GyEEm of the Future

Time is no longer a valid excuse to avoid working out.

Ignacio Aranguren
GianPaul Handal
Nicholas Yulan

Table of Contents

1 Introducton 3
2 Problem Statement and Proposed Solution ... 3
3 System Requirements 3
4 System Block Diagram L 5
5 Detailed Project Description 6
6 Describe How Subsystems Were Tested ...l 21
7 User Manual/System Integration .l 22
8 To Market Design Changes i, 23
9 Conclusions s 24
10 Appendix 24

3 Introduction

The GyEEm of the Future is the answer to the problems of gym patrons everywhere.
Many gym patrons ask themselves, “When is a good time to go to the gym?” or “Will the
gym be busy right now?” Knowing if the gym is crowded is a complete guessing game. The
only way to determine if the gym is crowded is to get in your car and drive there. By then
you’ve already committed to going the gym and you can only hope and pray that the
machines and weights are not being used by a grunting 400 pound Mr. Olympia wanna-be
or a feeble 80 year old man. If health and fitness is important to you, you have just accepted
the fact that there will be days in your future that you will have work out in a crowded gym.
Until now...

The GyEEm of the future has the ability to inform gym members of how congested
the gym is from the comfort of their home. The only thing they will have to do is type in their
gyms web address in the device of their choosing and a detailed list of equipment and their
availability will fill their screens. Aside from the status of the equipment there will be
information available that will specify how many people are in the gym. Thirdly, once the
GyEEm of the future system has been in place for enough time the website will begin to
develop trends of when the gym will be busy and when it will not.

All of this information will be invaluable to many gym members. Especially those with
busy schedule and those that like to plan every minute of their day. Gym patrons who do not
like working out around many people will be able to find a time of the day that is just right
for them. This is also applicable to serious athletes and aspiring body builders. The gym
itself will also prosper from this system. The GyEEm of the future system is a feature that
could help generate new clientele and perhaps be the deciding factor between gyms of
otherwise equal quality.

Next we will discuss the high level description of the GyEEm of the future. There are
several distinct systems that need to be discussed. These systems are the sensor system,

the main hub reception system, the microcontroller system and the website system. The

3

interaction of one system to the next is essential to the product we are creating.

The sensor unit uses infrared motion sensors to determine the status of gym
equipment. The sensor will be placed in different locations depending on the type of
equipment that it is monitoring and depending on how vulnerable the sensor is to damage.
The sensor will be connected to a microcontroller which will analyze the data and send it via
a Zigbee transceiver to the main hub reception system.

The main hub will be receiving data packets from all of the sensors in the gym. The
microcontroller of the main hub will read the data packets and addresses of the sensors
and use that information to update the website.

The software aspect of our project plays a key role in taking the data that our
sensors are gathering and uploading them to the website periodically. We decided to use
a Cron Job because it would allow us to consistently update the website data without user
interference. It is also important to be able to store all of the data that our sensors
generated. We need this data to develop gym congestion trends. We decided that MySQL
server would be our best option. With MySQL we are able to retain our data while also
being able to access it from a remote location.

We can successfully say that we have achieved what we had expected. Our sensor
works as we had intended and our reception hub is able to receive and accurately read the
data packets that are sent to it. The Zigbee communication was successful and we were
able to specify once a machine’s availability changed. The communication between the
MainHub and the laptop using the ComPort communication also worked, although we
would have liked for it to be automatic.

Our website also worked as planned. We were able to setup the MySQL server.
We were able to set it up for the number of sensors we constructed, which made our demo
successful. For a real world application, we would have liked to include more sensors.
Moreover, being able to have data to perform the analysis would have been preferable.

All of the difficult aspects of the project were accomplished. We were able to tie the

entire system together and to deliver the GyEEM of the future that we had promised.

4 Detailed System Requirements

In order to have a our project functioning as we had expected. We had to
be able to determine if a machine is being occupied at the gym and to transfer this
information to the web. To achieve this goal there were different things that we had to do:

4.1 Sensors

Checking the availability of a machine at the gym was done using infrared sensors.To be
able to physicially determine if a machine was being used we had to choose a sensor and
learn how to use it. We decided to use an infrared sensor that outputs a voltage depending
on how far an object is from its sensing “eye.”

4.2 Analog to digital conversion

The output that the sensor produced was analog but in order for it to be helpful in our code
we had to make it digital. To complete this task we had to learn how to use the Analog to
Digital conversion of the microcontroller.

4.3 Communicate through Zigbee

Once the Analog to digital conversion is completed, our next goal is to be able to transmit
the message of whether a machine is being occupied or not from our sensor to the main
hub. The message was sent using Zigbee protocol. To be able to send a message using
Zigbee there was a protocol that we had to follow. Using SPI we had to follow a series of
steps to write a frame into the Zigbee transceiver. Moreover we had to read the message
on our mainHub and determine specifically what parts of the message we wanted to
interpret.

4.4 MainHUB to Comport and UART

For the sake of our demonstration we decided that we wanted to have our MainHub directly
connected via USB to a computer.For this communication to take place we had to talk to
the ComPort on the computer using the UART. We decided that we wanted to directly talk
to putty and from there create txt file with what our code was outputting to the Comport.

Another approach for this section could have been to have been to use a razzleberry pie
that directly sent the data to a server where it could be used to update the website and
stored for data management.

4.5 Upload of data onto MySQL

The upload of data onto MySQL to track gym usage over time requires a text file containing
information to be constantly updated, according to what the different sensors are detecting.
This depends principally on a connection between the sensors and the computer in which
the MySQL server is managed, but also requires a series of scripts to first pull data from
the serial comport (as reported by the different sensors), and then to turn that data onto a
text file amenable to MySQL.

Uploading to the website

The requirements of the subsystem to upload information onto the gym website are in large
part the same as the subsystems for the upload of data onto MySQL. That is, for the data to
be uploaded onto the website, we need to have effective communication amongst the
sensors and the main hub (connected to the computer), as well as a series of scripts to pull
information and turn it into the format necessary for upload onto the web. In addition to this,
however, we need a way to upload documents onto the web; to do this, we need an ftp tool
(which may be built into the computer, or may be obtained via the installation of a third party
ftp client such as Cyberduck), we need a server to host our web pages, and we need a
series of scripts to take care of first creating the updated web page as an .html file and

then uploading that file through ftp.

5 Detailed project description
5.1 System theory of operation

Our system has several subsystems that mesh together to perform a task. Our
hardware system uses the sensor to detect motion within a certain range and return a
voltage accordingly. The microcontroller on the sensor board essentially transmits the
sensor data to the main hub via a zigbee transceiver. The main hub gathers sensor data
from several sensors and uploads it to our computer.

Next we use several programs that we have designed and downloaded into the
microcontroller to evaluate the voltage reading from the sensor. Once the information has
been evaluated it is uploaded to the website. This is made possible using several shell

scripts that use the sensor information to modify the status of the gym equipment listed on
our website.

All the data that the sensor collects is uploaded onto a MySQL server and used to
create gym congestion trends.

This process happens several times a minute during the operating hours of the gym.
This ensures that the patrons are informed.

5.2 System Block diagram

Aun and Eviuate Program
MICROCONTROLLER

! i SENSORS |

| h |

| h |

| h |

l : I

| h |
Y | |
'GYM Eguipment N ZIGBEE |
I :
| |TREADMILL| 1. g RS ;
1 i
| USE | | . NWeeave __________
bl J ! | " Gomputer T Website '
1 | 1 ! 1 ! 1
oy i | ' ! : !
! WEIGHT . g ! ' | INFORM |,
| RACKS | 2 ! ' | PATRONS ||
1 | 1 ! 1 ! 1
1 | 1 ! 1 ! 1
1 | 1 ! 1 ! 1
! P~ o ___ ! : o
' | STATIONARY | | L r [PREDICT | !
' | MACHINES | | - s Sed_ | PEAK |1
! ! ." GYEEm Patrans Aeceve | HOURS |,

Figure 1: System Block Diagram

This block diagram shows how the different systems interact. We can see that there is a
loop between the gym equipment system and the hardware. This loops ensures that the sensors
are continuously updating the microcontroller with data that it can evaluate and make available to
the gym users via the website.

