

Open Sesame
Final Report

EE 41440: Senior Design II

Dr. R. Michael Schafer

7 May, 2014

Denise Garcia

Ka Hin Lee

Veronica Martinez

Jane McGuinness

Angela Savela

Spring 2014 Final Report

Open Sesame 2 EE Senior Design

Table of Contents

1 Introduction ...3

2 Detailed System Requirements ..5

3 Detailed Project Description ..7

3.1 System Theory of Operation ... 7

3.2 System Block Diagram .. 8

3.3 Door Status Subsystem .. 9

3.4 Electric Imp Subsystem ... 12

3.5 Garage Door Motor Subsystem ... 14

3.6 Android Application Subsystem ... 19

3.7 Camera Subsystem .. 22

3.8 Housing & PCB Design .. 28

3.9 Interfaces ... 32

4 System Integration Testing ..36

4.1 Testing of Integrated Set of Subsystems .. 36

4.2 Meeting the Design Requirements In Testing .. 37

5 User Manual/Installation Manual ..38

5.1 Assumptions for Marketed Project ... 38

5.2 How to Setup the Open Sesame ... 38

5.3 Using the Open Sesame Android Application .. 42

5.4 Troubleshooting the Open Sesame ... 43

5.5 Security .. 44

6 To-Market Design Changes ...44

7 Conclusions ...45

8 Acknowledgements ..45

9 Appendices ...47

 9.1 Appendix of Parts Used ... 47

 9.2 Appendix of Links to Data Sheets ... 48

 9.3 Appendix of Microcontroller Code Files... 49

 9.4 Appendix of Electric Imp Code Files .. 61

 9.5 Appendix of Android Application Code Files ... 67

 9.6 Appendix of Server Code Files ... 75

 9.7 Appendix of Website Code Files ... 77

Spring 2014 Final Report

Open Sesame 3 EE Senior Design

1 Introduction

Many homeowners across the world are plagued with the common problem of

forgetfulness or absent-mindedness. One of the largest issues that forgetful homeowners have to

deal with is whether or not they remembered to close the garage door. This concern, however, is

not limited to the chronically preoccupied. It can affect anyone who is simply not paying

attention or is distracted momentarily thus leading to a wide-open garage door. Forgetting to

close the garage door is a mistake that can easily be made when leaving or even entering the

home. An unattended, open garage door can lead to many dangers such as burglary, trespassing,

or a small child escaping. There are even minor annoyances that can come from an opened

garage door such as a pet running away or unwanted weather damage to cars or homes. It is

almost impossible to determine whether or not the door was opened or closed once one has left

their residence. Lack of control from a distance not only means the door may be left open, but

also that it cannot be opened to allow entry to permitted visitors—such as maintenance workers.

 Although many people fall victim to a gaping garage door, it does not mean the problem

cannot be remedied. The headache of the many will be answered and that answer is “Open

Sesame.” The Open Sesame system is designed to interface with an existing garage door. All it

requires is a garage door opener, tools to mount a set of switches, a stable Wi-Fi connection, and

a smart phone, although the commands can also be run from an internet interface. The design

retains all of the original capabilities of the garage door opener system and acts as an additional

remote that is not limited by range. This unlimited “remote” has several features that provide

knowledge about and control over the door. The user can now check the status of the door while

anywhere from work to their bedroom so no matter where they are they never have to wonder if

they remembered to close it. They can also choose to take a picture of the door to see if all is

well. This is particularly useful should the door become stuck in transition. The user will be able

to see if something has fallen in the way of the door or if someone has entered to cause this error.

Not only can the user stay informed, they also have control. Should they forget to close the door,

Open Sesame allows them to close it, even if they are already miles from home. If the door needs

to be opened for a repairman or a child returning from school, a button can be pressed from

wherever the owner is and access will be granted. Open Sesame even goes beyond fixing the

status after the fact. It also incorporates proactive features that close and open the door

automatically when the user (and therefore their phone) leave or approach the home and leave or

enter the home Wi-Fi. This feature can be turned on and off so that it does not activate the motor

when the user is just mowing the lawn or going for a walk. With this addition, it becomes

unlikely that the door will be forgotten in an unwanted state to begin with, further enhancing the

benefits of the Open Sesame system.

In order to function, the product requires communication from the Android application or

internet all the way to the module’s microcontroller via a Wi-Fi enabling device called the

Electric Imp. All of the commands begin at the user’s cell phone, and are sent by accessing

URLs set to match the specific Electric Imp. The Imp then communicates with the

microcontroller mounted on a circuit board designed for this project. This communication is

achieved through SPI commands that cause the microcontroller to access the corresponding case

of a switch statement. The microcontroller has been programmed to send commands to the

garage door opener in the same fashion as someone using the wall remote, allowing for

flexibility and retention of all original safety features. It also controls the light and the camera

and can determine the status of the door via a switch system.

Spring 2014 Final Report

Open Sesame 4 EE Senior Design

 Overall, the Open Sesame system design meets most of the expectations originally

envisioned when this project first began. Of the four primary features (door status checks, motor

control, automatic open and close and picture taking), most are fully operational. Open Sesame

was able to control a garage door opener motor from an Android application—or a web browser

on a computer or any smartphone—and check whether the garage door was open, closed, or in

between. In addition, a command to take a picture can be executed from the cell phone

application—or web browser—to the camera connected to the main circuit board through the

Electric Imp. The camera can then send the picture through the microcontroller to the Electric

Imp device which in turn sends it to its online agent. The cell phone application can successfully

grab an image from the server where pictures for the system are to be placed. However, for this

prototype, the agent to server communication link is not functional. The ability to identify the

home Wi-Fi network and to issue commands based on changes in connectivity with it is also

demonstrated by this version of the prototype. It requires time for the commands to send because

of the delay caused by the phone disconnecting from one Wi-Fi and connecting to another or the

mobile network, but the feature is still functional.

In addition to these primary requirements being mostly met, a variety of additional

features were incorporated to increase safety and increase the owner’s ease of use. All of the

control interfacing was completed without overriding any of the motor’s existing safety features,

such as the optic eyes. For the user’s benefit, the Open Sesame system has the built in the

intelligence of detecting when an open/close command has been issued redundantly, unlike the

garage motor wall panel, which just toggles between open and close, often resulting in the user

accidentally opening/closing the door unintentionally. For extra safety, when a command is

executed remotely—be it from the cell phone application or a web browser—the garage motor

flashes the light off and on to warn anyone in the vicinity of the garage door that it will be

opening or closing. Also, much like the existing motor system, when the door is stopped and

detected as in transition, the next action of the motor will be to open the door only, in case

whatever was blocking the door is still there.

The Open Sesame team was able to test the functionality of the project through the

construction of a mini-garage door model. Access to a full garage door motor and system

allowed for confirmation that the product could successfully communicate with and control an

existing garage motor and light. By attaching a fake “door” to the motor and installing the

switches as they would be in a real garage, the accuracy of the switches used to determine the

door status was also confirmed. The automatic open/close feature was tested by disconnecting

and connecting the phone on which the application was running to the ND-secure Wi-Fi which

stood in for a home Wi-Fi network. This enabled the team to confirm that the motor would

eventually respond appropriately to these changes. Unfortunately, the camera subsystem was not

able to be fully tested in this setting because of the issues in saving the image to the server.

Previous work with the USBee, the logs of the Electric Imp agent, a dummy picture on the server

and the application, showed that all of the links in the communication chain were functional

except for the server-Imp one.

The main unresolved issue is sending an image from the Electric Imp cloud to the Notre

Dame server made for this project, which is most likely due to the network permissions of the

server. The Electric Imp can receive the image from the camera through the microcontroller, and

the cell phone application can get an image from a server, but there is a disconnect in actually

saving the image from the camera to the server. This is hypothesized to be a permissions issue

because the Notre Dame servers are very secure and are unlikely to accept uploads from

Spring 2014 Final Report

Open Sesame 5 EE Senior Design

unrecognized and unapproved sources such as the Electric Imp cloud. Other minor things such as

the delays in the automatic open/close commands and the time needed to transmit the picture are

not ideal, but they do not prevent the functioning of the product as a whole. The length of some

of these delays seems to be dependent on the model of phone used, which is unexpected. There

are also issues that can arise should the user grow impatient and begin pushing buttons without

waiting for the previous command to complete. With additional time and resources, various

upgrades to the project could be made before taking it to market and these are discussed in the

To-Market Improvements portion of this report.

2 Detailed System Requirements

Enhanced Intelligence
The microcontroller must be able to interface with an existing garage door system, so that

signals may be sent from the microcontroller to the main circuit of the garage door opener

system. This connection allows for the microcontroller to transmit open/close signals for the door

and on/off signals for the light. This is done through a hardwired circuit. It communicates like

the wall panel does. There are existing screws on the opener system to allow for the attaching of

such wires. This allows the main features of the existing garage door system to remain

unchanged. It is also user-friendly because the set up is not more complex or invasive than the

installation of the already included wall panel. It could also help the product be more universal

and able to work with more garage door opening systems. The microcontroller is also connected

to two magnetic switches, which relay the status of the door. With this information obtained, the

user can then proceed to change the status of the door if desired.

Another aspect of the additional intelligence is the ability of the user to request and

receive photos of the garage door. These need not be high quality as their main purpose is to

provide an image that proves the current state of the door and that would allow the user to

identify any potential problems or security threats. For example, it would let the user see why the

door may have failed to close full or see if someone is entering, should the door open

unexpectedly.

Wireless and Hands-free Interface
A wireless router with WPA2 security is used to provide the system with protected access

Wi-Fi, which is the typical wireless network protocol for most modern homes. The only device

that needs to be supported from the system is the Electric Imp, which is what allows the user to

communicate with the system using the Internet. Although the Electric Imp must be within the

range of the wireless router providing Wi-Fi, there is no required range for the user to be able to

remotely access or control the entire system from the Android application on their phones. In

addition to allowing for access to door information and door control from a distance, the ability

to recognize the home Wi-Fi network allows for a feature that automatically opens the garage

door as the home owner (and their phone) pull within range of the home Wi-Fi.

User Interfacing
 There are three main user interfaces: the cell phone application for Androids (or the

website), the existing button panel, and the existing remote control devices. The cell phone

application is the primary focus, as the latter two interfaces do not need to be changed. The cell

phone interface allows the user to communicate with the system, by receiving images of the

Spring 2014 Final Report

Open Sesame 6 EE Senior Design

garage door area and the status of the door, as well as sending the commands to perform these

functions and the commands to open or close the door as desired. The user also has the ability to

make portions of the interface hands-free with the Wi-Fi detection-enabled automatic open/close

feature.

System Installation, Use, and Safety
The system is installed by connecting the microprocessor circuit board to the existing

garage door system circuit, by hardwiring it in a manner mimicking the wall panel. The new

system should not interfere with existing functions of the original garage door opener system, as

it is designed to be as noninvasive as possible by connecting to screws that the owner is already

meant to work with. The new system uses external sensors to detect the status of the garage door,

so the connection between the new system and the previous system is one way with the

microcontroller sending open/close and light on/light off signals to the garage door opener

circuit. A primary motivation for making the system as noninvasive as possible is to avoid

conflicting with the security and safety features and protocols of the existing garage door opener

system.

Power System
The microprocessor circuit board and the Electric Imp connecting circuit board must be

powered by some kind of continuous power source. Because the device is installed near the

existing motor box on the ceiling of the garage, it can plug into the outlet that typically already

exists there for the garage door motor. This voltage must be divided down to provide the 3.3 V

and 5 V expected by the electronic components. All of the additional components are connected

up to the central board that is connected to this power source. Battery power is not required.

Protocol upon an unexpected loss of power or reset must be established.

