including without limitation the

* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or

* sell copies of the Software, and to permit persons to whom the Software is

* furnished to do so, subject to the following conditions:

* @n

* @n The above copyright notice and this permission notice shall be included in

* all copies or substantial portions of the Software.

* @n

* @n THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.

/

ORIGINAL PORTABLE SERIAL AND TIMER WRAPPER LIBRARY -
C++ ARDUINO HEADER FILE

* @file

* Portable serial and timer wrapper library.
*

* (@version @n 1.1

* (@date @n 2/7/2013

*

* @authors @n Kwabena W. Agyeman & Christopher J. Leaf

* (@copyright @n (c) 2013 Kwabena W. Agyeman & Christopher J. Leaf

* (@n All rights reserved - Please see the end of the file for the terms of use

3k

* @par Update History:

* (@n v0.1 - Beta code - 3/20/2012

* @n v0.9 - Original release - 4/18/2012

* @n v1.0 - Documented and updated release - 8/3/2012

* @n vl.1 - Added support for the Arduino Due, fixed the send frame command,

and fixed a number of compile time warnings - 2/7/2013.
***/

#ifndef CMUCOM4 H
#define CMUCOM4 H

// Handle Arduino Library renaming.
#if defined(ARDUINO) && (ARDUINO >= 100)

32

#include "Arduino.h"
#else

#include "WProgram.h"
#endif

// Try to save RAM for non-Mega boards.
#if defined(AVR _ATmegal280)|\

defined(AVR ATmega2560)|\

defined(_ SAM3X8E)
#define CMUCOM4 INPUT BUFFER SIZE 256 ///< Responce input buffer size.
#define CMUCOM4_OUTPUT_BUFFER_SIZE 256 ///< Command output buffer size.
#else
#define CMUCOM4 INPUT BUFFER SIZE 160 ///< Responce input buffer size.
#define CMUCOM4 OUTPUT BUFFER SIZE 96 ///< Command output buffer size.
#endif

[R st skt ekt e s st st st st st ettt etk st stttk koot detoototolokostoslokok ololokodslkoloksdolokookkokokok ok

* This function macro expands whatever argument name that was passed to this
* function macro into a string. @par For example:

* <tt>@j#tdefine ARDUINO 100</tt> @n

* <tt>%CMUCOM4_N_TO_S(ARDUINO)</tt> exapands to @c "ARDUINO"

***/

#define CMUCOM4 N_TO_S(x) #x

R st sk st ekt s st st skttt ettt etk stttk etk etokotostolokostostokosk ololoskodslkolokdokokookkokok ok ok

* This function macro expands whatever argument value that was passed to this
* function macro into a string. @par For example:

* <tt>@j#tdefine ARDUINO 100</tt> @n

* <tt>%CMUCOM4_V_TO_S(ARDUINO)</tt> exapands to @c "100"

***/

#define CMUCOM4 V_TO_S(x) CMUCOM4 N_TO_S(x)

[st skt st s st st skt st st ettt etk st stttk etk detolotostotokostosl okt dololoskodslkoloksdolokookkokok ok ok

* Default firmware startup baud rate number.
***/

#define CMUCOM4_SLOW_BAUD RATE 19200

/***U**

* Default firmware startup baud rate string.
***/

#define CMUCOM4_SLOW_BR_STRING ~CMUCOM4_V_TO_S(CMUCOM4 SLOW_BAUD_RATE)

[s s sk sk ks sk sk sk sk sk sk skttt stk okl sk skiiskskskokkk sl kool sk sksioiskskstklkkklkoksksk skl kkskokok ok

* Version 1.01 firmware and below maximum baud rate number.
***/

#define CMUCOM4 MEDIUM_BAUD RATE 115200

[/ sk s st st e s st st e s st st ke s sk st s sk st st s sk st stk st sk sk st s sk sk st sk sk stk stk sk stk skesk st sk sk etk sk ok skok sfokoskok kol ok ok ok

* Version 1.01 firmware and below maximum baud rate string.
***/

#define CMUCOM4_MEDIUM_BR_STRING CMUCOM4_V_TO_S(CMUCOM4_MEDIUM_BAUD_RATE)

R st s st skt e st st st st st ekt etk etttk etk detolotosttokostostokok dloloskodslkoloksdolokooklokok ok 0ok

* Version 1.02 firmware and above maximum baud rate number.
***/

#define CMUCOM4 _FAST BAUD RATE 250000

/***U**

* Version 1.02 firmware and above maximum baud rate string.
***/

#define CMUCOM4_FAST BR_STRING CMUCOM4 V_TO_S(CMUCOM4 FAST BAUD RATE)

33

/***U**

* Default firmware startup stop bits number.
***/

#define CMUCOM4_SLOW_STOP_BITS 0

[s s sk sk ks ks sk sk skttt stk okl sk skskskstskokslsk kool sk skskistsksttokkkskolkokksk skttt kkkokokok /3kok

* Default firmware startup stop bits string.
***/

#define CMUCOM4_SLOW_SB_STRING ~CMUCOM4 V_TO_S(CMUCOM4 SLOW_STOP_BITS)

[/ e sk s st st s sk st st e s st st ke s st st s sk st st sk st st sk stk sk st s sk sk st sk sk stk stk sk stk sk sk st sk sk etk stk skok sfokoskok okl ko ok

* Version 1.01 firmware and below necessary stop bits number.
***/

#define CMUCOM4 MEDIUM_STOP_BITS 0

[R st skt ekt e s st st st st st ettt etk st stttk koot detoototolokostoslokok ololokodslkoloksdolokookkokokok ok

* Version 1.01 firmware and below necessary stop bits string.
***/

#define CMUCOM4 MEDIUM_SB _STRING CMUCOM4 V_TO S(CMUCOM4 MEDIUM STOP_ BITS)

/***U**

* Version 1.02 firmware and above necessary stop bits number.
***/

#define CMUCOM4 _FAST STOP_BITS 0

[s sk ks sk ks sk sk sk skttt stk okl sk skt stskolsksl kool sk sksiolskskstklkkklkoksksk skt skl skokok /ok

* Version 1.02 firmware and above necessary stop bits string.
***/

#define CMUCOM4_FAST SB_STRING ~CMUCOM4 V_TO_S(CMUCOM4 FAST STOP_BITS)

[/ sk s st st s sk st st e s st st ke s sk st s sk sk st s sk st stk st s sk st s sk sk st sk sk stk sk stk sk stk sksk st sk sk etk sk stk skok sfokoskok skl ok ok

* Serial CMUcom4::begin() post delay in milliseconds.