5.3. Sensor UNIT subsystem

The sensor unit of our project consists of a microcontroller, a ZigBee Transceiver
AT86RF231 and the sensor itself. The program used to analyze the information received
by the sensor varies depending on the machine where the sensor is going to be attached
to. Figure 1 is an example on how this subsystem works.

Motion Sensor

checks if an Analog to digital

object is there conversion
Microcontroller
Data Packet is determines if an
sent to main hub object is there or
not

FIGURE 2: Sensor Unit Cycle

The sensor we decided to use for our project is the Sharp infrared motion sensor
GP2YO0AO02YKOF. We decided to use this sensor because it has the capability to detect
objects that are 20 to 150 cm from it. This sensor produces an output analog signal of 0 to
3.3 V when an object is there. The optimal range for the sensor is between 10cm and 30
cm, which is more than suitable to fulfill our project specs.

The analog to digital conversion is needed to analyze the analog signal that the
board receives from the sensor. This conversion is used to determine if a machine or a
piece of equipment is being occupied. The digital signal after conversion was a number
between 0 and 1024. This was converted using a factor of 3.3/1024 and then analyzed to
know what to send through the ZigBee Transceiver. If a certain voltage was outputted by
the sensor that meant that there was someone occupying the machine and therefore a

certain message was sent.

Sending the data packet to the main computer hub was one of the most complex
parts of this subsystem. The data packet was sent to the transceiver using SPI. For the
transceiver to send a data packet we had to write to the frame of the transceiver using
802.15.4 standards. The data packet consists on several sections. Figure 3 describes this
process.

FIGURE 3: Procedure to Send a Data Packet

The first part consisted on a byte that signalizes that a packet is going to be written
to the frame to be sent. The second byte or PHR consists on the number of bytes that are
going to be sent. In the PHR you have to take in consideration the FCF bytes and the
addresses. This is then followed by the Frame Control Field (FCF), which gives several
information about the package including security, data type, destination addressing
mode,etc. Then we had to specify the address of the main hub. Least but last, we actually
sent our information based on the analysis that was done on the sensor information. We
setup our system in order to send a data package from each machine every time there was
a change of status. In simpler words, a message was only sent once a machine changed
from available to unavailable.

5.3.1 Important functions

void init_adc3(void)

This function goes through the protocol of initializing the A/D conversion. The process
consisted on following 12 steps in which we had to decide the analog inputs, the format of
the output, the sample clock, the clock source, the Mux, etc.

void init_SPI(unsigned long Fsck)

The initialization of the is very important. In this function we make sure that we have the

right SPI, set the edge and polarity clock, enable master mode and make the mode 8-bit.
unsigned char do_stuff(unsigned char data)

This is by far our most used function. This function cleared the SPI interrupt, wrote to the
SPI buffer and waited for the interrupt flag to be set again. Once it was set it outputted the
data it received in hex.

unsigned char write(unsigned long add , unsigned char data)

This function is an extension of the do_stuff. In this function we set the change in Chip
selesct in order to write to a register. We use the do_stuff function to write a command, the
address and after that we write the data we want to that specific register.

unsigned char read(unsigned add)

This function is similar to the write function. In this function, we also have to trigger the chip
select, then we use do_stuff to write the read command to SPI and the address. Then
dummy values are sent in order to be able to receive the data we want from that specific
package.

void reset_128()

This function is used to make sure we reset our microcontroller. Also, we needed to trigger
the chip select. Usually for the Zigbee transceiver to send a message reset ha to go from
low to high but because or reset was set up backwards in our board, we had to move reset
digitally from high to low with a delay in between.

void Map_2()

This mapping function was used because the microcontroller that we decided to place in
our board was different to the one we used for testing. We had to make sure we set up the
data in and the data out accordingly for SPI.

void weight_check()
This function was important because it was constantly checking the value of he sensor and
doing the Analog to Digital conversion. After the Analog to digital conversion was done this

function sent the value of this conversion for the function send_frame_someone_there(int
ADCValue) to analyze.

10

void send_frame_someone_there(int ADCValue)

This function analyzed the value of the Analog to Digital conversion and compared it to the
value before it. If there was a change in occupancy then a message is sent using the
function frame_write().

unsigned char frame_write(unsigned PHR, unsigned destination,
unsigned source, unsigned data)

This function completed the sensor module by sending a message when a change of
occupancy occurred. It is important to note that the message we sent in hex was used base
on the ASCII code that will later be read by our ComPort.

5.4 ZigBee subsystem

There were many options that we could have chosen when deciding on what type of
network our GyEEm of the future would run on. The first restrain that we used in selecting a
chipset was price. Our project has a budget that we need to respect and ZigBee’s low cost
fits our budget nicely. ZigBee is less than $15 per unit. However, do not let the low cost of
ZigBee mislead you into thinking that it is not capable.

Aside from its low cost, ZigBee has full 802.11 functionality and also has the ability
to save a lot of power which allows for less maintenance and lower long term costs. A
battery-powered node can wake up, check in, send data, and shut down in less than 30 ms.
That being said the shelf life of the battery will run out before the battery capacity is used
up. The low chipset cost and energy saving ability was perfect for our low cost project.
Another aspect of the ZigBee that was attractive to our project was that it is very easy to
integrate into our microcontroller. This saves us a lot of time in effort because we do not
need to do RF engineering to implement ZigBee into our microcontroller. We can plug it
right in to our design.

Lastly, ZigBee has the possibility to support extremely large networks. A larger gym
will require many more ZigBee nodes. The increased number of nodes will create a mesh
network that will allow data to travel through intermediate nodes to reach its destination.
This will be essential for implementing the GyEEm of the future into much larger
commercial gyms.

5.5 Main Hub Reception subsystem

11

This subsystem is highly based on his predecessor, with the difference that several
messages are received. This subsystem consists of another Zigbee Transceiver
AT86RF231, a pic-32 Microcontroller and a computer.

The Zigbee transceiver received a data packet in a similar fashion to how we sent
one. The received data packets are written to the frame of the transceiver and this are
analyzed by the microcontroller.

An interrupt service routine was set up waiting for a change on an external interrupt.
Once a change was noticed,a register (TRX_STATUS) that signals that a message is
being received was read using SPI and when this event occurred our microcontroller
proceeded to read the frame. In order to read a frame we had to send a SPI signal that
gave us access to read the frame.

Once the frame was completely read we decided to use the UART to communicate
to the ComPort of a Laptop. The UART was used to talk to the Comport using Putty or the
Console in our case because we decided to use a MacBook Pro. A message was written
to the ComPort using the putu() function that we worked with last semester.

Read Interrupt Check If the

o orocts Service rocovoq s
a .txt file Routi ne valid

Write

message to
the

terminal

12

FIGURE 4: Procedure to Read a Data Packet

5.5.1 Important Functions

unsigned char do_stuff(unsigned char data)

This is the same as the function we described in the previous section for the sensor
module.

unsigned char do_stuff _put(unsigned char data)

This function is a modified do_stuff function. This version of the function does the same of
his predecessor nut with the capability of writing the message to the ComPort. This version
directly writes the hex message to the ComPort.

void init_SPI(unsigned long Fsck)

Same function as the one in the previous module. It is needed to have the SPI working
correctly.

unsigned char write(unsigned long add , unsigned char data)
Same function as the one in the previous module.

unsigned char read(unsigned add)

Same function as the one in the previous module.

void sensor_read()

This is the function that we used to read the frame that is received. The read command is
sent first, the PHR is read, and then the source and data packet. The source and data
packet are what is written to the ComPort to create a txt file.

void set_reception()

13

The purpose of this function is to prepare the Zigbee transceiver to receive a message.
Inside this function we make sure that status of the TRX is RX_ready, or in simpler words
ready to receive.

void check_reception()

This is the function that is used to make sure that a complete frame is received once the
interrupt service routine is triggered.

void Enable _INTO(void)

This is the function needed to enable the interrupt and signal to it what to trigger for. In our
specific case our interrupt is just triggered once a frame is completely received.

void __ISR(_EXTERNAL_0 VECTOR,IPL7AUTO) int0_ISR(void)

This is the most important function of this module. This routine does not go inside our main
code but is accessed once our interrupt is triggered. This same routine is where we go and
read the frame that is received.

void set_promiscous()

This function was needed to make sure that we received all the messages that were sent.
This was done to make sure that we were not facing any problems due to protocol or
security.