Table 2.1. Summary of System Requirements
Requirement Description Status/Result

Primary Features

Check Door Status User can check status of door from app or website; code can make

decisions based off this information

Achieved

Motor Control User can specify open or close door from app or website Achieved

Light Control Ability to turn on and off the motor light to take pictures and warn

users

Achieved

Picture Capture User can request and receive picture on app or website Partial – Imp to server

link unachievable

Wi-Fi Recognition App can identify when connected to home Wi-Fi Achieved

Approach/Exit

Response

When user is in Wi-Fi detection mode, door opens or closes

automatically when phone connects or disconnects from home Wi-

Fi

Achieved

Existing User Interfaces

Retained

Wall panel and remote still function as expected Achieved

Power

Power Ability to be powered from standard outlet; battery power not

required

Achieved

System Outage

Recovery

Ability for device to recover from power outage Partial - requires a

reset

Safety Features

Retention of Safety Optic eyes, force sensors, etc. built into motor still stop door in Achieved

Spring 2014 Final Report

Open Sesame 7 EE Senior Design

Features required situations

Additional Safety

Features

Light flashes to warn of impending door status changes

commanded remotely

Achieved

Existing User Interfaces

Retained

Wall panel and remote still function as expected Achieved

General Requirements

Reasonable Price Components chosen to minimize cost to the user and stay under

the project budget of $500

Achieved

Packaging Housing to protect from garage elements and allow camera

angling; reasonably small; user access to required features;

nonflammable

Achieved

Noninvasive Installation User can install without accessing the internal components of the

motor

Achieved

Minimal Installation

Requirements

User should only need to install two switches, the module and

connect to motor through accessible screws

Achieved

Security Only user should be able to control their door through the app Partial – would be

achieved through the

existing unique Imp

URLs

3 Detailed Project Description

3.1 System Theory of Operation

The Open Sesame system is an Android or web interface for your garage door opener. It

has been designed to bring an outdated, but functional, product into the age of instant

information. Unlike other systems which require replacing the entire garage door opener, the

Open Sesame is a means to update and increase an opener’s functionality. Additionally, because

it is non-invasive all of the original safety features are retained along with the ability to use the

wall panel and remotes. The center of the system is the Electric Imp, a product developed by

Electric Imp, Inc. Through this chip, the circuit board is interfaced with the internet, making all

of the commands possible.

By making minimal adjustments to the existing system, in this case adding switches and

mounting a small box, the capabilities are expanded immensely. The system has four main

functions: check the status, change the status (open and close), take a picture, and proximity

sensing. These commands can all be sent from the user’s Android phone, and all but proximity

sensing can be performed using an internet interface. For the first three, the user makes a

selection by pressing a button on the app. This button activates a URL which sends a message to

the Electric Imp. The Electric Imp then sends a signal via SPI to the microcontroller located on

the circuit board. Depending on the character received, the microcontroller moves between the

cases of a switch statement contained in an infinite while loop. It either sends a signal to the

motor or to the camera or checks the switch status, and then passes the relevant information to

the Imp. The Imp also provides information back to the user by changing messages at the

accessed URL. This text is then displayed on the Android application. The proximity sensor is

not so much a sensor as a code to check which wireless network the phone is currently connected

to. After the user has assigned a home network, by selecting Wi-Fi Detection mode they can

automate the commands sent for leaving and arriving at their home. In order to prevent searching

for a remote, or forgetting to close the garage door when you leave, when this mode is turned on

Spring 2014 Final Report

Open Sesame 8 EE Senior Design

the entire open/close process is automated. This does assume that when leaving (disconnecting

from home Wi-Fi) the garage door should close automatically, and when arriving at home

(reconnecting to home Wi-Fi) it should open automatically. This option can easily be turned off

for any reason.

The interactions between the various subsystems and modules that implement this theory

of operation are summarized in Figure 3.2.1 below. Almost all of the communication is two-way.

The interaction with the motor is not as no information is obtained from the motor system itself

and commands are only sent to it. The central circuit board to camera communication is handled

via UART and it can determine the status by checking the state of two I/O pins. The two-way

communication between the Imp and the microcontroller is SPI with the Imp as the master.

Communication between the Imp and the Android app is achieved both through accessing URLs

and posting text to them as well as exchanging data over a server.

3.2 System Block Diagram

Figure 3.2.1. Proposed Block Diagram for the Open Sesame System Using Hardwire

Interface

Central Circuit

Board/Hub

Door Safety

Features

User Cell Phone
(also functions as approach sensor)

Garage Opener

System

Garage Opening

Motor
Garage Light

Wall Panel-like

Communication

Camera

Remote Controls

Legend:

 Wireless Connection

 Wired Connection

Garage Opener Subsystem

Door Status Sensor

Electric Imp

Spring 2014 Final Report

Open Sesame 9 EE Senior Design

3.3 Door Status Subsystem

Requirements

 The purpose of this subsystem is to allow the device and the user to access the status of

the door at any time. The subsystem reports to the microcontroller the current state of the door:

open, closed, in transition or error. Upon request, this information can then be sent via the

Electric Imp to the Android App and therefore the user. The current status of the door will also

dictate the choices that the app presents to the user. For example, if the door is already closed,

should the user attempt to close the door, the motor will not run and the user will be reminded

that the door is already closed.

 The subsystem is required to identify a variety of possible states. It is important that it

recognize when the door is fully opened or fully closed. It also recognizes when neither switch

is closed and the door is therefore in transition. The error state is trigger in the case when both

switches are closed which should only result from incorrect user installation.

Subsystem Description

The subsystem consists of both hardware and software. Two magnetic switches are the

central components of the hardware. These switches operate on the simple basis that when the

two halves are within one inch of each other (direct contact is not necessary), a short circuit is

created. The two halves of the switch must be well-aligned as the tops and bottom edges must

line up for the switch to be properly engaged. Figure 3.3.1 shows an image of the selected

switches.

Figure 3.3.1. Magnetic Contact Switch (https://www.adafruit.com/products/375)

These switches were chosen for their simple operation and the durability of the pieces. They

were also chosen in efforts to keep the final price of the product down. The functions that they

must complete are fairly basic and straightforward and therefore a simple switch is all that is

needed. The halves of the switches without the wires attached are screwed to the garage door

itself: one to the bottom corner about one foot from the ground and one at the top corner about

one foot from the end of the door. The halves with the wires are affixed to the garage door track.

The set at the top of the door are aligned when the door is open and the set at the bottom are

aligned when the door is closed. The spacing between the two halves must be less than one inch

and the tops and bottoms must align for the switch to be closed. The planned placement of the

switches can be seen in Figure 3.3.2.

https://www.adafruit.com/products/375

Spring 2014 Final Report

Open Sesame 10 EE Senior Design

Figure 3.3.2 Positioning of Magnetic Switches

User installation of the switches would also require the four loose ends of the switch wires to be

installed into the appropriate screw terminals so that their status can be determined by the

microcontroller. These wires and terminals are color-coded. For example, the switch at the top of

the door must go into two specific terminals in order for the door to make the decision that the

door is open. However, between the two wires attached to that switch, there is no distinction that

has to be made as there is no polarity to the simple switch. The portions of the board dedicated to

the door status system can be seen in Figure 3.3.3.

Figure 3.3.3. Board Schematic for Door Status Switches Portion

 The operation of the switches requires the use of pull-down resistors chosen to be 10 kΩ.

The switches are provided input at 3.3 V by being connected to Vdd. from an output I/O pin on

the microcontroller. D0 was chosen for this purpose. Between the switch and the resistor, the

voltage is read by an input pin on the microcontroller. D0 and D4 are used, one for each switch.

If the value is read as high, the switch is closed and vice versa. The circuit schematics, including

the different switch positions leading to different state classifications can be seen in Figure 3.3.4.

Spring 2014 Final Report

Open Sesame 11 EE Senior Design

Figure 3.3.4. Circuit Diagrams of the Door Status Switch System

 The software for the system consists of code written in MPLAB for the

PIC32MX795F512H microcontroller that controls and monitors the values on the two I/O pins:

D0 and D4. All of the pins are first set to digital. Pins D0 and D4 are set as inputs using the

TRISD command. When the SPI command 0xD5 is sent from the Electric Imp, the door status

case of the switch statement in the code is entered. Inside the case is an if statement that can

identify four different cases. If both values are high, the variable “send” is set to 0x04 which the

Electric Imp interprets as an error since this is the impossible state where both switches are

closed. If D0 is high and D4 is low, the door is closed and the “send” variable is set to send 0x00

on the next read, which the Imp identifies as closed. In the opposite case, the door is open and

“send” is set to 0x01. When both values are low, “send” is set to 0x05 which the Imp knows as

the transition state. If the user checks back after attempting to either open or close the door and

the status has not changed, the user should then choose to take a picture to see what is

obstructing the door. The error state of both switches being closed generates a 0x04 to send.

These code segments can be seen in the main microcontroller code in the Appendix and the flow

of this logic can be seen in Figure 3.3.5.

Figure 3.3.5. Flow Diagram of Door Status Code

Subsystem Testing

 Before interfacing the subsystem to the rest of the project, it was tested using the LED

bank on the kit boards. The switches were taped to two pieces of paper with the wired halves

about eleven inches apart and the other halves about 4 inches apart. The switches were then

Electric Imp

SPI: receive = 0xD5 SPI: send = 0x00

Microcontroller

D0 = 1; D4 = 0

D0 = 0; D4 = 1 D0 = 0; D4 = 0

D0 = 1; D4 = 1

Closed

send = 0x00 Opened

send = 0x01

In Transition

send = 0x05

Error

send = 0x04

Spring 2014 Final Report

Open Sesame 12 EE Senior Design

breadboarded to the necessary components and then connected to the kit board. The two pieces

of paper were then moved past each other to simulate the movement of the door between the

stationary switch halves attached to the tracks. Instead of setting a variable within the code to

indicate the current state of the door, the LEDs on the kit board were lit up in different

combinations to indicate different states. The allowed for dynamic, obvious and instantaneous

results as the switches moved positions. One half of the LEDs were lit up to indicate one switch

closed, and the other half to indicate the other switch closed. All LEDs were off when neither

switch was closed. All the LEDs were lit up in the case of the both switches being closed,

because this is an (impossible) error state.

 In order to test the subsystem after it was integrated into the rest of the project, a physical

demo was built. The switches were attached to the “door” in a manner reflecting what the actual

installation would look like. The door was placed in the three most likely positions in turn: open,

closed and in transition. The app was used to check the state in each of these positions and the

results were determined to be accurate. The subsystem was also tested by selecting the open

option when the door was already open and vice versa to ensure that the subsystem would warn

the user that the door was already in the desired status and that the motor would not run. It was

also tested to ensure that the correct status is displayed on website when those buttons are used to

check the door position.

3.4 Electric Imp Subsystem

The Electric Imp, developed by Electric Imp, Inc., exists to bring Wi-Fi capabilities to

everyday devices. In the case of Open Sesame, the Electric Imp provides an interface between

the internet to the circuit board and connects directly to the microcontroller. Aside from

connecting the microcontroller to the internet, the chip also runs two sets of code both written in

Squirrel, a coding language used for some video games and this application. The first code is

considered the “Agent” and runs on the Electric Imp Cloud. Changes to this code must be made

on the Electric Imp website. This code responds to http requests made by the user accessing an

Imp specific URL. Each Electric Imp come preloaded with their own URL, and modifications to

this web address allow for different commands. For Open Sesame this includes adding

“?status=1”, “?open=1”, “?close=1”, or “?pic=1” to the end of the web address to access the

different possible commands. Depending on the URL accessed, the Agent will send commands

to the other set of code located on the physical Imp called the “Device” code. The device code

must be sent to the Imp over a stable Wi-Fi connection. This connection is established using

BlinkUp, a protocol developed by Electric Imp to send wireless network login information

through a series of blinking lights. On the device side, the code is written to communicate with

the microcontroller via SPI with the Electric Imp as the master. This is the only way to use the

Electric Imp in SPI. The final versions of both the agent code and the device code used for the

prototype can be found in Appendix 9.4.