***/

#define CMUCOM4_BEGIN_DELAY 1

[R st skt st e s st st st st st ekt etk etttk stk etttk stoslokok ololokodslkoloksdokokosokkokokok ok

* Serial CMUcom4::end() post delay in milliseconds.
***/

#define CMUCOM4 _END_DELAY 1

/**@@endcond**/

[/ sk s st st s s st st e s st st e s sk st s sk sk st sk st stk st s sk st s sk sk st sk st stk stk sk stk sk sk st sskok etk stk skok sfokskokstokok ok ok ok

* This is a convenient macro for specifying the Serial port when initializing a
* CMUcam4 or CMUcom4 object.

kst skskskok sk sk skokokosksk skttt stttk sk sk lkokosksksksksitsk stttk sk sk sk skl sk stk stk kol ki skskksf sk skokokokok ok ok /

#define CMUCOM4_SERIAL 0

/***U**

* This is a convenient macro for specifying the Seriall port on an Arduino Mega
* when initializing a CMUcam4 or CMUcom4 object.
***/

#define CMUCOM4_SERIAL1 1

[/ s s st st s sk st st e s st st ke s sk st s sk st st sk st stk st sk sk st sk sk st sk sk stk stk sk stk sk sk stk sk etk sk stk skok sfokoskok kol ok ok

* This is a convenient macro for specifying the Serial2 port on an Arduino Mega
* when initializing a CMUcam4 or CMUcom4 object.
***/

#define CMUCOM4_SERIAL2 2

R R st sk st ekt e s st st skt st st ettt ettt stttk etk setolotostotokostoslookok ololoskodoslkolokdokokookkokok ok ok

* This is a convenient macro for specifying the Serial3 port on an Arduino Mega
* when initializing a CMUcam4 or CMUcom4 object.
***/

#define CMUCOM4_SERIAL3 3

[s s sk sk ks ks sk sk skttt stk okl sk skskskstskokslsk kool sk skskistsksttokkkskolkokksk skttt kkkokokok /3kok

* This is a hardware abstraction layer for the %CMUcam4 class. The %CMUcom4

* class targets the Ardunio prototyping platform by default.
***/

class CMUcom4
{

public:

[/ e sk s st st s sk st st e s st st ke s st st s sk st st sk st st sk stk sk st s sk sk st sk sk stk stk sk stk sk sk st sk sk etk stk skok sfokoskok okl ko ok

* Initialize the %CMUcom4 object to use the default Serial port.
***/

CMUcom4();

R st skt ekt e s skt st st st st ekt etk etttk etk detokokottokostoslokosk dsloloskodslolokdokokok kol 0ok

* Initialize the %CMUcom4 object to use the @c port Serial port.
* (@param [in] port The port.

* @see CMUCOM4 SERIAL

* (@see CMUCOM4_SERIALL

* @see CMUCOM4_SERIAL2

* @sec CMUCOM4 SERIAL3

kst st s sk s ot s oo st sk sk sk st st sk sk st st sk skt st sk s st st sk sk st st sk sk st st sk sk st st skt st sk sk st st sk sk st st sk sk st stk stk skok st stskok skl sk stk sk ok ok sk ok

CMUcom4(int port);

/***N**
* Arduino Serial.begin() wrapper.

* (@param [in] baud In bits per second.

* (@see http://arduino.cc/en/Serial/Begin

kst stttk sk sk skoskokosksksksststskstttk sk sk skokoskskskssitsk Rt tk sk sk sk skl sk stk skt kol sk kiR skl lkokokokok ok ok /

void begin(unsigned long baud);

/***U**

* Arduino Serial.end() wrapper.
* (@see http://arduino.cc/en/Serial/End

skt skt st s st skttt setostte sttt skt otk ettt sttt kit ookt okt slolokst ki stk okt dslkokokdok koo

void end();

/***U**
* Arduino Serial.read() wrapper.

* (@return The first byte of incoming serial data.

* (@see http://arduino.cc/en/Serial/Read

kst st e sk s ot st oo st sk sk sk st sl sk sk st st sk skt st sk st st sk st s sk sk st st sk sk st st ks st st sk sk st st sk sk st st sk skt st sk st st skosk st stskok kol sk ok skok ok /

int read();

[s skt ks sk sk sk ks sk skttt stk ok skskoksiskRskkk sk kool sk skskoiskskststkskskslkslkoksksk skt sk kkokskokok /kok

* Arduino Serial.write() wrapper.

* (@param [in] buffer An array to send as a series of bytes.
* (@param [in] size The size of the buffer.

* (@return The number of bytes written.

* (@see http://arduino.cc/en/Serial/Write

skt s skt st s st skttt sttt etttk st otk ettt sttt kit ookt kst slolokst ok osk st lokosk okl dslkokoksdok koo

size_t write(const uint8_t * buffer, size t size);

[/ s s st st s s ot st e s st st ke s sk st s sk sk st sk st stk st kst st s sk sk st sk sk stk stk sk stk sk sk st sk sk stekoskok stk skok sfokskok okl ok ok ok

* Arduino Serial.write() wrapper.

35

http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FBegin&sa=D&sntz=1&usg=AFQjCNHxyvus4R50N2hKG4nRHY1n81bBfQ
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FBegin&sa=D&sntz=1&usg=AFQjCNHxyvus4R50N2hKG4nRHY1n81bBfQ
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FEnd&sa=D&sntz=1&usg=AFQjCNHxLU98oUOAZ_xBegcmrCB-AvDmHA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FEnd&sa=D&sntz=1&usg=AFQjCNHxLU98oUOAZ_xBegcmrCB-AvDmHA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FRead&sa=D&sntz=1&usg=AFQjCNGpYSZ2DeDAPd3bjDCRV7_ZnupK1w
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FRead&sa=D&sntz=1&usg=AFQjCNGpYSZ2DeDAPd3bjDCRV7_ZnupK1w
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FWrite&sa=D&sntz=1&usg=AFQjCNG25iMg6I5wglyL4P7-BfaOLjiXFg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FWrite&sa=D&sntz=1&usg=AFQjCNG25iMg6I5wglyL4P7-BfaOLjiXFg

* (@param [in] str A string to send as a series of bytes.
* (@return The number of bytes written.
* (@see http://arduino.cc/en/Serial/Write

kst st st sk s ot st oo ot sk sk sk st sl sk sk st st sk skt st sk s st st sk sk st st sk sk st st sk sk st st skt st ks st st sk sk st st sk sk st stk st st skok stk sk ksl sk ok sk koo /

size_t write(const char * str);

[s s sk sk ks ks sk sk skttt stk okl sk skskskstskokslsk kool sk skskistsksttokkkskolkokksk skttt kkkokokok /3kok

* Arduino Serial.write() wrapper.

* (@param [in] ¢ A character to send as a single byte.
* (@return The number of bytes written.