5.6 Software subsystem

How we dealt with each problem and why:

(1) Cron Job because it allows us to do things automatically

(2) MySQL server because it makes our data easy to manage, and because it allows us to
keep all of it and to access it remotely - we want to use this data for time series analysis to
forecast future GyEEm usage.

A bit of background on MySQL.:
MySQL is an open source relational database management system (RDBMS) that runs as
a server providing multi-user access to a number of databases. The Relational Database

14

Management System (RDBMS) is a DBMS based on the relational model. RDBMSs have
become the predominant choice for the storage of information in new databases (for
example, DBs used for financial records, manufacturing and logistical information,
personnel data, and much more). The leading commercial RDBMS vendor is Oracle, which
is the owner of MySQL (MySQL originally belonged to the Swedish company MySQL AB,
which was acquired by Sun Microsystems in 2008, which was then bought by Oracle in
2010). Other leading commercial RDBMS vendors are: IBM, Microsoft, SAP, and
Teradata. The relational Model is a database model (i.e. a model for database
management) based on first-order predicate logic, first formulated and proposed by Edgar
F. Codd. In this model, all data is represented in terms of tuples, grouped into relations.
The purpose of the relational model is to provide a declarative method for specifying data
and queries: users directly state what information the database contains and what
information they want from it, and let the DBMS software take care of describing data
structures for storing the data and retrieval procedures for answering queries. (So basically
the purpose is to make it such that users can search for what they need without having to
worry about the details of how the data is stored and archived (the DBMS software takes
care of that). Most implementations of the relational model (i.e. RDBMS software) use the
SQL data definition and query language.

The input of our ‘software subsystem’ was the information that the main hub
received through Zigbee. This information was logged onto a computer by first identifying
the corresponding serial port by using screen - a tool that is built into most unix systems to
communicate with serial ports. To display devices that are connected to the computer’s
ports, we the following command:

Is /devi/tty.”.

We then identify which port is the one to which the main hub is connected to, and
then use screen to communicate with that port. If, for example, the port was
/devltty.usbserial-A4015010, then we would use screen as follows:
screen -L /dev/tty.usbserial-A4015010 57600.

Note that the third argument (57600) specifies that baud rate, which should be the
same as established earlier in order to operate properly. In addition to that, the first
argument (-L) is what lets the screen tool that we want to log whatever pieces of
information are passed from that serial port. The way screen operates is that it creates a
text file called screenlog.0 on whichever directory it was launched from, and this text file is
simply a transcription of what is being communicated to the main hub. The key to making
this subsystem connect to the previous ones was to log information using screen, and to
turn that information into an amenable form to use in filling out templates, in preparation for
data upload onto the website and onto our team’s database.

A .txt data file was then created from the logged information that was passed from
Zigbee to the main hub and transcribed onto screenlog.0. This .txt data file was created by

15

a script called parser.sh, which takes information from screenlog.0 and fills a template file
called report_from_zigbee template accordingly. More specifically, parser.sh reads the
contents of screenlog.0 and compares them to what has been seen on that same file
previously; thus, parser.sh determines what the new contents of screelog.0 are (that is,
what is the newly reported information attained from Zigbee). To do this, parser.sh keeps
track of the number of messages previously seen on screenlog.0 in a separate text file
called num_messages_register.txt, and uses it as reference every time it reads the
contents of screen log.0 (every minute), to determine whether there are new messages or
not and, if there are, how many; this is what allows for determining what the new messages
are.

The resulting .txt data file (which is named report_from_zigbee.txt) lists the different
machines from the GyEEm, followed by either a ‘1’ if the sensor reports that the machine is
currently in use, and a ‘0’ if the machine is available. This data file is read by a two shell
scripts, which write different files that are outputs of this subsystem. One of these is a .html
file (which is what will be uploaded to the GyEEm website), edited according to the
information in the .txt data file from Zigbee. The other output is a timestamped datafile, with
information that will be uploaded to a MySQL server.

To get the information from Zigbee onto the website, we needed a way to have the
.html file (that controls the content of our website) be updated constantly and automatically.
The fundamental element in our solution to the problem of how to get the information from
Zigbee to the website and to the MySQL server is a cron job that we set up using crontab.
crontab is a Unix/Linux utility that enables the user to set up a cron job - that is, crontab lets
the user make the computer execute a particular command at a particular time (on a
particular date or dates, or even every x hours or minutes).

To set up a cron job, the crontab utility provides three options for the user: -I, -e, and
-r. These allow the user to list, edit, and remove the contents of the current cron table file for
the current userid (the user account on the machine). Each user account on the machine
has its own cron table files; the table files are constantly polled by the machine’s cron
daemon, and each have a different function in the system. One of these files - the
/var/spool/cron file of each account - is what is edited when the user enters crontab -e in the
command line terminal, and it is the file that is used to set up personalized cron jobs. Upon
entering the edit option, the user has to set up a cron job in accordance to the following
structure:

#***** command to execute
ATTTTT

ANNEN
L1

16

#| ||| b— day of week (0 - 7) (O to 6 are Sunday to Saturday, or use names; 7 is
Sunday, the same as 0)

#| || L——month (1-12)
| | L———— day of month (1 - 31)
#| L hour (0 - 23)
L min (0 - 59)

A note about using crontabs: each time a cron job is executed, whatever messages
might result in addition to the operations that a script carries out (such as messages
updating the status of a particular job, or anything that would be printed on the command
line upon execution of a particular script) is sent as a ‘mail’ to the user’s system mail box.
To delete all mails from the mail box (and thus avoid unnecessarily filling the computer’s
storage with junk messages), one should access the system mailbox as follows:
mail
and then type
d1
to delete the first message,
d2
to delete the second message,
and
d*
to delete all messages. To avoid cluttering the system mailbox, we set up another cron job
to delete all messages in it periodically (every 10 minutes).

We wrote a bash script called HTML_editor.sh, which pulls information from a data file and
edits an HTML template accordingly. This template lists the GyEEm equipment, followed
by XXXX’s that are replaced depending on the input from Zigbee. We also wrote a bash
script called mysql_friendly_text_writer.sh, which prepares data for database upload. To
set up a cron job to execute this file every 2 minutes, we used a bash script called do.sh
which ran the series of bash scripts to execute necesary tasks. We put our files on our
Desktop, and then entered crontab -e in the command line terminal, which enabled us to
edit the /var/spool/cron file in a command line editor similar to vi. Through this editor, we
did set up our cron job by adding

*[2 * *** ~[Desktop/do.sh

onto the file. This finalized the cron job setup, and so the automatization of the upload of
GyEEm availability information onto the website was complete. Figure 4 (shown on next
page)outlines the flow of the data through our system.