On startup the Electric Imp automatically checks the status of the door. This allows for

status changes to happen instantaneously as opposed to only after checking the status of the door.

This is also the only command that is automatically run by the Imp, all other commands are

made only after the agent URL is accessed. After the agent URL is accessed, decisions are made

based on the current status and command by the Imp to run certain commands. The agent URL

commands trigger different functions on the device side. Once a decision is made, the command

is sent to the microcontroller, and the Imp is put to sleep until the command can go through. This

Spring 2014 Final Report

Open Sesame 13 EE Senior Design

prevents the Imp from asking for data from the microcontroller sooner than it is ready. For

example, if the command to take a picture is made, the Imp will send the SPI command “0xCA”

to the microcontroller it will then wait before reading back the picture in the process described in

the Camera subsystem section. If the command to open the door is made, first the Imp requests

the door status from the microcontroller with the command “0xD5”. It then decides from there

whether the door needs to be opened and if it does, it sends the command “0x0D” to the

microcontroller and if not, it updates the website text to inform the user that the door is already

open. The current version of the Imp code also has the beginnings of a future improvement that

could inform the user of the time of the last door status change.

The Imp has a vital security flaw, that anyone with access to the URLs may command it.

As the team has taken steps to prevent the URLs from being distributed, this should not be of

immediate concern. If the product is mass produced, each owner would still have an Electric Imp

with a custom URL and therefore each user’s application can be customized to access these

specific URLs only which addresses the security issue. The greater concern will be users sharing

their passwords too willingly, leaving their garage doors open to the world.

In addition to the software required for the Electric Imp to function properly, certain

hardware needs to be incorporated on to the board. As can be seen in the schematic in Figure

3.4.1, the Imp is connected to the board through a SD card mount.

Figure 3.4.1 Schematic for Electric Imp SD Card Mount

 The mount needs to be connected to ground at three separate points so that the whole

metal casing is grounded. Three pins are used to establish the SPI 4 communication that was

used for all microcontroller-Imp signals. This requires the clock, transmit, receive and slave

select pins to be connected to the microcontroller in a way that allows the Imp to be the master.

The exact pin connections can be seen in the full schematic in Figure 3.8.8. The two pins that

would be required to allow for UART 6 communication between the Imp and the microcontroller

are also connected. This was done in case these pins would be needed for some unforeseen

application, which they were not. The Vdd of the Imp is 3.3 V which matches that of the rest of

the board. The creators of the Electric Imp require the use of the ATSHA204 IC chip to connect

to the ID pin. A link to the data sheet can be found in Appendix 9.2. This chip allows for secure

authentication and validation of the chip to allow it to be recognized by the code on the Electric

Imp cloud. The information for the values of the circuit components surrounding this chip can be

obtained from the Electric Imp development website.

Spring 2014 Final Report

Open Sesame 14 EE Senior Design

3.5 Garage Door Motor Subsystem

Requirements

 The system must have communication between the microprocessor circuit and the garage

door motor. The user must be able to issue commands through the cell phone application,

which will be processed through the Electric Imp cloud and passed on from the Electric Imp

to the microprocessor, and finally to the motor circuit.

 The system must be able to send a signal to the motor such that the motor will reverse the

previous state whenever a button is pressed. If the door is closed, pressing a certain button on

the app sends a signal to the Imp that will then cause the motor to act so that the door is

opened. Likewise, if the door is open, pressing the close button on the app will close the

garage door.

 The system cannot interfere with existing safety features of the garage door opener system,

only work in parallel. This means that the system cannot send commands that would override

safety features, such as detection of an obstruction to the door’s path. The system should only

send commands that are processed the same way the existing wall panel and remote control

signals are processed.

Subsystem Description

The function of this subsystem is to provide a bridge between the garage door motor and

the additional features the entire system is providing, as there must be a way for the user’s input

via the cell phone application to reach the motor. In other words, this subsystem is the

communication between the user and the garage door opener itself, as well as the interface

between the physical motor and the microcontroller.

Figure 3.5.1. Wall Panel Circuit

Spring 2014 Final Report

Open Sesame 15 EE Senior Design

Figure 3.5.2. Hardwire schematic

As most of the hardwiring components of this subsystem are circuit elements, the only

programming aspect is setting the appropriate microcontroller output. As a result the

microcontroller code is written in Eagle and exists in the length of code for the entire system.

The code needed to specifically send the relay a signal from the microcontroller is very simple,

as it is just setting an output pin from the microcontroller to high (logical 1), thereby sending the

relay a logical high that closes the relay. When the relay receives a high signal, the motor circuit

is sent a signal to reverse the previous condition of the door. The following code is used to set up

motor control from the microcontroller:
 TRISBbits.TRISB3 &= 0;// B3 out (controls door)

 TRISBbits.TRISB4 &= 0;// B4 out (controls light)

 LATBbits.LATB4 = 0;

 LATBbits.LATB3 = 0;

To run the motor the output pin B3 is set to one and as a result the motor will reverse its previous

state. The output pin B4 controls the light. As can be seen in the schematic diagram, both output

pins on the microcontroller are connected to the same terminal screws on the actual motor,

therefore the difference in the motor’s resulting action occurs only because there are capacitors at

the output of the relay and before the terminal of the motor. This RC circuit delays the voltage

high and the motor is built to recognize such a delay and then reverses the status of the light, not

the motor.

 Once this subsystem was integrated into the entire project, some additional precautions

were necessary. Since the time it takes for the code to run is much shorter than what is practical

to send a 1 and then 0 so that the state does not remain 1 forever, this setting of motor back to 0

is done whenever the microcontroller checks the status of the motor. Similarly, there is a

statement included for the light to be set back to 0, otherwise the light would not turn off after

four and a half minutes of inactivity. As an additional feature, the microcontroller is programmed

to send the motor a 1 and 0 three times when an open/close command is issued remotely,

effectively causing the motor lights to flash on/off three times to warn anyone within the

physical vicinity of the garage door that a remote command was issued.

200 ohms

1.6 kohms

Spring 2014 Final Report

Open Sesame 16 EE Senior Design

In the circuit the two solid state relays are 4-pin from Panasonic, chosen for a few

features. A link to the data sheet for these relays can be found in Appendix 9.2. (Note: The relay

parts are through-hole, which required a special Eagle library file for the board design.) It has a

100 mA load current and can support the voltage seen at the output of the motor (around 17 V);

in addition, the LED operates at around 5 - 25 mA and the current coming from the output pin on

the microcontroller (and to the LED) is within this range. Figure 3.5.3 shows the schematic of

the relay, with terminals 3 and 4 being the output seen at the terminals of the motor.

Additionally, this relay is normally open, which is necessary because in the original wall panel

the circuit is open until the user presses the button to close the circuit. Therefore the circuit

implemented needed to also be open until closed by the user (by wire signals now instead of

physically pressing a button).

Figure 3.5.3. Relay Diagram

Subsystem Testing

In order to test the subsystem the code was downloaded to the PicKit, which was

hardwired to the relay on the breadboard that was wired to the screw terminals on the motor.

With the motor plugged in, and the program downloaded to the PicKit with a value of 1 (a digital

high) passed on an output pin to the (input pin 1) relay, the motor then began running (as long as

the optical eyes were aligned with no obstruction). When a 0 (digital low) was passed through

the PicKit the motor did not run. This test proved that once the interface between Imp and

microcontroller is introduced, the Imp should send a digital high when the door is to be

opened/closed and this will be received and carried out by the motor (via the relay), otherwise

the Imp will send a digital low and the motor will not move.

Spring 2014 Final Report

Open Sesame 17 EE Senior Design

Figure 3.5.4. Subsystem Testing Setup

Another Approach

The method of communication mimics the existing wall panel circuit seen in Figure 3.5.1

by directly hardwiring Open Sesame’s main intelligence circuit to the garage door motor circuit.

This hardwiring is done through the use of a solid state relay, which is used in place of the

buttons that would send commands to the motor circuit when pressed. When the user presses a

button in the cell phone application, the microcontroller receives a corresponding signal through

the Electric Imp and Electric Imp cloud, which then sends the appropriate signal to the

microcontroller and the relay switch, closing the (normally open) relay so the signal is sent to the

motor; the schematic for the circuit created can be seen in Figure 3.5.2. Closing the relay

completes the circuit across the terminals of the motor, allowing the signal to be sent. Though the

hardwire option is what was actually implemented for this project, there was another avenue

explored for how to interface the main circuit board with the microcontroller to the garage motor

circuitry. Rather than recreate the wall panel circuitry, Open Sesame attempted to mimic the

structure and function of existing garage opener remote and keypads. The aforementioned

apparatuses use radio frequency (RF) as the method of communication with the garage motor

circuitry.

 In order to accomplish this, research on the radio frequency communication process was

done, specifically with the use of encoding, as the motor circuit decodes the signals it is sent

from the RF devices. As a security feature, the encoder must be able to “code hop,” meaning that

the code viewed externally to the system appears to change unpredictably each time it is

transmitted. There is also an encryption key used in the encryption algorithm to scramble data,

Spring 2014 Final Report

Open Sesame 18 EE Senior Design

and a decryption key used in the decryption algorithm to unscramble data. In a symmetrical

block cipher, the encryption and decryption keys are equal and thus referred to as a crypt key. To

generate these unique crypt keys, the encoders are programmed as a function of what is called

the manufacturer’s code, and the decoders are programmed with the manufacturer code itself.

 Since the motor comes with a predetermined decoder, the next step Open Sesame took

was to find a compatible encoder to be connected to the main circuit board. The KEELOQ Code

Hopping Encoder HCS362 seemed to fit most of the requirements for the RF circuit to be

designed in terms of operating conditions and function—the specifications sheet, for which a link

can be found in Appendix 9.2, for the product even listed a typical application for the HCS362 to

be gate and garage door openers. The problem lies in the mystery of the motor decoder.

While it does not seem necessary to have the encoder and decoder have the same

manufacturer, information is needed from both sides. It is important to know that the decoder

will be able to decrypt the data transmitted and the length of code that the decoder is expecting to

receive. Figure 3.5.5, taken from the HCS262 specifications sheet, illustrates a basic idea of what

would be transmitted from the encoder to the decoder. Looking for this information proved to be

fruitless, as the company that manufactured the motor used for this project, along with all other

companies that manufacture garage door opener motors, keep that information tightly guarded.

Following the advice of a couple of professors, research was done on universal remotes and how

those manage to be compatible with most appliances. Unfortunately, the manufacturers of

universal remotes are just as quiet about their methods as garage door opener manufacturers are

of their special codes.

Figure 3.5.5. Building the Transmitted Code Word (Encoder)

It is possible that this problem of encoder/decoder compatibility could be bypassed if the

motor decoder was able to learn the HCS362, however there was not enough time to devote to

this without a guarantee that it would at least somewhat work. Figure 3.5.6. is also a block

diagram taken from the HCS263 specifications sheet, illustrating the decoder’s basic operation.

In that diagram, the KEELOQ decryption algorithm is listed, although this would not be used by

the motor as its decoder already has a separate decryption algorithm.

Spring 2014 Final Report

Open Sesame 19 EE Senior Design

Figure 3.5.6. Basic Operation of Receiver (Decoder)

3.6 Android Application Subsystem

 The purpose of the Android Application subsystem is to allow the user of Open Sesame

to access their garage door through their mobile phones. The wireless application will give the

user another method of control over their garage door. Through this application, the user will be

connected to their garage door even after the user leaves his or her home. Note that all of the files

named in this section can be found in Appendix 9.5, at the end of this report.