* (@see http://arduino.cc/en/Serial/Write

kst st s sk s ot e s s st sk sk sk st st sk st st sk skt st sk st st sk sk st st sk sk st stk sk st st sk st st sk sk st st sk sk st st sk st stk st st sk st stskok kol sk stk sk sk stk koo

size_t write(uint8_t c);

[s s sk sk ks sk sk sk sk skttt stk okl sksktskRskk ksl kool sk sksioiskskststlkkskolkoksksk skt sk tkkskokok /kok

* Arduino Serial.available() wrapper.
* (@return The number of bytes available to be read.
* (wsee http://arduino.cc/en/Serial/Available

kst stttk sk sk sk skokoskosk sk skststsksttk sk sk sk skokoskosksksistsk stttk sk sk sk skl sk stk skttt kol kiR sk skl skokokokok ok ok /

int available();

/***U**

* Arduino Serial.flush() wrapper.
* (@see http://arduino.cc/en/Serial/Flush

skt skt s st skt skt sttt ookt otk sttt sttt kit kit okt lolokst kil lokoskdslkokokd ok ok

void flush();

[/ sk s st st e s st st e s st st e s sk st s sk sk st sk st st sk st s sk st sk sk st sk sk stk stk stk stk sksk st sk sk stekskok stk skok sfokoskok kol ko ok

* Arduino Serial.peek() wrapper.
* (@return The first byte of incoming serial data available.
* (@see http://arduino.cc/en/Serial/Peek

kst st e sk s ot st s s st sk sk sk st s sk st st sk skt st sk st st sk sk st st sk sk st st sk sk st st sk st st sk sk st st sk sk st st sk sk st st skt sk ki st sksksk tskoskok ok sk ok sk ko /

int peek();

[s s sk sk ks sk sk sk ki sk skttt stk okl skskoiskskstokk skl skololokskskskoistoksttok skl skolkokksk skttt kkkskokok /3kok

* Arduino delay() wrapper.
* (@param [in] ms The number of milliseconds to pause for.

* (wsee http://arduino.cc/en/Reference/Delay
***/

void delayMilliseconds(unsigned long ms);

/***U**

* Arduino millis() wrapper.
* (@return Number of milliseconds since the program started.
* (@see http://arduino.cc/en/Reference/Millis

***/

unsigned long milliseconds();

private:

[s skt ks sk sk sk ks sk skttt stk ok skskoksiskRskkk sk kool sk skskoiskskststkskskslkslkoksksk skt sk kkokskokok /kok

* Selected serial port storage.

* (@see CMUCOM4_SERIALL
* @see CMUCOM4_SERIAL2
* @see CMUCOM4_SERIAL3

***/
int _port;

b

#endif

36

http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FWrite&sa=D&sntz=1&usg=AFQjCNG25iMg6I5wglyL4P7-BfaOLjiXFg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FWrite&sa=D&sntz=1&usg=AFQjCNG25iMg6I5wglyL4P7-BfaOLjiXFg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FWrite&sa=D&sntz=1&usg=AFQjCNG25iMg6I5wglyL4P7-BfaOLjiXFg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FWrite&sa=D&sntz=1&usg=AFQjCNG25iMg6I5wglyL4P7-BfaOLjiXFg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FAvailable&sa=D&sntz=1&usg=AFQjCNHyyR603s1cDGcKYU85g0Wr66Uf5w
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FAvailable&sa=D&sntz=1&usg=AFQjCNHyyR603s1cDGcKYU85g0Wr66Uf5w
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FFlush&sa=D&sntz=1&usg=AFQjCNFx7ObL4GuUBUEXT9-dx5qcoDFw-A
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FFlush&sa=D&sntz=1&usg=AFQjCNFx7ObL4GuUBUEXT9-dx5qcoDFw-A
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FPeek&sa=D&sntz=1&usg=AFQjCNEkD35sgZKQqU-vcMBAq8prjLeH4A
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FPeek&sa=D&sntz=1&usg=AFQjCNEkD35sgZKQqU-vcMBAq8prjLeH4A
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FDelay&sa=D&sntz=1&usg=AFQjCNFFFVtqAFqsAZxXLzcOjknSs2FnnA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FDelay&sa=D&sntz=1&usg=AFQjCNFFFVtqAFqsAZxXLzcOjknSs2FnnA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FMillis&sa=D&sntz=1&usg=AFQjCNG7FnijZ6WaPi00i17e9fes39pTRw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FMillis&sa=D&sntz=1&usg=AFQjCNG7FnijZ6WaPi00i17e9fes39pTRw

R R st sk st ekt e s st st skt st st ettt ettt stttk etk setolotostotokostoslookok ololoskodoslkolokdokokookkokok ok ok

* @file

* (@par MIT License - TERMS OF USE:

* (@n Permission is hereby granted, free of charge, to any person obtaining a

* copy of this software and associated documentation files (the "Software"), to

* deal in the Software without restriction, including without limitation the

* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or

* sell copies of the Software, and to permit persons to whom the Software is

* furnished to do so, subject to the following conditions:

* @n

* (@n The above copyright notice and this permission notice shall be included in

* all copies or substantial portions of the Software.

* @n

* (wn THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.

skt s skt st e skt s skt skt sttt ssiote okt otk ekttt ist kit ookttt stolokstlokok ok slokoskdslkokokdok koo

MODIFIED PORTABLE SERIAL AND TIMER WRAPPER LIBRARY -
PIC32 HEADER FILE

/ /[
* @file

* Portable serial and timer wrapper library.

*

* @version @n 1.1

* @date @n 2/7/2013

*

* @authors @n Kwabena W. Agyeman & Christopher J. Leaf

* @copyright @n (c) 2013 Kwabena W. Agyeman & Christopher J. Leaf

* @n All rights reserved - Please see the end of the file for the terms of use

*

* @par Update History:

* @n v0.1 - Beta code - 3/20/2012

* @n v0.9 - Original release - 4/18/2012

* @n v1.0 - Documented and updated release - 8/3/2012

* @n v1.1 - Added support for the Arduino Due, fixed the send frame command,
and fixed a number of compile time warnings - 2/7/2013.

#include <plib.h>

#ifndef CMUCOM4_H_

#define _CMUCOM4_H_

#if defined (__32MX695F512H_)
/I Configuration Bit settings

// SYSCLK = 80 MHz (8MHz Crystal / FPLLIDIV * FPLLMUL / FPLLODIV)
// PBCLK =80 MHz (SYSCLK / FPBDIV)

/**@cond CMUCOM4_PRIVATE /

#define CMUCOM4_INPUT_BUFFER_SIZE 256 ///< Responce input buffer size.
#define CMUCOM4_OUTPUT_BUFFER_SIZE 256 ///< Command output buffer size.
[l#else

37

/l#define CMUCOM4_INPUT_BUFFER_SIZE 160 ///< Responce input buffer size.
/l#define CMUCOM4_OUTPUT_BUFFER_SIZE 96 ///< Command output buffer size.
/H#tendif

/ /%%
* This function macro expands whatever argument name that was passed to this

* function macro into a string. @par For example:

* <tt>@#define ARDUINO 100</tt> @n

* <tt>%CMUCOM4_N_TO_S(ARDUINO)</tt> exapands to @c "ARDUINO"

#define CMUCOM4_N_TO_S(x) #x

/ /%%
* This function macro expands whatever argument value that was passed to this

* function macro into a string. @par For example:

* <tt>@#define ARDUINO 100</tt> @n

* <tt>%CMUCOM4_V_TO_S(ARDUINO)</tt> exapands to @c "100"

#define CMUCOM4_V_TO_S(x) CMUCOM4_N_TO_S(x)

/ /%%
* Default firmware startup baud rate number.