17

GyEEm

upload_data_web.sh Website

HTML_editor.sh J HTML
l " Template

screenlog.0 parser.sh Regiogrkt);om Report From
Template Zigbee

mysq|l_friendly_writer.sh MySQL Timestamped
> Friendly B> p

'l Template Data File

HTML File

upload_data.sq|

Figure 5: The flow of data through our system
To accomplish the second task of the software subsystem - namely, information
management using a MySQL database - we first had to set up a server. This was done by
downloading the MySQL server software; from their website
(http://dev.mysqgl.com/downloads/mysql/), we downloaded
mysql-5.6.16-0sx10.7-x86_64.dmg and later used this package to install the software.
Once the MySQL server software was installed, we had to do a couple of administrative
mini-tasks to set up the server properly (setting up a password for root access of our
database, creating a path for quick access through the command line, and setting up
environment variables). We then created a database in our server called gotf (CREATE
DATABASE gotf;), and then created a table called gyeem_info within gotf (USE gotf;
CREATE TABLE gyeem_info;). We then had to find a way to have our data be uploaded
onto that table.
To upload our data onto table gyeem_info from our gotf database within MySQL, we again
relied on crontab to set up another cronjob, as well as a bash script to create a
MySQL-friendly .txt file, and a .sql script to take the contents of the new .txt file and upload
them onto our MySQL server. The first step of our database-upload task was to read the
input .txt file using a bash script called mysql_friendly_text_writer.sh, and to have that same
bash script use a template called mysql_friendly_text_template.txt to write a timestamped
xt file called mysql_friendly text YYYYMMDD_ HHMM.txt, where the suffix represents the
time. After that, a .sql file called data_uploader.sql loads data from the newly created
mysql_friendly_text YYYYMMDD_HHMM.txt file to the gyeem_info table on MySQL.

18

http://www.google.com/url?q=http%3A%2F%2Fdev.mysql.com%2Fdownloads%2Fmysql%2F&sa=D&sntz=1&usg=AFQjCNG7URJX_rCxfPfYZEYF3tAkDVAVPA

The decision to use MySQL to manage and store our data was a wise one,
because it allowed us to posteriorly access specific pieces of information through custom
queries, depending on what our objectives were. To look at the usage of the Elliptical on
May 2nd, at 2AM in the morning, we’d type:
select * from gyeem_info where machine_name = ‘Elliptical’ && month = 5 && day = 2 &&
hour = 2;

The result is as shown in Figure 6.
mysql> select * from gyeem_info where machine_name = 'Elliptical’ && month =5 && day = 2 && hour = 2;

machine_name | year
4mmmmmmmmmeeaaa fmmm———

Elliptical

Elliptical

Elliptical
Elliptical
Elliptical
Elliptical
Elliptical

Figure 6: Example of a MySQL query and result.

Lastly, we needed to figure out a way to get our .html files to actually be uploaded to
the internet every minute, upon being created. That is, we’d already figured out a way for
our files to be created appropriately (through the use of our shell scripts), and for this to be
done both automatically and periodically (through the use of cron jobs); we still needed a
way to open up a socket and update our website by uploading the .html file containing the
latest information about machine statuses. To do this, we had to use ftp. By typing ‘ftp’ onto
the command line, we opened up an ftp tool which is built onto unix systems. We then used
the command
ftp seniordesign.ee.nd.edu
to connect to the appropriate host. After that, we specify our username and password. We
then can explore the contents of our website using ftp commands. In particular, we use the
command
put ~/Desktop/gyeem_of the_future_machine_statuses.html Gymhomepage.html
to replace the website’s Gymnhomepage.html file with the
gyeem_of the future _machine_statuses.html file that contains the latest information (and
is currently located in our Desktop). Once we’d established the logistics of this routine, we
wrote a script called upload_data_web.sh, which would be executed automatically as part
of the cron job to get the information onto the website.

19

http://www.google.com/url?q=http%3A%2F%2Fseniordesign.ee.nd.edu&sa=D&sntz=1&usg=AFQjCNEdI0ChKaEvH3BuW99EeBDCmGG88Q
http://www.google.com/url?q=http%3A%2F%2Fseniordesign.ee.nd.edu&sa=D&sntz=1&usg=AFQjCNEdI0ChKaEvH3BuW99EeBDCmGG88Q

6 System Integration Testing

6.1 Describe how the integrated set of subsystems was tested.

6.1.1 Testing the board
Once the board we designed arrived we then soldered all of the components that were going to
be permanently fixed to the board. Then we connected the zigbee component and the sensor.

Next we compared our board file to the board we had soldered to check for any errors in
soldering. We used a voltmeter to make sure the connections were working. Once we did this
we plugged in our board and gave it power. The first thing we did after connecting power was to
make sure none of our components were heating up. They were not. we proceeded to the next
step. We then used the voltmeter again to make sure our pins and other components were
receiving the proper amount of voltage and in the case of the regulators emitting the proper
voltage. If your pins are not receiving the proper amount of voltage you may have to cut a trace
and feed a wire from a voltage source to the component that is lacking voltage.

Once the connections are tested and all the voltages are correct then we can move onto
testing the microcontroller and sensor.

6.1.2. Testing the Microcontroller code & sensor

In the code we need to make sure that our analog to digital pins on our microcontroller match
the ones specified in the code. We also made sure than any board changes were accounted for
within the code.

Once these precautions were taken we compiled the code and downloaded it into out
microcontroller. If our sensor did not detect anything we looked back at the code and usually
found a typo or a mislabeled pin. One problem to be careful of is to make sure your code deletes
the previous information that was on the microcontroller before you download new code. This
may affect the success of your testing.

6.1.3 Testing the website
Once the code and the board were functioning properly we moved on to test the website. We
were reading the data that our sensor was generating via a program called “Putty.” When we
tested the website we accessed this information and uploaded it. If our shell scripts were
functioning correctly then the sensor information would display as “available” or “unavailable” on
our website.

6.2 Show how the testing demonstrates that the overall system
meets the design requirements

The concept of our project was to create a system that would allow people to check the
availability of equipment at their gym from the comfort of their home. The idea behind this was
that our system would help prevent gyms from becoming too crowded.

20

We designed a board that would allow our sensor to interact with our microcontroller. We
then created code that would be able to determine whether a certain piece of equipment was or
was not in use. Once this code was downloaded into the microcontroller we would be able to
successfully determine the availability of equipment.

After having one functional sensor we built another and were also able to use it to monitor
the status of equipment. We then uploaded this information to the internet for all to see. Once on
the internet website was running all the information from our sensors was viewable to the public.

We were able to create a system that accomplished the goals we set for our project at
the beginning of the year.

7 Users Manual/lnstallation manual
7.1 How to install your product

Installation of our product will largely depend on the layout of your gym, as well as the specific
machines that you intend to keep track of with sensors. This is because of the different shapes
of each machine. Our sensors are built to be packaged in small boxes, and are thus very much
amenable to pieces of gym equipment with dashboards such as treadmills, ellipticals, or
stationary bikes. Installation of sensors on weight racks weight machines, though, might be a bit
more tricky; what one has to focus on when installing the sensors is to make sure that they are
both out of the way (won’t get ‘bumped into’), are pointed at wherever a person using a particular
piece of equipment would be standing, and are close enough to detect presence. Once the
sensors are properly installed, one must plug the ‘main hub’ onto the computer that will be
responsible for collecting data and making it publicly available via the gym’s website. After this,
pressing the ‘reset’ button on each sensor would leave the system installed.

How to setup your product

Once everything is properly installed, the setup is done through a window that will pop up when
the main hub is plugged into the computer. This window will be a GUI that will permit the user to
establish the identity of each sensor, and to define the distance range he/she might want that
particular sensor to detect (which will vary, depending on the piece of gym equipment that the
sensor corresponds to). As part of this set up process, the user will be prompted to specify
information about the gym’s website server, as well as to decide on a password to protect the
gym’s MySQL database. Once this is done, the setup software will take care of putting all the
scripts in place and of installing MySQL on the computer, as well as creating the appropriate
database and tables on it, depending on which machines are being tracked by the sensors
installed at the gym.

21

How the user can tell if the product is working

The user can tell if the product is working by looking at the website, and seeing if changes are
being updated accordingly as someone comes in and out of the range of a particular sensor.

How the user can troubleshoof the product

Our program will have a troubleshooting feature as part of the software package that becomes
installed on your gym’s computer at setup. This troubleshooting feature will work by testing
different subsystems independently, thus identifying the source of the problem. To do this, the
communication between the sensors and the main hub via Zigbee is tested first (by checking the
contents of screenlog.0), and then the efficacy of each step of data flow through our system is
assessed by running the different scripts that catalyze each step. Once this source is identified,
the administrator will be prompted to make changes accordingly, and everything will be tested
again. Depending on the performance of subsystems after changes have been made, system
functionality will be re-evaluated and the administrator will be prompted to make changes once
more, if necessary.