The features of the Open Sesame application include: status update, door controls, Wi-Fi

detection mode, and a camera option. The status update will let the user know the current status

of the garage door, which has four different statuses or states. These states are: opened, closed,

capturing picture, or in transition. The transition state of the garage door signifies that the door is

either in the process of closing or opening but has not fully completed the action yet. This way

the user will never be in left in the dark about whether the door has been left opened. The door

controls act like a remote control for the door with the open and close buttons. The Wi-Fi

detection mode is a user convenience feature that acts as a proximity sensor based on the user’s

home Wi-Fi connection. If the Wi-Fi detection mode is turned on, the mobile application will

automatically open the garage door if it recognizes the user’s home Wi-Fi. The idea behind this

feature is to allow a hands-free option for the user as they enter and leave their homes through

their garage. Finally, the camera option will allow the user to access the camera that is integrated

with the system and take a picture confirmation of the door status. The Open Sesame application

will improve the convenience of the user by giving the user wireless communication with the

garage door opener and reassurance with the door status and camera confirmations. These are all

the criteria set for the Open Sesame mobile application.

Spring 2014 Final Report

Open Sesame 20 EE Senior Design

 The application was developed using the Eclipse IDE with the Android Development

Tools (ADT) plug-in. This plug-in provides an integrated environment for Android app

development which makes creating a new app easier. In other words, the ADT provides all the

necessary library used in Android programming. The Java language is the primary programming

language that Android apps are developed with, which is the language used for developing the

Open Sesame app. The user interface (UI) in Android programming is described by the

Extensible Markup Language (XML). The XML files in the Android project creates the view and

UI that the user sees while the Java code in the project provides all the functionality of the app.

More specifically, the Java code in the project inflates the XML files that describe the UI view

and also provide functionality to the app.

 The AndroidManifest.xml file is an important file that is present in every Android

application. The manifest file presents essential information about the app to the Android system.

This is essential information that the system needs before it runs any of the app’s code. In

addition, the manifest describes the components of the application such as the activities,

permissions that the app requires from the system, and action-filters among other things. For the

Open Sesame app, there is only one activity that needs permission to access the internet, the Wi-

Fi connection state, and a change in Wi-Fi state action-filter. By including the proper permission,

the app will be able to use the internet connection on the phone and by enabling the action-filter;

the app will be able to detect when there is a change in the Wi-Fi state. This last point will be

important when discussing the Wi-Fi detection mode.

There is one main activity that describes the main page that the user sees when he or she

opens the Open Sesame app. The main activity inflates the tab layout view to create a tabhost,

from the tabs.xml file, with three tabs labeled, “STATUS”, “CONTROLS”, and “CAMERA”

from left to right. This entire view is described in the tabs.xml file which sets the buttons, the

text views, and the switches that the user sees.

 In the “STATUS” tab, there is a “STATUS” button and a switch that activates Wi-Fi

detection mode. Again, the button and the switch views are implemented in the tabs.xml file. If

the “STATUS” button is pressed, the app will communicate with the Electric Imp (if it is online)

through the Imp cloud to ask for the current status of the garage door. The status will be returned

to the app and displayed in the text view just above the “STATUS” button. On the other hand, if

the Wi-Fi detection mode is switch on, then the app will start to be aware of the Wi-Fi state and

the Wi-Fi that it is connected to. The way the app is able to become conscience of the Wi-Fi state

is through a broadcast receiver. A broadcast receiver in Android allows the application to listen

in the background for actions that occur. The Wi-Fi state change action-filter was enabled in this

app as described in the AndroidManifest.xml. Once this action-filter is registered for a broadcast

receiver, the app will listen on that receiver for any changes in the Wi-Fi. This means that when

the Wi-Fi detection mode is turned on, a broadcast receiver with that Wi-Fi action-filter is

registered and starts to listen. If the mobile phone connects to a new Wi-Fi connection, the

broadcast receiver will check if the connection is recognized as a home network. If that

connection is recognized, then the phone will automatically send an open command to the Imp.

If the phone loses connection with the home Wi-Fi network, then the app will automatically send

a close command to the Imp. The range of the home Wi-Fi network acts as a proximity sensor

for the app. If the user is at home, he or she can turn off the Wi-Fi detection mode, in which case

the app will unregister the broadcast receiver and stop listening for the Wi-Fi network.

The Electric Imp was used as an in-between component that establishes communication

between the app and the microcontroller. We chose the Imp because it is readily able to

Spring 2014 Final Report

Open Sesame 21 EE Senior Design

efficiently communicate with the microcontroller and also connect to the internet. When the

Check Status button is pressed, the application will send an HTTP GET request to a certain

Uniform Resource Locator (URL) that is established by the Imp. The HTTP request will GET

from that URL the current status of the garage door. And in the process of getting the status, the

URL will send a response to the Imp indicating that the status was checked. Using the IMP and

the HTTP request establishes a two-way communication. This method of communication

between the app and the Imp is consistent for all the buttons on the Open Sesame app. The

difference between the buttons in the app is the URL that they access. Since each button needs to

send a different command, each button is hard-coded to send a GET request to a specific URL

that corresponds to that command.

When the “CONTROLS” tab is pressed on the tabhost, the view switches to the

“CONTROLS” tab view and the user is presented with an Open and a Close button. These are

the buttons that the user can press to open or close the door. Sending a signal to the Imp is the

same as checking the status of the door. By sending an HTTP GET request, the Imp knows that

the app is trying to communicate with the microcontroller. Each button that requires

communication with the Imp is associated with a state. When the app communicates with the

Imp, the Imp receives the command of the app as a state. For example, when the Open button is

pressed a state of 1 is passed and the Imp knows to set the door state to 1, which is open.

When the user switches to the “CAMERA” tab, he or she is presented with just the

“CAPTURE” button. When this button is pressed, it will send the usual HTTP GET request to

the Imp indicating that the user wants to take a picture. At the same time this is happening, the

button will try to pull an image from a Notre Dame Virtual Private Server (VPS). The VPS is

where all the images taken from the camera will be stored. When the Imp gets the command to

take the picture, it will send the picture to the VPS, which the app will then download that

picture and present it to the user. At current version of the Open Sesame app is able to pull a

picture from the VPS, however, the Imp is not able to post a picture. This could be due to

security clearances that the Imp requires in order to upload onto a Notre Dame server. Please

refer to the Imp section of this report for more details.

Figure 3.6.1 below gives a diagram of the hierarchy of the Open Sesame app. The top

level is the MainActivity.java file which sets up the components below it. The main activity

inflates the tabs.xml file which in turn includes a tabhost, as described above. The tabhost hosts

three different tabs each with its own specific layout. The three screen captures at the bottom of

figure 1 are the actual images of each tab in the latest version of the Open Sesame app.

Spring 2014 Final Report

Open Sesame 22 EE Senior Design

Figure 3.6.1. Application Hierarchy

3.7 Camera Subsystem

Requirements
 This subsystem must successfully place an image in the Electric Imp cloud after a

command is sent over the internet via the app. Once the image is on the agent, it can be moved to

a server where it can be viewed. One of the central features of the system that makes it modern

and enhances security is the ability to view the door remotely. This subsystem allows the user to

accomplish this through their cell phone. For example, if the user is told by the door status

feature that the door is stuck in transition, this feature will allow them to view the door and see

what the problem is and what is potentially blocking the door. This subsystem also uses the

ability to control the light on the existing garage motor to help improve the visibility and quality

of the image.

 When designing this subsystem, customer specifications were considered. The subsystem

must be easy to mount in a location where the garage door is visible. The cost of the camera was

kept low because the overall cost of the product is more important than a high quality image

from a fancier camera with many features that would remain unused in this application. In

addition, the delay from when the app requests a picture to when the image is fully transmitted to

the phone was minimized when possible by using SPI communication and compressed images.

Spring 2014 Final Report

Open Sesame 23 EE Senior Design

Subsystem Description

Hardware
 There are three main components of hardware for this subsystem. They are the Electric

Imp, the camera and the microcontroller. The PIC32MX795F512H microcontroller is once again

used as the central hub for this subsystem as it is with many others. The two UART 3 pins and

three SPI pins were required to connect it to both the camera and the Imp. The microcontroller is

used as an intermediate step between the camera and the Imp for several reasons. One is that the

camera and the Imp prefer different signal protocols and the microcontroller can accommodate

both. Secondly, connecting the Imp directly to the camera would take up three of only six pins

available on the Imp and they would only be able to be used by this one system. This seemed like

a waste of limited pins. Also, the microcontroller serves as the central point of communication

for most of the subsystems, so it seemed logical to use it in a similar way for this one as well to

better control the command priorities.

The camera chosen is the Adafruit TTL Serial JPEG Camera. Figure 3.7.1 shows a

picture of the camera and its board.

Figure 3.7.1. Adafruit TTL Serial JPEG Camera

(https://www.adafruit.com/products/397)

The Adafruit camera was chosen because of its compact design as well as its image processing

capabilities. Before taking a picture the camera automatically adjusts the white balance and

contrast to appropriate levels, and after the image is taken it is compressed into the .jpeg format

which is much more manageable to transmit in reasonable amounts of time. This also removes

the need for any further image processing, which is outside the scope of this project. When

compared to other cameras, the price of the Adafruit camera was appropriate based on the

expected functions. Other more expensive cameras may have more capabilities or be more

customizable, however the customer requirements force the cost of the project to be as low as

possible. Other possible cameras were more simple and it was determined that a camera with a

library of commands was necessary over a camera that would require programming before

continuing. A sample picture taken by the camera can be seen in Figure 3.7.2. This is an

appropriate level of quality for the applications and requirements of the product.

https://www.adafruit.com/products/397

Spring 2014 Final Report

Open Sesame 24 EE Senior Design

Figure 3.7.2. Sample Image from Camera to Demonstrate Quality

 The camera requires 5 V as its Vdd. This voltage was provided using a MCP1252 low

noise, positive-regulated charge pump. The data sheet link can be found in Appendix 9.2. The

board schematic for this portion of the circuitry can be found in Figure 3.7.3.

Figure 3.7.3. Schematic for Circuit Providing 5 V to Camera

Here the desired output is on pin 2, the Vout pin. The board Vdd of 3.3 V is connected to pins 3

(Vin) and 7 (SHDN’). The GND pin and the SELECT pin are connected to ground. By

connecting the SELECT pin to ground, the fixed output voltage of 5 V is selected. The output

current of the device is between 120 mA and 150 mA which are within the range that the camera

can handle. For the Cin and Cout capacitors, a value of 10 µF is used to minimize noise and ripple.

The flying capacitor connected between the C+ and C- has a value of 0.1 µF because it controls

the strength of the charge pump. This value results in less output ripple, but it also reduces the

maximum output current which was not an issue in this instance. The purpose of the PGOOD pin is

to act as an open-drain output to sink excess current when the regulator output voltage becomes

too low. This pin requires a resistor of value 150 kΩ between it and the Vout pin to perform this

Spring 2014 Final Report

Open Sesame 25 EE Senior Design

function correctly.

The third component of the hardware is the Electric Imp through its breakout board. The

Electric Imp was chosen because of its ability to interface with the internet in a general user-

friendly fashion, with the capabilities allowing for sending information to a server. It also had

enough memory and speed to transmit a full image.

The Electric Imp component is connected to the microcontroller via the SPI pins

discussed in the Imp section of this report. The camera is connected to the microcontroller

through two UART pins. UART 3 on the microcontroller requires pins 5 (G7, U3RX) and 6 (G8,

U3TX) and these are connected to the appropriate pins on the MOLEX connector that connects

to the camera. The MOLEX connector also provides the connections to ground and 5 V. The use

of the MOLEX connectors simplified the process of joining the non-standard pin spacing of the

camera board to the main board. It also allowed the camera to be connected by a cable that

allows the user to adjust the position and angle of the camera to best capture the door.

Software
On the Imp side of this system, there are two parts: the agent code, and the device code.

The agent code exists in the cloud and handles the http request made by a user accessing the

website assigned to each Imp. The agent will also be responsible for sending any desired

information to the server including any images. The device code exists on the Imp and has access

to the individual pins. These pins are connected to pins on the microcontroller and are wired for

SPI communication. SPI communication is used because it only requires three pins and continues

to keep the UART pins on the Imp free if needed. The challenge with SPI is the Imp must be set

as the master forcing the microcontroller to be set as the slave. All code described here can be

found in Appendix 9.3 and 9.4.