#define CMUCOM4_SLOW_BAUD_RATE 19200

/ / k%
* Default firmware startup baud rate string.

/
#define CMUCOM4_SLOW_BR_STRING CMUCOM4_V_TO_S(CMUCOM4_SLOW_BAUD_RATE)

/ /%%
* Version 1.01 firmware and below maximum baud rate number.

*% * * * * xx/

#define CMUCOM4_MEDIUM_BAUD_RATE 115200

/ / k%
* Version 1.01 firmware and below maximum baud rate string.
* /
#define CMUCOM4_MEDIUM_BR_STRING CMUCOM4_V_TO_S(CMUCOM4_MEDIUM_BAUD_RATE)

/ * * * * x//**

* Version 1.02 firmware and above maximum baud rate number.

#define CMUCOM4_FAST BAUD RATE 250000

/ %%
* Version 1.02 firmware and above maximum baud rate string.

/
#define CMUCOM4_FAST BR_STRING CMUCOM4_V_TO_S(CMUCOM4_FAST BAUD_RATE)

/ / *k
* Default firmware startup stop bits number.

#define CMUCOM4_SLOW_STOP_BITS 0

/ / *%
* Default firmware startup stop bits string.

/
#define CMUCOM4_SLOW_SB_STRING CMUCOM4_V_TO_S(CMUCOM4 _SLOW_STOP_BITS)

/ /%%
* Version 1.01 firmware and below necessary stop bits number.

#define CMUCOM4_MEDIUM_STOP_BITS 0

/ /**

38

* Version 1.01 firmware and below necessary stop bits string.

/
#define CMUCOM4_MEDIUM_SB_STRING CMUCOM4_V_TO_S(CMUCOM4_MEDIUM_STOP_BITS)

/ /%%
* Version 1.02 firmware and above necessary stop bits number.

#define CMUCOM4_FAST_STOP_BITS 0

/ %%
* Version 1.02 firmware and above necessary stop bits string.

/
#define CMUCOM4_FAST SB_STRING CMUCOM4_V_TO_S(CMUCOM4_FAST STOP_BITS)

/ %%
* Serial CMUcom4::begin() post delay in milliseconds.

*% * * xx/

#define CMUCOM4_BEGIN_DELAY 1

-
/* Serial CMUcom4::end() post delay in milliseconds. !
#define CMUCOM4_END_DELAY 1 :
[**@endcond® e e e %/
/ /%%

* This is a convenient macro for specifying the Serial port when initializing a
* CMUcam4 or CMUcom4 object.

* /
#define CMUCOM4_SERIAL 0

/ * * * * x//**

* This is a convenient macro for specifying the Seriall port on an Arduino Mega
* when initializing a CMUcam4 or CMUcom4 object.

#define CMUCOM4_SERIALI1 1

/ / k%
* This is a convenient macro for specifying the Serial2 port on an Arduino Mega
* when initializing a CMUcam4 or CMUcom4 object.

#define CMUCOM4_SERIAL2 2

/ /%%
* This is a convenient macro for specifying the Serial3 port on an Arduino Mega
* when initializing a CMUcam4 or CMUcom4 object.

#define CMUCOM4_SERIALS3 3

/ %%
* This is a hardware abstraction layer for the % CMUcam4 class. The % CMUcom4
* class targets the Ardunio prototyping platform by default.

* /
class CMUcom4
{

public:

/ []%*
* Initialize the % CMUcom4 object to use the default Serial port.

* /
CMUcom4();

/ * * * * x//**

* Initialize the % CMUcom4 object to use the @c port Serial port.

* @param [in] port The port.
* @see CMUCOM4_SERIAL
* @see CMUCOM4_SERIAL1
* @see CMUCOM4_SERIAL2
* @see CMUCOM4_SERIAL3

CMUcom4(int port);

/ % % %

* Arduino Serial.begin() wrapper.
* @param [in] baud In bits per second.
* (@see http://arduino.cc/en/Serial/Begin

x//**

void begin(unsigned long baud);

/
* Arduino Serial.end() wrapper.
* (@see http://arduino.cc/en/Serial/End

/**

void end(void);

/
* Arduino Serial.read() wrapper.

* @return The first byte of incoming serial data.
* (@see http://arduino.cc/en/Serial/Read

//**

int read(void);

/
* Arduino Serial.write() wrapper.

* @param [in] buffer An array to send as a series of bytes.

* @param [in] size The size of the buffer.
* @return The number of bytes written.
* (@see http://arduino.cc/en/Serial/Write

//**

int write(const uint8_t *, size_t);

/
* Arduino Serial.write() wrapper.

* @param [in] str A string to send as a series of bytes.
* @return The number of bytes written.

* (@see http://arduino.cc/en/Serial/Write

/**

int write(const char * str);

/
* Arduino Serial.write() wrapper.

* @param [in] ¢ A character to send as a single byte.
* @return The number of bytes written.

* (@see http://arduino.cc/en/Serial/Write

//**

size_t write(uint8_t c);

/

* Arduino Serial.available() wrapper.

* @return The number of bytes available to be read.
* (@see http://arduino.cc/en/Serial/Available

/**

int available();