8 To-Market Design Changes

In designing our prototype there were some financial and scheduling constraints that
restrained us from producing a device ready to be sold on the market. To be able to have this
product sold on the shelves of any store or made easy to install on any gym there would be three
different changes we would make. We would make the sensor module smaller, add the
capability of multi machine and include Main hub as a Razzleberry pie.

To be able to sell this product and make it easy to install we need to make it smaller. The
sensor needs to be basically be ‘hidden’ on the machine and it should not make the usage of the
machine uncomfortable. In order to do this, we would have needed to use a different, less
consuming and smaller sensor or have designed our own. Obviously there were time and
monetary constraints that did not allow us to do this.

The second change we would make on our product would be to make the sensor
capable to be used on any different machine (elliptical, bicycles, treadmills,etc.) using the same
program. With the addition of LEDs and Buttons the user would be able to change the type of
machine usage the sensor would be analyzing using the same board. Moreover, this would
make the product more user friendly.

The third, would be to make a razzleberry pie capable of analyzing all the sensors. For
our project we used a computer from where we uploaded the data to the web, but with a
razzleberry pie, the later will be able to upload the information to the web as well as utilizing less
space at the gym.

22

The fourth and last changed, would be to improve our website and improve our data
analysis tools. In order to do this we would require more testing at certain gyms to be able to
obtain more information and prove our design to potential customers. One of the most important
features of our product, is its capability to predict trends at the gym in order to reduce costs and
increase profits for the gym owner. This can only be achieved and proven once we have done
some testing.

9 Conclusions (and future work)

The GyEEm of the future project was demonstrated successfully. We have been able to
demonstrate complete the functionality of our system. This was accomplished owing to that we
were able to work together as a group and individually on each of the subsystems.

We successfully chose a microcontroller that provided the functionality that we need. The
pic32 family microcontroller is best for our sensor system. It allows for easy interaction between
our main hub and sensors.

We were able to design a board that was less than half the size of our main hub. We
were also able to place the pins for the zigbee so that it would be able to be stacked and
conserve space. This will allow for easier integration into gym equipment. A bulky hardware
package would be more vulnerable to damage and cause the GyEEm of the future to be less
reliable.

We observed successful communication between all of our sensors to the main hub and
vice versa. We also were able to successfully upload this information to our website for all gym
patrons to see.

We are beginning to create the congestion trend subsection of the gym website. We can
accomplish this once we collect enough data on our MySQL server. We will then evaluate this
data and upload it back into the website. Once our project is running as expected we will be able
to provide of the previous week of gym activity. Our long term goal will be to provide gym trend
information on holidays based on the last year of data. This data will supplement the regular
weekly data that will be displayed.

10 Appendices

10.1 Complete hardware schematics
The board figure had to divided into three images so that all of its components could be
seen.

23

\]

&J o

v
J'I

<)

Board Figure 1: Microcontroller, Sensor connector, Pickit3
Here we see half of the pins of the Microcontroller and where they are connected. We
can also see the Sensor connector which is lables “CON_SENSOR” on the schematic. The
Sensor connector has a 10uF capacitor connected to the VDD and Ground to allow the sensor
to make more accurate measurements. Lastly, we can see the Pickit3 at the upper left of Figure
1 which has a reset connected to MCLR.

24

A

S ey

OO0
ooo?o
|

Board Figure 2: Microcontroller, and Zigbee Connector

In this image we can see the pins on the right side of the microcontroller. We can see

which pins are connected to the Zigbee Connector, which pins are connected to ground and
which pins require a capacitor. The capacitor values are listed in the image.

25

O

Schematic Figure 3 (pg 27) - shown vertically to enhance image:

The image on the previous page shows how the two voltage regulators are connected to
each other and to the power source. In this image we have a connector for a battery and another
connector for an in wall power source. In our demonstration we used a battery connected to our
battery connector. While we were testing we powered our device from the wall to conserve
batteries.

University of Notre Dame
GyEEm of the Future

—201 4 CON-SENSOR

CON_BAITEHY

Ilgnacio Aranguren
PICKITAUF Gian Paul Handal
o icholas Yul
Co NNicholas Yulan

Board Figure 1
This is an image of the updated layout of our board. We can see how all the components
are attached and which connections are above and below the board. All the components have
names and values to ensure that anyone could refer back to the document in the future. Our
initial board had several errors that we cut and reconnected manually. This is the final version of
the board.

27

Complete Software listings

Relevant parts or component data sheets (do NOT include the data sheets for the
microcontroller or other huge files but give good links to where they may be found.)

10.1 Data Management Scripts
gyeem_of_future_machine_statuses.html

<IDOCTYPE html>
<html>
<body>

<h1>GyEEm of the Future Machine Availability
Page</h1>

<p>Bicycle: available</p>
<p>Elliptical: available</p>

<p>Treadmill: available</p>

<p>Last Updated: May 01, 2014 at 15:53</p>

</body>
</html>

template.html

<IDOCTYPE html>
<html>
<body>

<h1>GyEEm of the Future Machine Availability
Page</h1>

<p>Bicycle: bp1status</p>

<p>Elliptical: ell1status</p>
<p>Treadmill: tm1status</p>

28

<p>Last Updated: month day, year at hour, minute</p>

</body>
</html>

mysql_friendly_text.txt

Elliptical 2014 05 01 15 53 0
Treadmill 2014 05 01 15 53
Bench_Press 2014 05 01 15 53 0

o

mysql_friendly_text template.txt

Elliptical year month day hour minute Elliptical:
Treadmill year month day hour minute Treadmill:
Bench_Press year month day hour minute Bench_Press:

num_messages_register.txt

143
report_from_zigbee_template.txt
Bench_Press bp_status
Elliptical el_status
Treadmill tm_status

report_from_zigbee.txt
Bench_Press 0

Elliptical 0
Treadmill 0
do.sh

#!/bin/sh

Created by nacho on 2/9/14.
First, let's pull the data from Zigbee
~/Desktop/parser.sh

Now, let's prepare that data to be uploaded onto the website

29

~/Desktop/HTML_editor.sh

Now, let's prepare that data to be uploaded to our database
~/Desktop/mysql_friendly text_writer.sh

Let's upload that data to our database then
“lusr/local/mysql/bin/mysql -u root -ptigersofthenorthEEswag85 < ~/Desktop/upload_data.sql’

Let's upload that data to our website now
~/Desktop/upload_data_web.sh

HTML_editor.sh
#!/bin/sh

HTML_editor.sh

#

#

Created by nacho on 2/9/14.
#

TIME="date '+%F %X"

BENCH_PRESS_STATUS="awk '/Bench_Press/ {print $2}' ~/Desktop/report_from_zigbee.txt’
ELLIPTICAL _STATUS="awk /Elliptical/ {print $2}' ~/Desktop/report_from_zigbee.txt’
TREADMILL_STATUS="awk '/Treadmill/ {print $2}' ~/Desktop/report_from_zigbee.txt’

bench_press

if ["$BENCH_PRESS_STATUS"==1]
then

bp1status=unavailable

bp1color=red

elif ["$SBENCH_PRESS_STATUS"==0]
then

bp1status=available

bp1color=green

else

bp1status="no_info"

fi

treadmill

30

if ["STREADMILL_STATUS" ==1]
then

tm1status=unavailable
tm1color=red

elif ["$STREADMILL_STATUS" ==0]
then

tm1status=available
tm1color=green

else

tm1tatus="no_info"

fi

elliptical

if ["SELLIPTICAL_STATUS" == 1]
then

ell1status=unavailable
ell1color=red

elif ["SELLIPTICAL_STATUS"==0]
then

ell1status=available
ell1color=green

else

ell1status="no_info"

fi

year="echo ${TIME:0:4}'
month="echo ${TIME:5:2}'
day="echo ${TIME:8:2}'
hour="echo ${TIME:11:2}
minute="echo ${TIME:14:2}’

if ["$month" == 01]
then
month_text="January"
elif ["$month" == 02]
then
month_text="February"
elif ["$month" == 03]
then
month_text="March"
elif ["$month" == 04]
then
month_text="April"

31

elif ["$month" == 05]
then

month_text="May"

elif ["$month" == 06]
then

month_text="June"

elif ["$month" == 07]
then

month_text="July"

elif ["$month" == 08]
then
month_text="August"
elif ["$month" == 09]
then
month_text="September
elif ["$month" == 10]
then
month_text="October"
elif ["$month" == 11]
then
month_text="November"
elif ["$month" == 12]
then
month_text="December"
else

month_text="N/A"

fi

“sed
's/bp1status/'$bp1status'/;s/bp1color/'$bp1color/;s/ell1status/'$ell1status'/;s/ell1color/'$ell1color'/
;s/tm1status/'$tm1status'/;s/tm1color/'$tm1color'/;' ~/Desktop/template.html >
~/Desktop/gyeem_of_future_machine_statuses.html’

mail_deleter.sh
#!/bin/sh

HTML_editor.sh

#

#

Created by nacho on 4/19/14.