When the user presses the capture button on the app, the device code on the Electric Imp

runs the function for taking a picture. This command originates only after an http request is made

by opening the web page associated with the agent for the Imp, which is what pressing the app

button does. As part of this function, the Imp sends an SPI message to the microcontroller,

0xCA, initializing the steps required for the camera to take a picture. Once this is sent, the Imp

goes into a temporary sleep cycle that acts as a 4.5 second delay. This delay allows the

microcontroller to take the picture and put the data into the buffer before the Imp attempts to

access the information. After it has waited a sufficient amount of time, the Imp will ask the

microcontroller for the length of the file. As the microcontroller is the slave, it is waiting for the

Imp to make a request, and the file length is waiting in the buffer. Once the length is read, the

Imp calculates how many blobs of information it needs to read based on the length. Based on

discussion with the developers, the maximum size of blob the Imp can read at one time is 8192

bytes. Therefore the length is divided by 8192, and the number of iterations is calculated. In the

agent code, in addition to the command for the device, functions are included that have been

written for the agent to handle the image before it is sent to the server. These include

“jpeg_start”, “jpeg_chunk”, and “jpeg_end”. In order to use the functions, they are first called by

the device code. For instance, “jpeg_start” is called immediately after the the length is read, and

prepares the agent to handle a jpeg of this specific length by creating a buffer of this length.

Once the number of iterations is known, the Imp can begin reading from the microcontroller.

After the first blob is read, the agent function “jpeg_chunk” is called to process it. Because the

entire length cannot be read at once, “jpeg_chunk” places the blobs in the correct order as they

are read. Usually the length of the image only requires two iterations, further simplifying this

Spring 2014 Final Report

Open Sesame 26 EE Senior Design

task, however the code will run for the number of iterations regardless, creating a level of

robustness to the system. After the blobs have been read, “jpeg_end” is called in the agent.

“jpeg_end” performs the finals tasks associated with taking a picture including sending the .jpeg

file to the web server. Additionally it outputs to the server log the size of the image in bytes.

The PIC32MX795F512H microcontroller communicates between the Electric Imp and

the camera. The camera used is set up for UART communication. This is the recommended

setting for successful transmission of the commands and the image data. The baud rate for this

transmission is 34800 Hz. A function called “serial_init3” initializes this to occur using the

microcontroller’s UART 3 pins. Two more functions complete the transferring of the signals.

The first is “readu3” which retrieves a byte of data from the camera when it becomes available

and the other is “writeu3” which sends a byte input into the register to the camera. However, the

microcontroller interfaces with the Electric Imp through SPI, as the slave. SPI communication

with the Imp is also used for other subsystems so it seemed logical to use this already setup

interface. It also allows for the faster transmission of the images. This was set up in the

“SPIinitslave” function on SPI 4. A function called “do_SPI_slave” handles the input of data to

be written into the buffer and the writing of the data when it is received from the Imp. There are

also commands to set the various pins used to digital inputs and outputs to enable their proper

functionality.

Upon receiving a ‘0xCA’ command from the Electric Imp through SPI, the

microcontroller first uses the LATB command to set pin B4 high to turn on the light. It then

initiates the series of UART commands that the camera requires in order to take the picture. First

a sequence is sent that informs the camera to take a new picture and the camera returns five bytes

to confirm the message was received correctly. Then the frame length must be obtained in order

to ensure that the proper number of bytes are transmitted and stored when the picture is sent.

This causes the camera to return an eight byte sequence, the last four bytes of which represent

the image length in bytes. The number is typically in the range of 12,000 to 13,000 bytes. The

microcontroller then initiations the transmitting of the picture data, including a request for the

proper number of bytes. After a sequence of five bytes confirming the correct message was

received and a slight delay, the camera begins transmitting the image over UART, one byte at a

time. This is read and then stored by the microcontroller in an array named “picture” by a for

loop of the length of the data stream. However, because of the limitations of the switch statement

form, the array “Picture” in which the picture data is stored, must have a preallocated length.

“Picture” is initialized to be 16384 characters long, which is longer than any picture the camera

captures. This does not cause any complications because the Imp is given the correct length of

the picture so decisions can be made in that code to determine which bytes are meaningful. After

the data has been transmitted, there is a slight delay then a five byte code is sent to note the end

of the data. Lastly, a resume command sequence is sent to the camera that sets it up and enables

it to take another picture.

After the UART communication with the camera concludes, the microcontroller waits for

the Imp, as SPI master, to send it two bytes to which it replies with the length of the data. The

Imp then sends 0x00 bytes for the whole length of the data and the microcontroller responses

with the next element of the “Picture” array until a for loop of the full length has been run. The

Imp continues to request data due to the block nature of the blobs and the microcontroller sends

0x00 bytes until the for loop is completed. The code for both the microcontroller and Imp that

enable this subsystem to function can be found in the Appendix.

Therefore the process of taking the picture in the code can be summarized in the

Spring 2014 Final Report

Open Sesame 27 EE Senior Design

following steps:

 User selects Capture button on app, making an http request specific to taking a

picture

 The Imp receives the request and runs the function for taking a picture

 The SPI command “0xCA” is sent to the microcontroller which enters the

corresponding case

 The light on the motor is turned on

 The microcontroller sends the command via UART to the camera to take a picture

 It then sends the command to get the frame length

 The picture is then read and a resume command is sent to the camera

 The Imp requests the length of the image and then the image

 The Imp transfers the data to the agent and from there to the server

Subsystem Testing
 Before the subsystem could be constructed, it was necessary to first test if the camera was

functioning properly. By following a demo provided with the Adafruit camera, the camera was

connected to a PC through an Arduino UNO. Using the VC0Z06CommTool software the

functionality of the camera was confirmed by taking and saving pictures to the hard drive.

 In order to effectively test this subsystem, the individual signals traveling between the

devices must be monitored. This can be done using the USBee software by measuring the

signals at connections between components. Using two USBee probes it is possible to measure

the UART signal between the camera and the microcontroller, and if the baud rate is set properly

to 38400 the signals should be decoded, simplifying the testing. In order to properly watch the

SPI signals, three probes are used and in the software the proper channel must be set as the clock.

As long as the clock is set properly, the signals should be decoded accordingly. After these five

probes are assigned, and the software adjusted, set the USBee to trigger on the clock of SPI

signal because this will be the first signal to go through the system and adjust the length of the

capture for at least seven seconds. This will provide ample time for execution of the commands.

Finally, capture once, and wait for the signal.

 After the hardware is set up with the USBee probes, the agent website is ready to be

accessed. Once this URL is opened, the agent will begin processing the http request and send a

command to the device to run the camera function. This is all internal to the Imp and the Imp

cloud. It could be monitored by placing server log commands in the code, however that will also

slow down the system. At this point the Imp should send a 0xCA command to the

microcontroller to take a picture and the USBee will trigger. After it has triggered and decoded

the values, the USBee should display the camera functions. After the SPI 0xCA command, the

UART communication should begin between the microcontroller and the camera while the SPI

sleeps for a few seconds. After the picture has been returned to the microcontroller and the

interactions between the Imp and the microcontroller have taken place, it is possible to compare

the two sets of bytes for the image to check for accuracy. Sequences at both the beginning and

end of the data were compared. Finally the server log displays the size of the file in bytes, which

can be compared to the size of the file passed between the camera and microcontroller.

 Ultimately, in the final Implementation, the picture was never actually able to be placed

on the server. Confirmation of the above steps occurring accurately was obtained in the methods

described. The agent code also returned a message saying that the data had been transmitted to

the server and the page would be opened showing that the agent could access the correct

Spring 2014 Final Report

Open Sesame 28 EE Senior Design

location. However, upon checking the server, the picture file size always remained at 0 bytes.

Many attempts were made to understand why and to correct this problem. The conclusion

reached was that the server provided by and connected to the secure Notre Dame network, did

not allow for the upload of files of unknown origins, which is what this picture file would be

viewed as.

3.8 Housing & PCB Design

Housing

As this product would be placed in a garage, and effort was made to create a housing that

would prevent dust from accumulating on the circuit board, while still allowing access to the

reset button and the Electric Imp. Because of available materials, the decision was made to create

a prototype on a 3D printer. A casing was created for the main circuit board along with a smaller

housing for the camera. The decision to make them separate was deliberate as it is difficult to

predict the specific angle that is allowable based on the garage door opener, and making them

two separate parts retains some flexibility. Both cases were designed with ports for wires to

come out of, and the cover for the camera housing has a hole to allow the lens to come out

slightly, if desired. The models were created in Google Sketchup and can be seen in Figures

3.8.1 – 3.8.4. Photographs of the printed cases can be seen in figures 3.8.5 – 3.8.7.

Figure 3.8.1 Camera Housing Base

Figure 3.8.2 Camera Housing Cover

Spring 2014 Final Report

Open Sesame 29 EE Senior Design

Figure 3.8.3. Main Board Housing

Figure 3.8.4 Main Board Cover

Figure 3.8.5. Boards inside of Housing

Spring 2014 Final Report

Open Sesame 30 EE Senior Design

Figure 3.8.6. Boards inside housing with camera lid on

Figure 3.8.7. Main board housing from the side showing access to Imp, reset button, and

power

Printed Circuit Board Design

An essential part of the project that allows the subsystems to become fully integrated is

the custom printed circuit board. Figure 3.8.8 shows the full Eagle schematic for the Open

Sesame board with each of the major sections boxed and labeled. Many of the key parts have

been described as part of the hardware for the respective subsystem. In addition to these

subsystem-specific circuits, portions are essential for general functionality and those are

described here.

Spring 2014 Final Report

Open Sesame 31 EE Senior Design

Figure 3.8.8. Full Eagle Schematic for Custom Open Sesame Board with Circuits Labeled

One of the requirements that the board helps the Open Sesame product meet is the ability

to power easily. The goal is for the user to be able to power the device from a standard wall

outlet because the layout of a garage will typically have two plugs on the ceiling, one for the

motor itself and the other that this product can plug into. This eliminates the need for any

batteries that would have to be charged or changed. Any standard wall wart capable of outputting

between 3 to 5 V and with the proper jack can be used to power the device. The circuitry that

allows for this can be seen in Figure 1 in the area labeled “Power Input”. This features the jack

itself as well as the LD1117D voltage regulator with its Cin and Cout capacitors valued as

suggested in the data sheet referenced in the Appendix 9.2. However, as can be seen in the board

diagram in Figure 3.8.9., this voltage regulator is not supplied with a heat sink as recommended

due to an oversight on the part of the designer. As a result, the regulator chip tends to heat up

during prolonged use or during particularly strenuous activities such as send a picture. Planes are

included around the MCP1252 charge pump as recommended by the data sheet in order to sink

heat and minimize RF effects. An LED is also incorporated with a current limiting resistor to

indicate when the board is supplied with power.

Other important features of the board are the PICKIT connector and circuitry and the

attached reset button. The PICKIT connector allows the microcontroller to be programed with

the necessary code before being sold to a user. The reset button can be used should the device

ever begin malfunctioning due to an unanticipated failure or incorrect usage of the app.

Spring 2014 Final Report

Open Sesame 32 EE Senior Design

Underneath the microcontroller, one can see the various decoupling capacitors required for

correct functionality of the chip located in close proximity to be most effective. The schematic

and board also show the inclusion of a set of eight pins that provide access to 3.3 V, ground, SPI

3 and UART 6. These were included in case the team decided to attempt different options for

motor control. In final revisions to the board, this bank of pins could be left out along with the

UART connections between the Electric Imp and microcontroller which were added as a

precautionary measure, but were not necessary.