/
* Arduino Serial.flush() wrapper.
* (@see http://arduino.cc/en/Serial/Flush

//**

40

http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FBegin&sa=D&sntz=1&usg=AFQjCNHxyvus4R50N2hKG4nRHY1n81bBfQ
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FBegin&sa=D&sntz=1&usg=AFQjCNHxyvus4R50N2hKG4nRHY1n81bBfQ
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FEnd&sa=D&sntz=1&usg=AFQjCNHxLU98oUOAZ_xBegcmrCB-AvDmHA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FEnd&sa=D&sntz=1&usg=AFQjCNHxLU98oUOAZ_xBegcmrCB-AvDmHA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FRead&sa=D&sntz=1&usg=AFQjCNGpYSZ2DeDAPd3bjDCRV7_ZnupK1w
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FRead&sa=D&sntz=1&usg=AFQjCNGpYSZ2DeDAPd3bjDCRV7_ZnupK1w
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FWrite&sa=D&sntz=1&usg=AFQjCNG25iMg6I5wglyL4P7-BfaOLjiXFg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FWrite&sa=D&sntz=1&usg=AFQjCNG25iMg6I5wglyL4P7-BfaOLjiXFg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FWrite&sa=D&sntz=1&usg=AFQjCNG25iMg6I5wglyL4P7-BfaOLjiXFg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FWrite&sa=D&sntz=1&usg=AFQjCNG25iMg6I5wglyL4P7-BfaOLjiXFg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FWrite&sa=D&sntz=1&usg=AFQjCNG25iMg6I5wglyL4P7-BfaOLjiXFg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FWrite&sa=D&sntz=1&usg=AFQjCNG25iMg6I5wglyL4P7-BfaOLjiXFg
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FAvailable&sa=D&sntz=1&usg=AFQjCNHyyR603s1cDGcKYU85g0Wr66Uf5w
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FAvailable&sa=D&sntz=1&usg=AFQjCNHyyR603s1cDGcKYU85g0Wr66Uf5w
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FFlush&sa=D&sntz=1&usg=AFQjCNFx7ObL4GuUBUEXT9-dx5qcoDFw-A
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FFlush&sa=D&sntz=1&usg=AFQjCNFx7ObL4GuUBUEXT9-dx5qcoDFw-A

/Ivoid flush();

/ /[
* Arduino Serial.peek() wrapper.

* @return The first byte of incoming serial data available.

* (@see http://arduino.cc/en/Serial/Peek

/lint peek();

/ %%
* Arduino delay() wrapper.

* @param [in] ms The number of milliseconds to pause for.

* (@see http://arduino.cc/en/Reference/Delay

/Ivoid delayMilliseconds(unsigned long ms);

/ * * * * *[[*%*
* Arduino millis() wrapper.

* @return Number of milliseconds since the program started.

* (@see http://arduino.cc/en/Reference/Millis

//unsigned long milliseconds();

private:

/ / k%
* Selected serial port storage.

* @see CMUCOM4_SERIALI1

* @see CMUCOM4_SERIAL2

* @see CMUCOM4_SERIAL3

int _port;
3

#endif

/ /[

* @file

* @par MIT License - TERMS OF USE:

* @n Permission is hereby granted, free of charge, to any person obtaining a

* copy of this software and associated documentation files (the "Software'"), to

* deal in the Software without restriction, including without limitation the

* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or

* sell copies of the Software, and to permit persons to whom the Software is

* furnished to do so, subject to the following conditions:

* @n

* @n The above copyright notice and this permission notice shall be included in

* all copies or substantial portions of the Software.

* @n

* @n THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.

UART PIC32 MAIN FILE

/*
* File: Assignment8.c

41

http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FPeek&sa=D&sntz=1&usg=AFQjCNEkD35sgZKQqU-vcMBAq8prjLeH4A
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FSerial%2FPeek&sa=D&sntz=1&usg=AFQjCNEkD35sgZKQqU-vcMBAq8prjLeH4A
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FDelay&sa=D&sntz=1&usg=AFQjCNFFFVtqAFqsAZxXLzcOjknSs2FnnA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FDelay&sa=D&sntz=1&usg=AFQjCNFFFVtqAFqsAZxXLzcOjknSs2FnnA
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FMillis&sa=D&sntz=1&usg=AFQjCNG7FnijZ6WaPi00i17e9fes39pTRw
http://www.google.com/url?q=http%3A%2F%2Farduino.cc%2Fen%2FReference%2FMillis&sa=D&sntz=1&usg=AFQjCNG7FnijZ6WaPi00i17e9fes39pTRw

* Author: nferruol

*

* Created on November 26, 2012, 4:33 PM
*/

#include <stdio.h>
#include <stdlib.h>
#include <xc.h>
#include <sys/attribs.h>
#include <plib.h>
#include "configbits.h"
#include "CMUcom4.h"

/*
char uart3Read(void)

{
while (U3STADbits.URXDA == 0)
{
}

return(U3RXREG);
3/

/*void uart3Write(char a)

while (U3STAbits.UTXBF == 1)

{
}

U3TXREG = a;
3

/*void _mon_putc(char c¢){
while (U3STADbits.UTXBF);

U3TXREG = ¢;
3l
int main(void)
{
uint8_t c;
uart_init(BAUD_RATE);
while (1) {
if (uart_available()) {
¢ =uart_getchar();
uart_print("'Byte: ");
uart_putchar(c);
uart_putchar('\r');
uart_putchar('\n');
}
}
}

Matlab DetectRed.m function

%% Now to track red objects in real time
% we have to subtract the red component
% from the grayscale image to extract the red components in the image.
diff im = imsubtract(data(:,:,1), rgb2gray(data));
%Use a median filter to filter out noise

diff_im = medfilt2(diff_im, [3 3]);

% Convert the resulting grayscale image into a binary image.
diff im = im2bw(diff im,0.19);

% Remove all those pixels less than 300px

diff im = bwareaopen(diff im,300);

% Label all the connected components in the image.

bw = bwlabel(diff im, 8);

% Here we do the image blob analysis.
% We get a set of properties for each labeled region.
stats = regionprops(bw, 'BoundingBox', 'Centroid');

%% Now to track green objects in real time

% we have to subtract the red component

% from the grayscale image to extract the red components in the image.
diff im2 = imsubtract(data(:,:,2), rgb2gray(data));

%Use a median filter to filter out noise

diff im2 = medfilt2(diff_im2, [3 3]);

% Convert the resulting grayscale image into a binary image.
diff im2 = im2bw(diff im2,0.05);

% Remove all those pixels less than 300px

diff im2 = bwareaopen(diff im2,300);

% Label all the connected components in the image.

bw2 = bwlabel(diff im2, 8);

% Here we do the image blob analysis.
% We get a set of properties for each labeled region.
stats2 = regionprops(bw2, 'BoundingBox', 'Centroid');

%% Display the image
coder.extrinsic('imshow','hold on','rectangle','plot','text','set','hold off");

imshow(data)
hold on

%This is a loop to bound the red objects in a rectangular box.
for object = 1:length(stats)
Y%for red
bb = stats(object).BoundingBox;
bc = stats(object).Centroid;
rectangle('Position',bb,'EdgeColor','r','LineWidth',2)
plot(bc(1),be(2), -m+")
a=text(bc(1)+15,bc(2), strcat('X: ', num2str(round(bc(1))), ' Y: ', num2str(round(bc(2)))));
set(a, 'FontName', 'Arial', 'FontWeight', 'bold', 'FontSize', 12, 'Color', 'yellow');
end

for object = 1:length(stats2)
Y%for green
bb2 = stats2(object).BoundingBox;
be2 = stats2(object).Centroid,;
rectangle('Position',bb2,'EdgeColor','g','LineWidth',2)
plot(bc2(1),bc2(2), '-m+")
a=text(bc2(1)+15,bc2(2), streat('X: ', num2str(round(bc2(1))),' Y:', num2str(round(bc2(2)))));
set(a, 'FontName', 'Arial', 'FontWeight', 'bold', 'FontSize', 12, 'Color’, 'yellow');
end

hold off

Matlab RedTrackObject.m Test Program

43

a = imaghwinfo;
allStats = struct([]);
%][camera_name, camera_id, format] = getCameralnfo(a);