32

> /var/mail/nacho

mysql_friendly_text_writer.sh
#!/bin/sh

HTML_editor.sh

#

#

Created by nacho on 2/9/14.
#

TIME="date '+%F %X"

BENCH_PRESS_STATUS="awk '/Bench_Press/ {print $2}' ~/Desktop/report_from_zigbee.txt’
ELLIPTICAL_STATUS="awk "/Elliptical/ {print $2}' ~/Desktop/report_from_zigbee.txt’
TREADMILL_STATUS="awk '/Treadmill/ {print $2}' ~/Desktop/report_from_zigbee.txt’

bench_press

if ["SBENCH_PRESS_STATUS" ==1]
then

bp1status="1"

elif ["$SBENCH_PRESS_STATUS"==0]
then

bp1status="0"

else

bp1status="no_info"

fi

treadmill

if ["STREADMILL_STATUS" ==1]
then

tm1status="1"

elif ["$TREADMILL_STATUS" ==0]
then

tm1status="0"

else

tm1tatus="no_info"

fi

elliptical
if ["SELLIPTICAL_STATUS" ==1]
then

33

ell1status="1"

elif ["SELLIPTICAL_STATUS"==0]
then

ell1status="0"

else

ell1status="no_info"

fi

year="echo ${TIME:0:4}
month="echo ${TIME:5:2}"
day="echo ${TIME:8:2}’
hour="echo ${TIME:11:2}’
minute="echo ${TIME:14:2}’

‘sed
's/Elliptical:/'$ell1status'/;s/Treadmill:/'$tm1status'/;s/Bench_Press:/'$bp1status'/;s/year/'$year'/;s
/month/'$month'/;s/day/'$day'/;s/hour/'$hour'/;s/minute/'$minute'/’

~/Desktop/mysql_friendly text_template.txt > ~/Desktop/mysql_friendly text.txt’

parser.sh
#!/bin/sh

LAST_NUM_MESSAGES="awk {print $0}' ~/Desktop/num_messages_register.txt’

LAST_KNOWN_BP_STATUS="awk 'NR==1{print$2}' ~/Desktop/report_from_zigbee.txt’
LAST _KNOWN_EL_STATUS="awk 'NR==2{print$2}' ~/Desktop/report_from_zigbee.txt'
LAST_KNOWN_TM_STATUS="awk 'NR==3{print$2}' ~/Desktop/report_from_zigbee.txt’

MESSAGE_LENGTH=2

FILE_TEXT="cat ~/Desktop/screenlog.0

echo "\nThe text in the file is:\\n\n'$FILE_TEXT

TEXT_LENGTH="echo "${#FILE_TEXT}"

echo \nThe number of characters in the file is: '$STEXT _LENGTH
NUM_MESSAGES="expr $TEXT_LENGTH / SMESSAGE_LENGTH"

echo '\nThe number of messages in the file is: 'SNUM_MESSAGES

echo \nThe number of messages in the last log was: 'SLAST_NUM_MESSAGES
NUM_NEW_MESSAGES="expr SNUM_MESSAGES - $LAST_NUM_MESSAGES®
echo \nThe number of new messages is therefore: 'SNUM_NEW_MESSAGES

if ["SNUM_NEW_MESSAGES"!=0]
then

begin for loop

foriin ‘'seq 1 SNUM_NEW_MESSAGES®

34

do

CURRENT_MESSAGE="echo $FILE_TEXT | awk -v i=$i -v
last_num_messages=$LAST_NUM_MESSAGES '{ print substr($0,
2*last_num_messages+2*i-1, 2) }"

echo "\n\nMessage number '$i' is: 'SCURRENT_MESSAGE

CURRENT_MACHINE="echo $CURRENT_MESSAGE | awk { print substr($0, 0, 1) }"

machine identification
if ["SCURRENT_MACHINE" == "B"]
then

machine_reported="Bench_Press"

echo 'The machine being reported is: '$machine_reported
elif ["SCURRENT_MACHINE" == "E"]
then

machine_reported="Elliptical"

echo 'The machine being reported is: '$machine_reported
elif ["SCURRENT_MACHINE" == "T"]
then

machine_reported="Treadmill"

echo 'The machine being reported is: '$machine_reported
fi

#t status retrieval
CURRENT_MACHINE_STATUS="echo $CURRENT_MESSAGE | awk '{ print substr($0, 2, 1

)
echo 'The machine status reported is: 'SCURRENT_MACHINE_STATUS

status pairing
if ["SCURRENT_MACHINE" == "B"]
then

LAST_KNOWN_BP_STATUS=$CURRENT_MACHINE_STATUS

echo 'The last known bp status has been updated as: 'SCURRENT_MACHINE_STATUS
elif ["SCURRENT_MACHINE" == "E"]
then

LAST_KNOWN_EL _STATUS=$CURRENT_MACHINE_STATUS

echo 'The last known el status has been updated as: 'SCURRENT_MACHINE_STATUS
elif ["SCURRENT_MACHINE" == "T"]
then

LAST_KNOWN_TM_STATUS=$CURRENT_MACHINE_STATUS

echo 'The last known tm status has been updated as: 'SCURRENT_MACHINE_STATUS
fi

35

‘sed
's/bp_status/'SLAST_KNOWN_BP_STATUS'/;s/el_status/'SLAST_KNOWN_EL_STATUS'/;s/tm
_status/'SLAST_KNOWN_TM_STATUS'/" ~/Desktop/report_from_zigbee template.txt >
~/Desktop/report_from_zigbee.ixt’

done
end for loop
fi

‘echo $NUM_MESSAGES > ~/Desktop/num_messages_register.txt’

upload_data_web.sh
#!/bin/sh

Created by nacho on 4/9/14.

HOST=seniordesign.ee.nd.edu
USER=gotf
PASS=tIr9456xd

ftp -inv $HOST << EOF

user $USER $PASS

put ~/Desktop/gyeem_of_future_machine_statuses.html Gymhomepage.html
bye

EOF

exit 0

upload_data.sql

USE gotff;
LOAD DATA LOCAL INFILE '~/Desktop/mysql_friendly_text.txt' INTO TABLE gyeem_info;

10.2 The Sensor Module Code

/*
* File: Source_Sender.c
* Author: ghandal

36

*

* Created on March 26, 2014, 7:03 PM
*/

#include <stdio.h>
#include <stdlib.h>
#include <xc.h>

#include "configbitsrev8.h"
#include "lib_delay.h"
#include "lib_spilcd.h"
#include "lib_serial6.h"

/I New settings for our custom board
#define CS PORTBDbits.RB9
#define SPIlint IFS1bits.SPI2RXIF
#define Reset PORTBDbits.RB13
#define Sleep PORTBbits.RB3
#define FCF_write1 0x44

#define FCF_write2 0x88

#define int0 PORTDbits.DO

int voltage_test = 0;

void init_adc3(void)

{

/I To configure the ADC module, perform the following steps:
/1. Configure the analog port pins in AD1PCFG<15:0> (see 17.4.1).