Figure 3.8.9. Full Eagle Board Image for Custom Open Sesame Board

3.9 Interfaces

Integrating the Android System

 The Open Sesame app is the front-end of the Open Sesame product. It is the product that

the user sees, which is why it is important to interface the app with the rest of the system for total

functionality. Figure 3.9.1 shows all the components in Open Sesame and how they interact with

each other. All communications with the garage door opener is done through the Imp cloud and

to the Imp, except for downloading the picture. Since the Imp cloud cannot store images, a VPS

Spring 2014 Final Report

Open Sesame 33 EE Senior Design

provided by Notre Dame had to be used. The VPS has the server-side PHP language enable, so it

is capable of storing images sending images. When the user pushes the capture button in the

“CAMERA” tab, the app gets the image from the VPS. As seen in figure 3.9.1, there is two-way

communication between all components except the VPS. As stated above, there were issues with

posting an image onto the VPS. And when the app downloads the image, there is only a one-way

communication where the VPS does not know the app is downloading an image. Two-way

communication with the VPS will definitely be implemented on the server in order to create

some sort of authentication and security. It is important for a server that is storing the user’s data

to know who is trying to download an image; therefore, if the server that is able to recognize a

user’s app is important.

Figure 3.9.1. OPEN SESAME FLOW CHART

An Alternative Approach

 While implementing the Open Sesame subsystems, an alternative approach to how we

should implement the back-end of the product was suggested. The garage door and Imp side of

the product remained the same. What could have been done differently was the web server and

mobile app.

 Figure 3.9.2 below diagrams the system of the alternative approach. Compared to Figure

3.9.1 above, there is only one point of communication or one node between the Imp/garage door

and the mobile app. This webserver would be Node.js. Node.js is a server platform that is built

on Chrome’s JavaScript runtime that allows people to build fast, scalable network applications.

Basically, Node.js would act as the main server that handles requests between Imp and the

mobile app. On this Node.js webserver, there would be room to store images from the camera

Spring 2014 Final Report

Open Sesame 34 EE Senior Design

and it would also have a SQLite database that keeps a log of all the users that use Open Sesame.

By keeping a log and saving data, the web server would be able to differentiate between different

users that have the Open Sesame system installed in their home. This means the Open Sesame

product is scalable as more customers buy the product and as more garage doors and mobile apps

need to be handled. Node.js would handle all requests and keep track of all customers.

 The mobile app in this design would be developed of JQuery Mobile, which is an

HTML5-based user interface system designed to create website and mobile apps. JQuery Mobile

would allow all types of smart devices to access the Open Sesame app. This means the Open

Sesame app does not need to be developed separately for Android and iPhones. By creating the

mobile app through JQuery, any device and access the app through their browser. The web

browser would have all the capabilities that an Android app would have.

 The interface between the three different subsystems would be simple. The Open Sesame

garage door side would use HTTP requests to communicate with the Node.js server and the

JQuery mobile app would use web sockets to communicate with the server.

Figure 3.9.2. Node.js and JQuery Mobile

 The main advantages of implementing the Open Sesame in this manner would be

scalability and availability. Creating a centralized web server would allow easy management of

multiple customers with the product. As opposed to the system in figure 3.9.1, there is only one

server to manage. To reiterate the point, Node.js would be the brains of the system since it

handles all communication. JQuery mobile allows any person with a smart device to use the

Open Sesame app. The current Open Sesame app is available only to Androids.

 The main reason Open Sesame did not take this approach was due to time constraints.

The idea in figure 3.9.2 was suggested to the team more than half way through the project. Most

of the subsystems described in figure 3.9.1 were already complete. There would have been no

time to change the system to that in figure 3.9.2. Node.js and JQuery mobile are definitely

options that will be explored in the future.

Spring 2014 Final Report

Open Sesame 35 EE Senior Design

Imp & Server

 The Electric Imp and the server created for the Open Sesame project communicated using

PHP commands in a file called upload.php located on the Open Sesame server. The code within

that file, which can be seen in Appendix 9.6, uses the php://input wrapper from PHP protocol to

make a read-only stream that allows for the raw data to be read from the request body—the

Electric Imp in this case. To get the contents from the Electric Imp, the upload.php uses the

file_get_contents() function and opens a file with fopen() where the data can be placed. If the file

already exists, it will modify it, and if the file does not already exist, a new one will be created.

This is followed up by file_put_contents to put the data into the selected file and fclose() to close

the modification of data.

On the Electric Imp side of the server-Imp-interface, when the Electric Imp receives a

command from the microcontroller, it accesses the URL where the upload.php file is located.

From this file, it recognizes the request for data—an image—and uses http.post() to return an

httprequest object primed to perform an HTTP/1.1 POST request to the given URL, which in this

case has been set to http://10.36.251.234/pictures/testpic1.jpg. In order for the request to start,

sendsync() must be called on the returned object to execute a synchronous HTTP request. There

is the option to use httprequest.sendasync(), however it was desirable for this project to ensure

that no other Squirrel code in the agent would be executed until the server returned, or until an

error occurred.

The main unresolved problem of the Open Sesame project lies in the server to Electric

Imp interface: the Electric Imp cloud is currently not able to save a file on Open Sesame’s Notre

Dame server. From the system testing, it has been determined that the Electric Imp can send

images through the Imp cloud, and the images from the server can be given to the user from the

mobile application. Therefore, it has been concluded that the problem is most likely an issue of

network permissions and security. Since the server used for this project is a Notre Dame server,

it is very specific in receiving inputs from secure sources, which the Imp cloud may not be. As

Open Sesame did not have access to any servers that do not belong to Notre Dame, this theory

was not able to be confirmed nor denied.

Prior to settling on using PHP protocol for the Electric Imp to server communication,

 Open Sesame attempted to use wget() as a means to get the images from the Imp onto the server.

This was done by creating a Cron Job through Webmin, which can be seen in Figure 3.9.3. The

actual command run is as follows:
wget -q -O /var/www/pictures/`date +%y%m%d%H%M%S`.jpg http://wx.nd.edu/images/wx-header.png

The concept of setting up a Cron Job to periodically check for new images was desirable because

it would allow the user to access previous photos, which would be stored on the server for a

certain amount of time and sorted according to the time stamps the Cron Job assigns to each

image. The problem with using Cron Jobs to run the wget command is that it assumes the

Electric Imp can output the images to a link separate from the server. In reality, the Electric Imp

needs to find a request for data within the server, which it then writes directly onto the server.

Once the image is on the server, the need for using wget no longer exists, except perhaps to

rewrite the image names to include a time stamp. The PHP requests are still necessary for the

Electric Imp to transfer the image in the first place.

http://10.36.251.234/pictures/testpic1.jpg

Spring 2014 Final Report

Open Sesame 36 EE Senior Design

Figure 3.9.3. Cron Job Configurations

4 System Integration Testing

4.1 Testing of Integrated Set of Subsystems

To test the integrated set of subsystems the designed circuit was hardwired to the screw

terminals on the motor, as well as attached to the Wall Wart power supply, with the Electric Imp

card programmed and placed on the board. Once the microcontroller had been programmed

using the PicKit3, the app was then utilized to test if the entire system had been successfully

integrated. So the user pressed open/close on the app and the motor would turn on and reverse its

current state if the system was successful.

To further test communication with the Electric Imp, the app was used to test the camera

by pressing the capture button on the app. The Imp agent was used to detect if the camera had

taken a picture and sent the signal to the Imp. If the picture had sent the image to the Imp then

the agent IDE would reflect that and the data would be sent on to the microcontroller.

Another test included the Wi-Fi mode on the app. To test the success of the design the

Wi-Fi mode on the app was switched on and if working properly, the phone would recognize a

connection to the “home” Wi-Fi (ND-secure) and inform the user that the garage door would be

opening, and the motor would turn on and open the door. To test the user leaving their home the

Wi-Fi on the phone was turned off (then out of ND-secure) and if successful the app would alert

the user that they had exited the home Wi-Fi, and the garage door motor would turn on to close

the door.

Spring 2014 Final Report

Open Sesame 37 EE Senior Design

To test the functionality of the included safety design, the optical eyes were tested to

make sure that the safety feature had been preserved. An obstruction was placed between the two

optic eyes (typically a hand or foot) and the system was sent a signal (through the app) to close

the already open garage door. The system successfully retained the feature when the motor began

to run but stopped before the chain started to pull the door closed, and rather blinked on and off

before stopping the attempt to close the door.

Finally, both the wall control and the remote were tested. Both were able to open and

close the door with via communication to the motor. The wall panel was also able to use the

vacation mode (by pressing a button on the panel) and to turn the light on and off (again by

pressing a button).

4.2 Meeting the Design Requirements In Testing

 The design requirements were: to retain the original garage door functions, create a

functional Android app based on the app requirements, establish communication between the

Imp and the microcontroller, and establish communication between the Imp and the Android

app. These requirement would allow the user to experience the product without actually seeing

what happens in the background. Having the Android app communicate with the Imp and the

Imp to the garage door demonstrates full integration of all the subsystems.

 In order for the system to meet the requirements of retaining the original garage door

functions, the wall control, the remote control, and the eye sensors must all be functional. During

the tests, the remote control used to open and close the garage door showed full functionality.

The button on the remote is set to toggle, so by pushing the button, the garage door would move

in the opposite direction. We were able to retain this functionality. The wall panel is the

stationary version of the remote control and it was able to toggle the garage door when the toggle

button was pressed. In addition, the button on the wall control that controlled the light bulb was

fully functional. Finally, the eye sensors were able to detect when someone was in the line of

sight during the tests. When testing the original safety feature, the garage door did not open when

the eye sensors were triggered, which demonstrated that the Open Sesame system was able to

retain original motor functions.

 Communication between the Android app and the Imp were mainly tested by observing

the Imp agent, which outputted to a console based on the signal sent from the Android app. The

functions on the Android app were tested by seeing if the HTTP requests were received by the

Imp agent when a button was pushed. For example, if the “STATUS” button was pushed on the

app, the Imp agent would display a response that corresponded to that specific button. And once

that signal from the app was recognized, the Imp agent would send the appropriate signal to the

Imp itself. During our tests, the Imp agent displayed the correct output for each corresponding

button that was pressed on the Android app. The Imp was then able to relay that command to the

microcontroller, which in turn sent that signal to the garage door opener. The system would be

fully functional when each button on the Android app was returned the proper message. For

instance, if the “OPEN” button was pushed, the corresponding output message for open would be

displayed on the IMP agent and the garage door would open. Then when the status is checked,

the app would display to the user that the door is in fact opened. In cases when the garage door

did not respond to the app, the Imp Agent would reveal that it did not receive any signals from

the app.

Spring 2014 Final Report

Open Sesame 38 EE Senior Design

As stated above, the app was tested by observing the functionality of each individual

button. The Imp agent showed that it was in fact receiving signals from the buttons which means

communication was established between the app and the Imp. The Wi-Fi detection mode test

demonstrated that when the Wi-Fi detection mode was turned on, the app automatically sent the

“OPEN” signal to the Imp and the garage door opened. And when the Wi-Fi network changed

from the home network, the app sent the “CLOSE” signal to the Imp and the garage door closed.

When the detection mode was turned on, the app did not respond to any Wi-Fi connection

changes.

The only feature in the overall system that did not meet the design requirements was the

camera feature. The app was able to pull an image from a web server, but the Imp was not able to

post the image. While testing the camera subsystem, we were able to verify that the camera was

able to take an image since the image file was not empty. However, when the Imp tried to post

the image on the VPS, the newly created image file was empty. This meant the app would only

be pulling an empty file and therefore, a blank image.

In summary, the tests demonstrated that the Open Sesame system met all but one system

requirement, which was the camera feature. The app was able to successfully communicate with

the Imp cloud and the VPS and the Imp was able to communicate with the microcontroller.

During the tests, the app demonstrated the system requirements of being able to display the door

status, open and close the door, and enable Wi-Fi detection mode. From the user’s perspective,

there is seamless integration between the systems with the exception of the camera feature.