% Capture the video frames using the videoinput function

% You have to replace the resolution & your installed adaptor name.
%vid = videoinput(camera_name, camera_id, format);

vid = videoinput(‘'winvideo',2,"YUY2 1024x768');

%vid = videoinput('matrox',,'Port #0002.Hub_#0004");

% Set the properties of the video object
set(vid, 'FramesPerTrigger', Inf);

set(vid, 'ReturnedColorspace’, 'rgb')
vid.FrameGrablnterval = 8;

Y%start the video aquisition here

start(vid)

flushdata(vid);

Y%call function that process data frame by frame
while(vid.FramesAcquired<=400)

% Get the snapshot of the current frame
data = getsnapshot(vid);

[diff _im,bw,stats,diff im2,bw2,stats2]=DetectRed(data);
% Create a construct that stores all stats

allStats([vid.FramesAcquired]).red = stats;
allStats([vid.FramesAcquired]).green = stats2;

end
% Stop the video aquisition.
stop(vid);

% Flush all the image data stored in the memory buffer.
flushdata(vid);

% Clear all variables
%clear all
sprintf('%s','That was all about Image tracking :) ')

Microcontroller initialization configbits 1.h

/*

* File: configbits_1.h

* Author: Mike

ES

* Created on October 9, 2012, 1:50 PM
*/

#ifndef CONFIGBITS_H
#define CONFIGBITS_H

44

/* 20 MHz crystal run at 80 mhz
peripher clock = at 10 MHz (80 MHz/8)
*/

#pragma config FNOSC = FRCPLL // Oscillator selection

#pragma config POSCMOD = OFF // Primary oscillator mode

#pragma config FPLLIDIV = DIV_5 // PLL input divider (20 -> 4)
#pragma config FPLLMUL = MUL_20 // PLL multiplier (4x20 = 80)
#pragma config FPLLODIV = DIV 1 // PLL output divider

#pragma config FPBDIV = DIV _8 // Peripheral bus clock divider 10 mhz
#pragma config FSOSCEN = OFF // Secondary oscillator enable

/* Clock control settings

*/

#pragma config IESO = OFF // Internal/external clock switchover
#pragma config FCKSM = CSDCMD // Clock switching (CSx)/Clock monitor (CMx)
#pragma config OSCIOFNC = OFF // Clock output on OSCO pin enable
/* USB Settings

*/

#pragma config UPLLEN = ON // USB PLL enable

#pragma config UPLLIDIV = DIV_2 // USB PLL input divider
#pragma config FVBUSONIO = OFF // VBUS pin control

#pragma config FUSBIDIO = OFF // USBID pin control

/* Other Peripheral Device settings

*/

#pragma config FWDTEN = OFF // Watchdog timer enable

#pragma config WDTPS = PS1024 // Watchdog timer post-scaler
#pragma config FSRSSEL = PRIORITY_7 // SRS interrupt priority

#pragma config ICESEL =ICS PGxl1 // ICE pin selection
#endif /* CONFIGBITS_H */

Zigbee 1.h

/*

* File: Zigbee 1.h
* Author: nferruol
*

*

*/

#ifndef ZIGBEE_H
#define ZIGBEE _H

#ifdef __cplusplus

extern "C" {

#endif

//Define Registers

#define TRX STATUS 0x01
#define TRX STATE 0x02
#define TRX_CTRL_0 0x03
#define PHY_TX_PWR 0x05
#define PHY RSSI 0x06
#define PHY_ED_LEVEL 0x07
#define PHY_CC_CCA 0x08

#define PHY_CCA_THRES 0x09

45

#define IRQ_ MASK 0x0E

#define IRQ_STATUS 0xOF
#define VREG_CTRL 0x10
#define BATMON 0x11
#define XOSC_CTRL 0x12
#define PLL_CF 0x1A
#define PLL_DCU 0x1B
#define PART NUM 0x1C
#define VERSION _NUM 0x1D
#define MAN_ID_0 0x1E
#define MAN 1D 1 0x1F

#define SHORT ADDR 0 0x20
#define SHORT ADDR 1 0x21
#define PAN_ID 0 0x22
#define PAN_ID 1 0x23
#define IEEE_ADDR 0 0x24
#define IEEE_ADDR 1 0x25
#define IEEE_ADDR_2 0x26
#define IEEE_ADDR _3 0x27
#define IEEE_ADDR 4 0x28
#define IEEE_ADDR 5 0x29
#define IEEE_ADDR_6 0x2A
#define IEEE_ADDR _7 0x2B

#define XAH_CTRL 0x2C
#define CSMA_SEED 0 0x2D
#define CSMA_SEED 1 0x2E

//States written to TRX STATE

#define TX START 0x02
#define FORCE_TRX_OFF 0x03
#define RX _ON 0x06
#define TRX OFF 0x08
#define PLL_ON 0x09

//States read out of TRX STATUS

#define P ON 0x00
#define BUSY RX 0x01
#define BUSY_TX 0x02
#define RX _ON 0x06
#define TRX OFF 0x08
#define PLL_ON 0x09
#define SLEEP 0xOF

#define STATE_TRANSITION 0x1F

//Define pins

#define sel LATFbits.LATF5
#define rst LATBDbits. LATBS
#define slp LATBDbits. LATB4

//Function Prototypes

char check();

void send(char);

void SPI initialize();

void UART _initialize();

void final(int);

void ZIGBEE initialize();

void ZIGBEE pll();

void ZIGBEE _transmit(int, int,int, int,int, int,int, int,int);
void ZIGBEE receive();

void ZIGBEE write register (int, int);
int ZIGBEE read_register (int);

46

void ZIGBEE write buffer (int, int,int, int,int, int,int, int,int);
void ZIGBEE_read_buffer();
int ZIGBEE_check_interrupt();

#ifdef _ cplusplus

}
#endif

#endif /* ZIGBEE H */

ZIGBEE_FUNCTIONS.c

/*

* File: ZIGBEE FUNCTIONS.c
* Author: nferruol

*

*/

#include <stdio.h>
#include <stdlib.h>
#include <xc.h>
#include <plib.h>
#include <sys/attribs.h>
#include "Zigbee 1.h"

void UART _initialize (){
//Set all bits to digital
ADI1PCFG = 0xFFFF;