ANSELA= 0;

ANSELADbits. ANSAO = 1 ; //Make AO analog for conversion
ANSELBDbits. ANSB13 = 0;

ANSELBDbits. ANSB3 = 0;

ANSELBDbits. ANSB2 = 0;

/IANSELBDits = 0;

[IANSELADbits. ANSA4 = 0;

/12. Select the analog inputs to the ADC multiplexers in AD1CHS<32:0> (see 17.4.2).

AD1CHSbits.CHOSA =0 ;
//[AD1CHS = 0x00020000; // Connect RB2/AN2 as CHO input

/113. Select the format of the ADC result using FORM<2:0> (AD1CON1<10:8>) (see 17.4.3).

AD1CON1bits.FORM = 000 ; // Format as 16 bit integer

/14. Select the sample clock source using SSRC<2:0> (AD1CON1<7:5>) (see 17.4.4).

AD1CON1bits.SSRC= 000; // Continous conversions

/15. Select the voltage reference source using VCFG<2:0> (AD1CON2<15:13>) (see 17.4.7).

37

AD1CON2bits.VCFG= 000 ; //Avdd
//6. Select the Scan mode using CSCNA (AD1CON2<10>) (see 17.4.8).
AD1CON2bits.CSCNA = 0;
/[7. Set the number of conversions per interrupt SMP<3:0> (AD1CON2<5:2>), if interrupts are to
be used (see 17.4.9).
AD1CON2bits.SMPI = 0000; // only stored in ADIBUFO
/18. Set Buffer Fill mode using BUFM (AD1CON2<1>) (see 17.4.10).
AD1CONZ2bits.BUFM= 0 ; // we
/19. Select the MUX to be connected to the ADC in ALTS AD1CON2<0> (see 17.4.11).
AD1CON2bits.ALTS =0 ; // clear ALTS
AD1CHSbits.CHONA = 0; // set to VR-
//10. Select the ADC clock source using ADRC (AD1CON3<15>) (see 17.4.12).
AD1CONB3bits. ADRC =0 ; // PBCLK is used as the conversion clock source
//11. Select the sample time using SAMC<4:0> (AD1CON3<12:8>), if auto-convert is to be used

//12. Select the ADC clock prescaler using ADCS<7:0> (AD1CON3<7:0>) (see 17.4.12).
AD1CON3bits.ADCS = 10; // set the ADCS to 10?

//13. Turn the ADC module on using AD1CON1<15> (see 17.4.14).
AD1CON1bits.ON = 1;

/[14. To configure ADC interrupt (if required):

/la) Clear the AD1IF bit (IFS1<1>) (see 17.7).

//b) Select ADC interrupt priority AD11P<2:0> (IPC<28:26>) and subpriority AD11S<1:0>
/Do | need this?

/IFS1CLR = 0x0002; // Ensure the interrupt flag is clear

INEC1SET = 0x0002; // Enable ADC interrupts

/IPC<24:24>) if interrupts are to be used (see 17.7).

//15. Start the conversion sequence by initiating sampling (see 17.4.15).
//Done in our function

}

void init_SPIl(unsigned long Fsck){ // function to initialize SPI

SPI2CONDbits.SMP = 0;// maybe is 1 but we can play with this later

SPI2CONDbits.CKE = 1; // edge clock

SPI2CONDbits.CKP = 0; // polarity clock

SPI2CONDbits.MSTEN = 1;// set on master mode enable

SPI2CONDbits.MODE32=0; // 8-bit disable 32 // Do we still need to disable more 32 and 167
SPI2CONDbits.MODE16=0; // 16 bit disable

/ SP14CON = 0b00000000000000000000000100100000; //CKP (bit 8) and CKE

/Ineed to be correct

38

unsigned long Fpb = 40000000; // see page 29 of PIC32 Reference SPI.pdf
/lunsigned long Fsck = Fpb/(2*(SPI3BRG + 1));

/ISCK3 = Fsck;

/I make it to 2MHz

SPI2BRG = Fpb/(2*Fsck)-1;

/I not sure if we have to enable buffer mode
/l'int rData;

/I rData=SPI3BUF;

/ISPI3BUF=1;

SPI2CONDbits.ON = 1;
}
unsigned char do_stuff(unsigned char data)
{
SPlint = 0; // set interrupt to 0
SPI2BUF = data; // send the buffer to data
while(!SPlint);

return SPI2BUF;
}
unsigned char write(unsigned long add , unsigned char data) // function that goes to an adresss
and writes the data to that point
{
CS=0;
do_stuff(0xCO+add);

do_stuff(data);

CS=1;
}

unsigned char read(unsigned add) // adress is the argument we are calling
{

CS=0;

do_stuff(0x80+add);

//do_stuff(add);

do_stuff(0x00);// dummy value

/I return Data?
CS=1;

39

unsigned char frame_write(unsigned PHR, unsigned destination, unsigned source, unsigned
data)
{

write(0x02,0x09); // PLL_ON state

delay_ms(1);

read(0x01);

write(0x02,0x02); // TX-ready to send

delay_ms(0.5);

CS=0;

do_stuff(0x60); // write command
do_stuff(PHR); // PHR has to be a number between 9 and 127 in hex, unless it is ack(2+data)
do_stuff(FCF_write1); //lower bit of FCF
do_stuff(FCF_write2);// higher bit of the FCF

do_stuff(0x45); // Sequence number - Figure out how to setup ramdomly
//Destination Pan
do_stuff(0x67);
do_stuff(0x45);

/I Destination ID
do_stuff(0x01);
do_stuff(0x23);

/I Actual Source Adress
do_stuff(source);
do_stuff(source);
/I The stuff we want to send
do_stuff(data);//actual stuff we want to send
do_stuff(data);//actual stuff we want to send
do_stuff(data);//actual stuff we want to send
do_stuff(data);//actual stuff we want to send
do_stuff(data);//actual stuff we want to send
do_stuff(data);//actual stuff we want to send
do_stuff(data);//actual stuff we want to send
CS=1;
delay_ms(1);
write(0x02,0x08); // GO BACK TO trx STATE
delay_ms(1);

}

void reset()

{
CS=0;
Reset = 0;
delay_ms(1);
Reset = 1;

40

CS=1;
}

void reset_128() // inverted reset

{
CS=0;
Reset = 1;
delay_ms(1);
Reset = 0;
CS=1;

}

void wakeup()

{

Sleep=1;
delay_ms(1);
Sleep=0;
delay_ms(1);

CS=1;
}

void send_frame_someone_there(int ADCValue)

{

double voltage = ADCValue*3.3/1024;
intx ;

if(voltage> 1.5) // if object is from 10 to 20cm of sensor

{
x=1;
Il frame_write(0x11, 0x20, 0x45, 0x31); // 31 is a 1 in ASCII,45 is an E for elliptical

}
else if (voltage< 1.5)
{
x=0;
/l frame_write(0x11, 0x20, 0x45, 0x30); // 30 is a 0 in ASCII
}
if (x != voltage_test)
{
if (x==1)
{

41

frame_write(0x11, 0x20, 0x42, 0x30); // 30 is a 0 in ASCII,42 is an B for Bike

/I frame_write(0x11, 0x20, 0x45, 0x30); // 30 is a 0 in ASCII,45 is an E for elliptical
}
else if(x == 0)
{
frame_write(0x11, 0x20, 0x42, 0x31); // 31 is a 1 in ASCII,42 is an B for Bike

/I frame_write(0x11, 0x20, 0x45, 0x31); // 31 isa 1 in ASCII
}

}

voltage_test = x;

delay_ms(100);

}
void weight_check()

{

while(1)

AD1CON1bits.SAMP = 1 ;

delay_ms(10); // sample for 10 mS

AD1CON1bits.SAMP =0 ;

while (AD1CON1bits.DONE == 0); // conversion done?