5 User Manual/Installation Manual

5.1 Assumptions for Marketed Project

 The user manual as described assumes that the supplier of the Open Sesame system is the

first to obtain the Electric Imp. It will be this supplier that “Blinks Up” the Imp for the first time,

loads the necessary code, and obtains the agent URL necessary for using the Open Sesame

Android Application before shipping the product to the user. Before BlinkUp, the username and

password will be assigned by the supplier. The password can later be changed, but the username

is permanent. BlinkUp would then be performed, and the code loaded onto the Electric Imp.

When the code is being loaded, the agent URL assigned to the individual Imp would also be

recorded. This information is necessary for a separate log in on the Android App. It would be

necessary, as part of the security features described later, to include a login for the Android App.

This would also include a pre-assigned username, to match the URL for the Imp. Once the user

is in control of Imp, they will be responsible for changing the password to retain security. At

present, the same login information would be used for all users of a signal garage door.

5.2 How to Setup the Open Sesame

Here is a description of the setup for the Open Sesame system. Before you begin, please

collect your home Wi-Fi network login information and cell phone. The first steps will require

setting up your system to connect to the internet. Before you begin, check that your garage is

within your wireless network’s range by checking your connection with your cell phone. The

initial setup can be performed in your home, and are recommended to be done with your internet

router nearby.

Spring 2014 Final Report

Open Sesame 39 EE Senior Design

Figure 5.2.1. Components included in your Open Sesame

1. Open Sesame Cell Phone App

a. The Open Sesame control application can be found in the Google Play store for

Android. Eventually this system will be expanded for iPhone, and will also be

available through iTunes. If you have an iPhone please visit the Open Sesame

website where you will log in as you would on a cell phone app. This can also be

done on your computer.

b. Log in using login username and password supplied with the rest of your Open

Sesame.

c. After logging in, please change your password to improve security.

d. When you first log in, the system will ask for your network name. This is for the

Wi-Fi detection mode and will serve as your proximity sensor. Please use proper

capitalization and type your network name as you would see it listed on your cell

phone. Note that Wi-Fi detection is not available using the website interface.

e. Once you have entered the necessary information you should be greeted with a

welcome screen.

2. BlinkUp

a. These next steps will describe how to connect your Open Sesame to the internet.

b. Download the Electric Imp app from the Google Play Store or iTunes. This is

separate from the Open Sesame app.

c. Connect your circuit board to power. It does not have to be in the housing yet.

d. Insert the Electric Imp into the SD card slot on the board. If power is connected it

should immediately begin blinking red and orange.

e. Open the Electric Imp app and log in with the information given to you. This will

not be the same login you used for the Open Sesame app.

Spring 2014 Final Report

Open Sesame 40 EE Senior Design

f. Once logged in you will see a screen asking for a network name. Choose “Other

Network”.

g. You will be prompted to provide your network name and password. Type in the

information exactly.

h. Prepare for BlinkUp by covering the top of the Electric Imp where the light comes

through.

i. Select “Send BlinkUp” on the open app and press the edge of the chip up to the

phone screen.

j. After BlinkUp is complete the Electric Imp should blink green. If it does not,

continue to troubleshooting. Once BlinkUp is completed, unless you change your

router name or password, the Imp will always automatically connect to your

router without the need to BlinkUp. If you have changed your router name or

password, follow the instructions to BlinkUp over again with the new

information.

k. At this point the buttons on the Open Sesame should be functioning and should be

tested. Go into the app and select “Check Status”. If the word “refresh” appears

you may continue setup, otherwise continue to troubleshooting.

Figure 5.2.2. Screenshots from the Electric Imp iPhone App to assist in BlinkUp

3. Connecting Switches

a. Before moving into the garage, check that the switches are functioning.

b. Remove power to the board.

c. Thread the wires for the switches through the opening on the housing. The board

does not need to sit inside the housing yet, but threading the wires through now

will prevent redoing this step later.

d. Match the colors on the wires to the colored ports on the circuit board. Using the

included screwdriver secure the connections.

e. Connect power to the board.

f. Open the Open Sesame app.

g. Place the magnet near one of the switches.

Spring 2014 Final Report

Open Sesame 41 EE Senior Design

h. Check the status of the door. It should read open or closed. If it does not, continue

to troubleshooting. If it does, move the magnet to the other switch and check the

status again. It should now read the other status. Keep track of which color is

open and which is closed.

4. Connect Camera

a. Remove power to the board, thread the connecting cables through the ports on the

camera and board housing.

b. Connect power again and allow Electric Imp to connect.

c. Open the Open Sesame app and select the capture mode. Take a picture and wait

for confirmation that the command was sent. In just over a minute you should be

taken to a page where your image can be seen.

d. If the image does not show up, proceed to troubleshooting.

5. Setup switches

a. Making note of which switch was open and which was closed, move into your

garage.

b. The wires should be long enough to fit on a standard garage door, but first check

if this is true. It may be necessary to extend the wires if they cannot reach the

door.

c. Beginning with your garage door open, take the switch marked as open and find a

position on the garage door where a switch can be attached most easily. This may

vary depending on your garage door. While it is in this position, attach the switch

to the rail side of the door, and the magnet to the door.

d. While it is in this same position, check using the Open Sesame app what the status

of the garage door is. It may be necessary to adjust the switch slightly depending

on the distance. It is important to have a solid connection between the magnet and

the switch otherwise the status will never be read properly. Once this connection

is made, and the status can be read properly using your phone, secure the wire

connecting the switch, and change the status of your door using your wall panel.

e. Repeat this process for the closed position. The Switch can be placed anywhere

on the door, but it may be useful to use the same magnet as before to create the

closed door connection. After the door status reads closed from your phone, you

may continue on to connecting the motor.

6. Connect to and test motor

a. Remove power from your circuit board.

b. By tracing the wires coming off of the wall panel, there should be two screws

coming out of the garage door opener.

c. On the board there is a white and a red port. The wire from the white port goes to

the white screw and the wire from the red port goes to the red screw. Taking care

to thread the wires through the opening on the housing, connect these wires as

Spring 2014 Final Report

Open Sesame 42 EE Senior Design

before, using the screwdriver, and wrapping the other end of the wire around the

screw being careful not to short the two screws.

d. After the connections are made, apply power to the board and through the phone

app attempt to change the status of the door. If it works, you’re done with setup!

If not, proceed to troubleshooting.

7. Finalizing Setup

a. Place the board inside the housing; this will require removing power temporarily.

Adjust the wires to allow the board to fit securely. Do the same with the camera

housing. Once everything is in the case, use the Velcro strips provided to connect

the housing to your garage door opener in a way that is convenient for accessing

the reset button, as well as allowing the power cord to reach the board without

stretching. After the board is in place, attach the camera to the housing or the

opener so it is facing your garage door. You may need to take some test shots to

ensure it is pointing in the proper direction. After everything is placed, provide

power to the board, and enjoy your peace of mind.

5.3 Using the Open Sesame Android Application

1. Startup

a. As is described before, the Android App must be configured for your specific

Imp. This is done partially by the supplier, however you, the user, must

identify the home network after the initial log in.

2. Options

a. Check Status

i. Check the status by going to the status tab. It will be necessary to press

the button twice for every status read. This is the nature of the status.

The first time the command is sent to check the status, and the second

reads back the status to the user’s phone.

b. Change Status

i. While in this tab you may choose to open or close your garage door. If

your door is already closed, it will give you an error message when

you try to close it. Likewise if your door is open and you try to open it.

c. Take a Picture

i. In this tab you can choose to take a picture. Ensure that the camera is

properly plugged into the Open Sesame board before taking a picture;

otherwise an error will be returned. Once the button is pressed, it can

take up to a minute for the information to be sent back to your phone.

A picture should then appear on your phone screen.

d. Wi-Fi Detection Mode

i. By selecting Wi-Fi Detection mode, under the status tab, the user’s

cell phone will send instructions based on connecting to and

Spring 2014 Final Report

Open Sesame 43 EE Senior Design

disconnecting from the user’s home network. This mode is design for

driving to and from work, the store, or anywhere. Once enabled, as

you leave your home network you phone will automatically send the

command to close your garage door. Likewise as you enter the

network range your phone will automatically send the command to

open the door for you. This prevents fumbling for remotes as you enter

your driveway. It is completely optional, and can be turned off for

doing yard work or going for a walk where you may go in and out of

range.

5.4 Troubleshooting the Open Sesame

1. BlinkUp

a. The Imp is flashing a series of lights I don’t understand

i. Check out the documentation provided by Electric Imp on this subject

ii. http://electricimp.com/docs/troubleshooting/blinkup/

b. Errors setting up Wi-Fi

i. Check that your range is extending far enough to pick up in your garage

ii. Test with multiple devices (your phone, tablet, laptop) the signal doesn’t

have to be strong, but a stronger signal will respond more quickly

2. Status Switches

a. Transition

i. Chances are one of your switches is not setup properly. While in the open

or closed state, check with your Open Sesame app to see what the status is

reading. If it’s “in transition” place another magnet near the switch and

check again. If the status is correct, your switch is too far from the magnet

and must be moved. Alternatively a more powerful magnet (not included)

could be used to expand this system.

b. Always open/closed

i. Check your connections to the board. If one of the wires is loose, or if a

wire is crossing, the logic will be incorrect and cause false readings.

3. Error Changing the Status

a. Motor does not respond

i. Before assuming there is a problem with the board, check that your wall

panel and remote are still functioning. There is a chance that vacation

mode was turned on without your knowledge.

ii. Otherwise, check that the connections between the circuit board and the

motor are solid. If they are at all loose, tighten them

4. Phone App

a. Unknown Status

http://electricimp.com/docs/troubleshooting/blinkup/

Spring 2014 Final Report

Open Sesame 44 EE Senior Design

i. If after connecting everything the app returns “unknown status” go out and

reset the circuit board by hitting the button next to the Electric Imp.

b. Camera Failed to Take a Picture

i. Reset your board by hitting the button next to the Electric Imp and try

again.

ii. Check to see that all of the wires connecting the camera to the board are

still connected.

5.5 Security

 If you feel that your Open Sesame is no longer secure and someone else has access to

your garage door controls, immediately unplug your Open Sesame system. It is likely that the

Electric Imp has been compromised. Contact Open Sesame and we will provide you with new

log in information, and we will adjust the URLs to operate your phone app. You will be required

to BlinkUp the Imp using a new username and password, and the login for your phone app will

also change. This is all for your safety. If you would feel more comfortable you can send back

your Open Sesame for a replacement (feel free to keep the switches in place, they do not pose a

security threat).

6 To-Market Design Changes

Estimated Cost

The costs for the prototype created are relatively low, especially considering the few parts

necessary to the cost. The manufactured circuit board cost at least $100 for a set of only five with

a one-week wait. The Electric Imp SD card is another $30, and the box that encases the entire

circuit has an estimated cost of around $12 (this is the average cost of a Raspberry Pi case, which

is roughly the size to encase the circuit board designed). The bell wire used to hardwire the

circuit to the motor costs roughly $10 for 25 feet. Therefore the total cost for the prototype is

approximately $152.

If the product were to be mass-produced, however, the total cost could be significantly

reduced, particularly in terms of the designed circuit board. Increasing the quantity to 150

reduces the cost to $7.46 for a one-week wait. Assuming that for mass production this process

would most likely be done more quickly the price increases slightly to $20.97 for same day

processing. Of course more bell wire would need to be purchased (an approximated 18 inches

per product), and a case for each would also need to be purchased (but may be at a slightly lower

cost if ordered in bulk). This more than halves the cost per unit produced.

Future Improvements for the Electric Imp/Cell Phone Interface:

 Add time of last change to the door status, along with who made the change (user or door

panel).

 Assigning a time frame when the door should be kept closed, such as when the user has

gone to work.

 Specifying an amount of time the door may be left open after which the user is asked if

they wish to close the door.