U4MODEDbits. BRGH=1;

U4BRG = 42; // Set Baud rate 9600= 259 57600=42
U4MODEbits. PDSEL=0;

U4MODEbits. STSEL=0;

U4STAbits.UTXEN=1;

U4STAbits.URXEN=1;

U4MODEbits.ON=1;

U4MODEDits.UARTEN = 0x01;

}

char check(void)

{
while (U4STAbits. URXDA == 0)

{
}

return(U4RXREG);

}

void send(char a)

{
while (U4STADbits.UTXBF == 1)

{
1

U4TXREG = a;

47

void _mon_putc (char c)

{ while (U4STAbits. UTXBF);
U4TXREG =c;

}

void SPI_initialize (){

//set rst, slp, sel to outputs

TRISFbits. TRISF5 = 0; //sel
TRISBbits. TRISB4=0; //slp
TRISBbits. TRISB5S =0; //rst

//set rst, sel high set slp low
rst=1;
sel =1;
slp=0;

//disable interrupts
IEC1bits.SPI2RXIE = 0;
IEC1bits.SPI2EIE = 0;
IEC1bits.SPI2TXIE = 0;

//stops and resets SP12
SPI2CONDits.ON = 0;

/[clears the buffer
int clear = SPI2BUF;

//standard mode
SPI2CONbits. ENHBUF = 0;

//use FPB/4 clock frequency Fsck = FPB/(2*(SPIxBRG+1)) FPB =40MHz
SPI2BRG = 42;

//Turn SPI2 on, 8 bits transfer, master mode

SPI2CONbits. MODE32 = 0;

SPI2CONbits. MODE16 = 0;

SPI2CONbits. MSTEN = 1; //Master mode
SPI2CONDits. MSSEN =0; //Manually do slave select
SPI2CONDits.SSEN = 0; //Not slave mode
SPI2CONDits.CKP = 0; //Low idle, high active
SPI2CONDits.CKE = 1; //Change output on falling edge
SPI2CONDits.SMP = 0; //Sample MISO at middle of clock pulse
SPI2CONDits.DISSDO = 0; //MISO is enabled

//Must be final command

SPI2CONDits.ON = 1;

//Ready to transmit or receive via SPI2BUF

void ZIGBEE initialize(){
rst=0;
int k;
for (k =0; k<100000;k++)
{3

rst=1;

//ZIGBEE will start up in P_ON state or has been reset

48

//Set up IF from ZIGBEE
TRISDbits. TRISD8 = 1;

//Put in TRX_OFF state (clock state)
ZIGBEE write register(TRX STATE, TRX OFF);

//Set channel with PHY_ _CC_CCA channel #11, 2405MHz 0B on bits 4:0
ZIGBEE write register(PHY CC_CCA, 0x2B);

//Enable pertinant interupts TRX_END, PLL_LOCK
ZIGBEE write_register(IRQ_MASK, 0b00001001);

//Turns on automatic FCS appending
ZIGBEE write_register(PHY_ TX PWR, 0xC6);

//Set short address to 0123

ZIGBEE write register(SHORT ADDR 1, 0x01);
ZIGBEE_write_register(SHORT_ADDR_0, 0x23);
//Set pan id to 4567

ZIGBEE write register(PAN _ID 1, 0x45);
ZIGBEE_write_register(PAN_ID_0, 0x67);

void ZIGBEE_pll(){
//Put in PLL_ON state (ready state)
ZIGBEE write register(TRX STATE, PLL ON);

int k;
for (k=0; k<1000;k++)
{3

return;

}

void ZIGBEE _transmit(int messagel, int message2, int message3, int message4, int message5, int message6, int message?7, int
messages, int message9)
{

//Write info to be sent to buffer

ZIGBEE write buffer(messagel, message2, message3,message4,messageS,message6,message’,message8, message9);

//Put in Transmit state
ZIGBEE write register(TRX STATE, TX START);

//Return to PLL_ON
ZIGBEE _pll();
}

void ZIGBEE receive (){
//Put in Receive state
ZIGBEE write register(TRX STATE, RX ON);

//Wait for message to be delivered
while('PORTDbits.RDS) {}
int result = ZIGBEE _check interrupt();
if(result == 1) //Wrong interrupt, reset
{

ZIGBEE initialize;

ZIGBEE pll;

ZIGBEE receive();

}

else
ZIGBEE read buffer();

return;

)

void ZIGBEE write register (int address, int message){
int receive;
sel =0;

//or write command with address

SPI2BUF = (0b11000000 | address);

/Iwait for full recieve buffer so you can write again
while (!SPI2STATbits.SPIRBF) {}

receive = SPI2BUF;

//write message to given register

SPI2BUF = message;

//wait for full recieve buffer to confirm transmission
while (!SPI2STATbits.SPIRBF) {}

receive = SPI2BUF;

sel =1;

}

int ZIGBEE read_register (int address){
int receive;
int message;
sel =0;

//or read command with address

SPI2BUF = (0b10000000 | address);

//wait for full recieve buffer so you can write again
while (!SPI2STATbits.SPIRBF) {}

receive = SPI2BUF;

//0x00 to get response

SPI2BUF = 0x00;

//wait for full recieve buffer

while (!SPI2STATbits.SPIRBF) {}
message = SPI2BUF;

sel =1;
return message;

}

void ZIGBEE write buffer(int messagel, int message2, int message3, int message4, int message5, int message6, int message7, int
message8, int message9) {
//can include longer messages just need to send it as 8 bit packages message, messagel, message?2 etc. Be sure to change payload bytes
sel =0;
//set number of payload bytes using 8 bits
int payload = 0x0A;

//give write to buffer command

SPI2BUF = 0b01100000;

//wait for full recieve buffer to confirm transmission
while (!SPI2STATbits.SPIRBF) {};

int receive = SPI2BUF;

//give number of payload bytes

int numbytes = payload + 13;

SPI2BUF = numbytes;

/Iwait for full recieve buffer to confirm transmission
while (!SPI2STATbits.SPIRBF) {};

receive = SPI2BUF;

//write MAC Frame Format

SPI2BUF = 0x01; //Frame Control 1st
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0x88,; //Frame Control 2nd
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0x00; //Sequence Number
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0xEF; //Destination PAN ID 1
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0xEF; //Destination PAN ID 2
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0xCD; //Destination address 1
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0xAB; //Destination address 2
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0x67; //Source PANID 1
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0x45; //Source PAN ID 2
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0x23; //Source address 1
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0x01; //Source address 2
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

/Iwrite payload byte 1 to ZIGBEE buffer

SPI2BUF = messagel;

/Iwait for full recieve buffer to confirm transmission
while (!SPI2STATbits.SPIRBF) {};

receive = SPI2BUF;