int ADCValue = ADC1BUFO;//ADCValue we obtain from conversion

send_frame_someone_there(ADCValue);

}

}

void Mapping()

{
SDI2R = 0x10;
RPA4R = 0x10;

}

void Map_2()

{

42

SDI2R = 4;
RPA4R = 4;
}
[
*/
int main(int argc, char** argv) {
/I make all pins analog
/IAD1PCFG = OxFFFF;
DDPCONDbits.JTAGEN = 0; // disable JTAGEN

Map_2();
init_adc3();

/I Make the specific pins digital
TRISBDbits. TRISB9 = 0;
TRISBbits. TRISB13 = 0;
TRISBbits. TRISB3 = 0;
TRISADbIts. TRISA4 = 0;
TRISBDbits. TRISB2 = 0;

init_SPI(10);// making the SPI4BRG large enough so the clock does not take toolon g

reset_128();
reset_128();
reset_128();
delay_ms(1);
wakeup();
wakeup();
wakeup();
wakeup();

/lweight_check();
weight_check();
delay_ms(1);

return (EXIT_SUCCESS),
}

43

Main Hub code

[

* File: MainHub.c

* Author: ghandal

* Created on March 19, 2014, 11:41 PM

*/

#include <stdio.h>

#include <stdlib.h>

#include <sys/attribs.h>

#include <xc.h>

#include <plib.h>

#include "configbitsrev8.h"

#include "lib_serial6.h"

#include "kit32r7lib.h"

/ldefine CS LATDbits.LATD5

#define CS PORTBbits.RB8

#define SPIlint IFS1bits.SPI4RXIF

#define Reset PORTBbits.RB11

#define Sleep PORTBbits.RB10

#define FCF_write1 0x44

#define FCF_write2 0x88

#define int0 PORTDbits.RDO

#define INTOFlag IFSObits.INTOIF

unsigned char test_ SPI4BUF;

void init_SPI(unsigned long Fsck){ // function to initialize SPI
SPI4CONDbits.SMP = 0;// maybe is 1 but we can play with this later
SPI4CONDbits.CKE = 1; // edge clock
SPI4CONDbits.CKP = 0; // polarity clock
SPI4CONDbits.MSTEN = 1;// set on master mode enable
SPI4CONDbits.MODE32=0; // 8-bit disable 32 // Do we still need to disable more 32 and 167
SPI4CONDbits.MODE16=0; // 16 bit disable

unsigned long Fpb = 40000000; // see page 29 of PIC32 Reference SPI.pdf

/I make it to 2MHz
SPI4BRG = Fpb/(2*Fsck)-1;

SPI4CONDbits.ON = 1;
}

unsigned char do_stuff(unsigned char data)

{
44

SPlint = 0; // set interrupt to 0
SPI4BUF = data; // send the buffer to data
while(!SPlint);

return SPI4BUF;
}

unsigned char do_stuff_put(unsigned char data)
{
SPlint = 0; // set interrupt to 0
SPI4BUF = data; // send the buffer to data
while(!SPlint);
test SPI4BUF = SPI4BUF,;
putu(SPI4BUF);
return SPI4BUF;
}
unsigned char write(unsigned long add , unsigned char data) // function that goes to an adresss
and writes the data to that point

{
CS=0;
do_stuff(0xCO+add);
do_stuff(data);
CsS=1;

}

unsigned char read(unsigned add) // adress is the argument we are calling

{
CS=0;
do_stuff(Ox80+add);

do_stuff(0x00);// dummy value
/l return Data?
CSsS=1;

}

void sensor_read()

{
CS=0;
do_stuff(0x20); // read command

/ dummy value to get PHR

/linti=1;
intj=0;

45

I

}

int datalj];

inti=1;

char source_adr1;
char source_adr2;
for (i ;i<16;i++)
{

/ldo_stuff(0x01);

if(i<=9) // get higher bit of FCF

{

do_stuff(0x01);

/] set_output_device(1);

/I do_stuff(0x01);

/lconst char* FCF_read1 = SPI4BUF;
[Itprintf(FCF_read1);

}

if (i == 13)// store data to analyze it later
{

do_stuff_put(0x00);

/ldata[i] = SPI4BUF;

[i++;
}
if(i==14) // get the source adress sexond pin
{
do_stuff_put(0x00);
// tprintf(SPI4BUF);
/[source_adr2 = SPI4BUF,;
}
if(i == 15) // get the source adress sexond pin
{
/ldo_stuff_put(0x00);
// tprintf(SPI4BUF);
/[source_adr2 = SPI4BUF,;
}
}
CS=1;

void set_reception()

46

{

}

read(0x01);

write(0x02,0x08); // Force TRX_OFF
delay_ms(1);

read(0x01);

write(0x02,0x06); // RX_ON and ready to receive
delay_ms(1);

read(0x01);

void check_reception() // checks until some data has been recepted

{

int reception = 0;

/Iwrite(0x02,0x03); // Force TRX_OFF

read(0x01); // check and see if the RX_ON is actually on
while(reception = 1)

{

/Iwhile('INTOFlag);//Interrupt is triggered

read(0Ox0F); // read the IRQ_Status to check if RX_start
if (SPI4BUF == 0x04) // iF irQ_2 or RX_StART
/lread(0x01); // Read TRX_Status

/[if(SPI4BUF == 0x01)

{

reception = 1; // send message to LCD that says reception has been started

}
else if (SPI4BUF == 0x08) // to check if TRX_END

{
reception = 1;
}
}

void reset()

{

}

CS=0;
Reset = 0;
delay_ms(1);
Reset = 1;
CS=1;

void wakeup()

{

47

CS=0;

Sleep=1;
delay_ms(1);
Sleep=0;
delay_ms(1);
CS=1;

}

void Enable_INTO(void)

{

write(0x0E,0x08); // write to IRQ_Mask to only signalize when interrupt RX_start and
TX end

INTCONDbits.MVEC =1 ;//Multi vectored system

INTCONDIts.INTOEP = 1 ; // set the edge polarity to rising edge

IECObits.INTOIE =1;//enabling interrupt O

IPCODbits.INTOIP = 7 ; //setting priority to 7

IFSObits.INTOIF =0 ;

asm("ei");

//do_stuff(OxAA);

//do_stuff(OxAA);

//do_stuff(OxAA);

}
void __ ISR(_EXTERNAL_O0 VECTOR,IPL7AUTO) int0_ISR(void)
{
check_reception();
sensor_read();
IFSObits.INTOIF =0 ;
LATE =0x00; // lih=ghts turn on to check
}

void set_promiscous()

{
//Set Short adresses and Pan Adreses to 00
write(0x20,0x00);
write(0x21,0x00);
write(0x22,0x00);
write(0x23,0x00);
write(0x24,0x00);
write(0x25,0x00);
write(0x26,0x00);
write(0x27,0x00);
write(0x28,0x00);
write(0x29,0x00);
write(0x2A,0x00);

48

write(0x2B,0x00);

write(0x17,0x02); //Enable promiscous Mode

// Disable generation of Acknowledgement bit 4
/I Bit 6 &7 Acknowledgement of all frames
write(0x2E,0xDO0);

}

/*

*

*/

int main(int argc, char** argv) {
/I make all pins analog

AD1PCFG = OxFFFF;

DDPCONDbits.JTAGEN = 0; // disable JTAGEN
/I Make the specific pins digital

TRISBbits. TRISB8 = 0;
TRISBbits. TRISB11 = 0;
TRISBbits. TRISB10 = 0;
init_SPI(10);// making the SPI4BRG large enough so the clock does not take toolon g

reset();
Sleep=0;
/lInitialize Uart at 57600
serial_init(57600UL);
//set output device 1 to the terminal
set_output_device(1);
[**tprintf("program is being initialized\n");

wakeup();

Enable_INTO();

read(0x01);

delay_ms(1);

delay_ms(1);

write(0x0E,0x08); // write to IRQ_Mask to only signalize when interrupt RX_start and TX end
set_promiscous();

set_reception() ;

return (EXIT_SUCCESS);
49

50