//write payload byte 2 to ZIGBEE buffer
SPI2BUF = message2;
//wait for full recieve buffer to confirm transmission

51

while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

//write payload byte 3 to ZIGBEE buffer

SPI2BUF = message3;

/Iwait for full recieve buffer to confirm transmission
while (!SPI2STATbits.SPIRBF) {};

receive = SPI2BUF;

/14

SPI2BUF = message4;

while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

/15

SPI2BUF = message5;

while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

/16

SPI2BUF = message6;

while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

/7

SPI2BUF = message7;

while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

/18

SPI2BUF = message8;

while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

/19

SPI2BUF = message9;

while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

sel =1;

}

void ZIGBEE _read_buffer(){
int numbytes, messagel, message2, message3, message4;
int message5, message6, message7, message8, message9;
sel =0;

//give read buffer command

SPI2BUF = 0b00100000;

//wait for full recieve buffer to confirm transmission
while (!SPI2STATbits.SPIRBF) {};

int receive = SPI2BUF;

//Number of payload bytes
SPI2BUF = 0x00;

while (!SPI2STATbits.SPIRBF) {};
numbytes = SPI2BUF;

//lread MAC Frame Format

SPI2BUF = 0x00; //Frame Control 1st
while (!SPI2STATbits.SPIRBF) {};

int receivel = SPI2BUF;

SPI2BUF = 0x00; //[Frame Control 2nd
while (!SPI2STATbits.SPIRBF) {};
int receive2 = SPI2BUF;

SPI2BUF = 0x00; //Sequence Number
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0xEF; //Destination PAN ID 1
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0xEF; //Destination PAN ID 2
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0xCD; //Destination address 1
while (ISPI2STATbits.SPIRBF) {1;
receive = SPI2BUF;

SPI2BUF = 0xAB; //Destination address 2
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0x67; //Source PAN ID 1
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0x45; //Source PAN ID 2
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0x23; //Source address 1
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

SPI2BUF = 0x01; //Source address 2
while (!SPI2STATbits.SPIRBF) {};
receive = SPI2BUF;

//Data 1

SPI2BUF = 0x00;

//wait for full recieve buffer

while (!SPI2STATbits.SPIRBF) {};
messagel = SPI2BUF;

//Data 2

SPI2BUF = 0x00;

/Iwait for full recieve buffer

while (!SPI2STATbits.SPIRBF) {};
message2 = SPI2BUF;

//Data 3

SPI2BUF = 0x00;

//wait for full recieve buffer

while (!SPI2STATbits.SPIRBF) {};
message3 = SPI2BUF;

//Data 4

53

SPI2BUF = 0x00;

/Iwait for full recieve buffer

while (!SPI2STATbits.SPIRBF) {};
message4 = SPI2BUF;

//Data 5

SPI2BUF = 0x00;

//wait for full recieve buffer

while (!SPI2STATbits.SPIRBF) {};
messageS = SPI2BUF;

//Data 6

SPI2BUF = 0x00;

/Iwait for full recieve buffer

while (!SPI2STATbits.SPIRBF) {};
message6 = SPI2BUF;

//Data 7

SPI2BUF = 0x00;

//wait for full recieve buffer

while (!SPI2STATbits.SPIRBF) {};
message7 = SPI2BUF;

//Data 8

SPI2BUF = 0x00;

/Iwait for full recieve buffer

while (!SPI2STATbits.SPIRBF) {};
message8 = SPI2BUF;

//Data 9

SPI2BUF = 0x00;

//wait for full recieve buffer

while (!SPI2STATbits.SPIRBF) {};
message9 = SPI2BUF;

sel =1;

printf("%7s %19s %18s \n", "Team", "X-Position (in)", "Y-Position (in)");
printf("%6d %12d %18d \n", messagel, message2, message3);
printf("%6d %12d %18d \n", messagel, message4, message5);
printf("%6d %12d %18d \n", messagel, message6, message7);
printf("%6d %12d %18d \n", messagel, message8, message9);

return;

}

int ZIGBEE_check _interrupt()
{
int result = 4;
int problem = ZIGBEE read_register(IRQ_STATUS);
//pll locked
if ((problem & 0x01) == 0x01)
{

result=1;

}

//transmission sent, buffer empty OR message received, buffer full

if ((problem & 0x08) == 0x08)

f
1

result =2;

}

return result;

}
ZIGBEE_SEND.c

/*

* File: ZIGBEE SEND.c
* Author: Nick Ferruolo

%

*/

#include <stdio.h>
#include <stdlib.h>
#include <xc.h>
#include <sys/attribs.h>
#include <plib.h>
#include<p32xxxx.h>
#include "Zigbee 1.h"
#include "configbits_1.h"

void main(){
int k;
UART initialize();
SPI initialize();
ZIGBEE initialize();
ZIGBEE_pll();

while (1) {

ZIGBEE transmit(1, 1,5, 2,6, 3,7, 4,8);

ZIGBEE transmit(2, 9,13, 10,14, 11,15, 12,16);
for (k=0;k<5000000;k++){}

ZIGBEE transmit(1, 17,21, 18,22, 19,23, 20,24),
for (k=0;k<5000000;k++){}

ZIGBEE transmit(2, 25,29, 26,30, 27,31, 28,32);
for (k=0;k<5000000;k++){}

ZIGBEE transmit(1, 33,37, 34,38, 35,39, 36,40);
for (k=0;k<5000000;k++){}

ZIGBEE transmit(2, 41,45, 42,46, 43,47, 44,48);,
for (k=0;k<5000000;k++){}

ZIGBEE transmit(1, 49,53, 50,54, 51,55, 52,56);
for (k=0;k<5000000;k++){}

ZIGBEE transmit(2, 57,61, 58,62, 59,63, 60,64);
for (k=0;k<5000000;k++){}

ZIGBEE transmit(1, 65,69, 66,70, 67,71, 68,72);
for (k=0;k<5000000;k++){}

ZIGBEE transmit(2, 73,77, 74,78, 75,79, 76,80);
for (k=0;k<5000000;k++){}

ZIGBEE _transmit(1, 81,85, 82,86, 83,87, 84,88);
for (k=0;k<5000000;k++){}

ZIGBEE transmit(2, 89,93, 90,94, 91,95, 92,96);,
for (k=0;k<5000000;k++){}

}
}
ZIGBEE_RECEIVE.c

/*

55

* File: ZIGBEE_RECEIVE.c

* Author: Nick Ferruolo
%

*/

#include <stdio.h>
#include <stdlib.h>
#include <xc.h>
#include <sys/attribs.h>
#include <plib.h>
#include<p32xxxx.h>
#include "Zigbee 1.h"
#include "configbits 1.h"

void main(){
UART initialize();
SPI initialize();
ZIGBEE initialize();
ZIGBEE pll();

while(1){
ZIGBEE receive();
}
}

56