Spring 2014 Final Report

Open Sesame 45 EE Senior Design

 Whenever the user attempts to close the door, but the door is backed up because of a

break between the optic eyes, a notification is sent to the user complete with a picture to

show the door failed to close.

 Including the option to “view last picture taken” along with a time stamp instead of

taking a new picture.

 Notifying the user whenever a status change is made, not by them.

7 Conclusions

The Open Sesame product found a niche in an existing market to bring outdated but

functioning products into this century, particularly in solving the problem of unsecured,

unintelligent garage doors. By allowing the owner to remotely access key information about their

garage door such as its current open or closed status and pictures of the door, users can feel more

confident about the safety of their home and family. With the ability to control the door from

anywhere with internet, even the most forgetful person can still close the garage while away

from home or open it to allow in the repairman. Open Sesame also eliminates the need to go

searching for the remote when one leaves or returns home with the Wi-Fi detection mode that

can perform these actions automatically for the owner. This further adds to security because it

decreases the likelihood of the door being left open when the owner is not home.

This unique combination of features allows Open Sesame to fill the need of a particular,

neglected part of the garage door market. The systems on the market that serve to add

intelligence to the garage door are complete packages that require total replacement of the

existing motor and controls. This greatly adds to their expense and the installation process. It is

also mostly unnecessary as the motors themselves have long lifetimes and would otherwise not

need to be replaced. From speaking with potential customers, it is clear that these are hindrances

to upgrading garages. On the contrary, Open Sesame is designed to be used with an existing

garage door motor system. This greatly reduces the cost and installation making it attractive to

potential buyers who just want the add intelligence and security and do not need a new motor. A

purchaser can have the desired features without any extraneous changes. For these reasons, Open

Sesame would be a competitive product even though the idea is not wholly original.

The final prototype developed by the team succeeded in meeting the vast majority of the

requirements that were determined necessary to address the problem of unsecured, unintelligent

garages. Besides for the exceptions explained in this report such as the nonfunctional Electric

Imp to server communication, the prototype version is capable of performing the other functions

and these were tested and demonstrated. In addition to ideas for how these issues could be

addressed, the Open Sesame team has thoughts for improvements and add-ons that could be

incorporated before bringing the product to market and these could further enhance the user

experience.

8 Acknowledgements
 The Open Sesame team would like to thank the many people who served as references

throughout the course of this project and who thus contributed to the success of the prototype.

Thanks are extended to Professor R. Michael Schafer for helping in the development of the

Spring 2014 Final Report

Open Sesame 46 EE Senior Design

project and for the advice he gave on a wide-variety of topics from board design to Wi-Fi

enabling options to good design processes. He was also instrumental in provide essential parts

not only for the board, but also for the demonstration, including a complete, fully-functional

garage motor and system. Dr. Robert Stevenson assisted the project during both the exploration

of RF options and the attempted implementation of the php code on the server. Yaakov Sloman

provided information about servers that was useful during the development of the prototype and

when considering future improvements. He also helped set up the server that was used to try

uploading and downloading the camera pictures. The team would also like to thank the

developers of the Electric Imp for their aid in Squirrel syntax and coding via the Electric Imp

development forums. Lastly, Open Sesame would like to extend gratitude to Mrs. Katie Schafer

for providing the inspiration behind the problem and project idea; the existence of this product is

due largely to you.

Spring 2014 Final Report

Open Sesame 47 EE Senior Design

9 Appendices

9.1 Appendix of Parts Used

Table 9.1.1. Parts Needed for PCB Design

Part Type Part Value Package

Power Circuit

LED PWR P 0805

R1 300 Ω R 0805

C7 10 uF C 0805

LD1117D (3.3 V) DPAK

C8 0.1 uF C 0805

DC IN 2.1 MM DC-POWERJACK

PICKIT

R5 10kΩ R 0805

R6 100 Ω R 0805

Push Button Reset B3F-10XX

PICKIT3 Connector PICKIT3

Voltage Divider

MCP1252

(Positive-Regulated Charge Pump

(3.3x5.0)) MSOP8

C9 0.1 uF C0805

C10 10 uF C0805

C11 10 uF C0805

R7 150k R0805

Door Status

R9 10 k R0805

R10 10 k R0805

DS-SCREWTERM

SCREW-TERM-1X5-3.81

(SCREW-TERM-1X5 TYCO-3.81MM-5

Motor Control

R11 200 R 0805

R12 200 R 0805

R3 1.6 k R 0805

C14 1 uF C 0603

MC-SCREWTERM

SCREW-TERM-1X5-3.81

(SCREW-TERM-1X5 TYCO-3.81MM-5

Relay 1 MCDOOR DIL04

Relay 2 MCLIGHT DIL04

Camera

Molex Connector 6 pin

CON-MOLEX-43XX-64204-V

(CON-MOLEX-43XX-6) WM-4204

Extra Pins

Spring 2014 Final Report

Open Sesame 48 EE Senior Design

Pin Connector PINHD-2x4 2X04

Electric Imp

IMP_HOLDER

IMP-SOCKET-AMPHENOL

(IMP-SOCKET) SDCARD-AMPHENOL1010031368

C12 0.1uF C 0805

R8 100k R 0805

ATSHA204

TSHA204-SINGLEWIRE-TSU-T

(ATSHA204-SINGLEWIRE) SOT23

Capacitor Bank

C1 0.1uF C 0805

C2 0.1uF C 0805

C3 0.1uF C 0805

C4 0.1uF C 0805

C5 0.1uF C 0805

Microcontroller

R2 10 Ω R 0805

C6 10 uF C 1206

Microcontroller PIC32MX795F512H

9.2 Appendix of Links for Data Sheets

ATSHA204: http://www.atmel.com/Images/Atmel-8740-CryptoAuth-ATSHA204-Datasheet.pdf

AQY21 Relay: http://pewa.panasonic.com/assets/pcsd/catalog/aqy-dip-form-a-reinforced-

isolation-catalog.pdf

HCS362: http://ww1.microchip.com/downloads/en/DeviceDoc/40189d.pdf

LD1117 D: http://pdf.datasheetcatalog.com/datasheet/stmicroelectronics/2572.pdf

MCP1252: http://ww1.microchip.com/downloads/en/DeviceDoc/21752B.pdf

http://www.atmel.com/Images/Atmel-8740-CryptoAuth-ATSHA204-Datasheet.pdf
http://pewa.panasonic.com/assets/pcsd/catalog/aqy-dip-form-a-reinforced-isolation-catalog.pdf
http://pewa.panasonic.com/assets/pcsd/catalog/aqy-dip-form-a-reinforced-isolation-catalog.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40189d.pdf
http://pdf.datasheetcatalog.com/datasheet/stmicroelectronics/2572.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21752B.pdf

Spring 2014 Final Report

Open Sesame 49 EE Senior Design

9.3 Appendix of Microcontroller Code Files

configbitsrev8internal.h

/*

 * File: configbits.h

 * Author: Mike

 *

 * Created on October 9, 2012, 1:50 PM

 */

#ifndef CONFIGBITS_H

#defineCONFIGBITS_H

/*

 * REv 8 boards.

 * resonator is 8 MHz

 * Will switch to internal if external not present or fails

 * internal (FRC) clock

 peripher clock = at 10 MHz (80 MHz/8)

 */

#pragma config FNOSC = FRCPLL // Oscillator selection

#pragma config POSCMOD = HS // Primary oscillator mode

#pragma config FPLLIDIV = DIV_2 // PLL input divider (8 -> 4)

#pragma config FPLLMUL = MUL_20 // PLL multiplier (4x20 = 80)

#pragma config FPLLODIV = DIV_1 // PLL output divider

#pragma config FPBDIV = DIV_1 // Peripheral bus clock divider 80 mhz

#pragma config FSOSCEN = OFF // Secondary oscillator enable

/* Clock control settings

*/

#pragma config IESO = ON // Internal/external clock switchover

#pragma config FCKSM = CSECME // Clock switching (CSx)/Clock monitor (CMx)

#pragma config OSCIOFNC = OFF // Clock output on OSCO pin enable

/* USB Settings

*/

#pragma config UPLLEN = OFF // USB PLL enable

#pragma config UPLLIDIV = DIV_2 // USB PLL input divider

#pragma config FVBUSONIO = OFF // VBUS pin control

#pragma config FUSBIDIO = OFF // USBID pin control

/* Other Peripheral Device settings

*/

#pragma config FWDTEN = OFF // Watchdog timer enable

#pragma config WDTPS = PS1024 // Watchdog timer post-scaler

Spring 2014 Final Report

Open Sesame 50 EE Senior Design

#pragma config FSRSSEL = PRIORITY_7 // SRS interrupt priority

#pragma config DEBUG = ON

#pragma config ICESEL = ICS_PGx1 // ICE pin selection

#endif /* CONFIGBITS_H */

Delaylib.h

#ifndef _DELAYLIB_H_

#define _DELAYLIB_H_

#include <xc.h>

/**

header file for the Delay routines

*/

/* delay routines*/

//void set_sys_clock(unsigned long val);

//unsigned long get_sys_clock(void);

//void set_pb_clock(unsigned long val);

//unsigned long get_pb_clock(void);

void delay_ms(unsigned long val);

void delay_us(unsigned long val);

#endif //DELAYLIB

kit32r7lib.h

#ifndef _KITSUPPORT_H_

#define _KITSUPPORT_H_

#include <xc.h>

#include <stdint.h>

#include <plib.h>

//#define _XTAL_FREQ 20000000UL

/**

header file for the support routines for the kit board

* At present, included are:

* Delay routines

* serial (spi) LCD

* serial port routines

* switcher to allow stdout to go to LCD or serial port

Spring 2014 Final Report

Open Sesame 51 EE Senior Design

*/

// LCD Function prototypes

/* specific to spi display */

void LCD_init(unsigned long rate);

void LCD_char(char val);

void LCD_display_on(void);

void LCD_display_off(void);

void LCD_clear(void);

void LCD_backlight(char val);

void LCD_contrast(char val);

void LCD_setpos(char row, char col);

/* serial I/O via usart 6 prototypes*/

unsigned char getu(void); // get char

void putu(unsigned char val); // put char

void serial_init(unsigned long rate);

void set_output_device(unsigned char device);

/* delay routines*/

void set_sys_clock(uint64_t val);

uint64_t get_sys_clock(void);

void set_pb_clk(uint64_t val);

uint64_t get_pb_clock(void);

void delay_ms(unsigned long val);

void delay_us(unsigned long val);

#endif //KITSUPPORT_H

OpenSesameR1.c

/*

 * File: OpenSesameR1.c

 * Author: asavela

 *

 * Created on April 3, 2014, 9:24 AM

 */

Spring 2014 Final Report

Open Sesame 52 EE Senior Design

#include <stdio.h>

#include <stdlib.h>

#include <xc.h>

#include "configbitsrev8internal.h"

#include "kit32r7lib.h"

#include <plib.h>

#include <sys/attribs.h>

#include "Delaylib.h"

/*

 *

 */

//SPI #defines

#define SPI_INT_R IFS1bits.SPI4RXIF

#define SPI_INT_T IFS1bits.SPI4TXIF

#define ChipSelect PORTBbits.RB8

//SPI Functions

void SPIinitslave(void); //initializes the SPI

unsigned char do_SPI_slave(unsigned char VAL);

// Set Up Information for Camera, #defines and variables

#define VC0706_RESET 0x26

#define VC0706_READ_DATA 0x30

#define CAMERABUFFSIZ 100

#define VC0706_GEN_VERSION 0x11

#define VC0706_READ_DATA 0x30

#define VC0706_STOPCURRENTFRAME 0x0

#define VC0706_FBUF_CTRL 0x36

#define CAMERADELAY 10

#define VC0706_GET_FBUF_LEN 0x34

#define VC0706_READ_FBUF 0x32

typedef unsigned char boolean;

#define true 1

#define false 0

unsigned char serialNum = 0;

unsigned char bufferLen = 0;

unsigned char camerabuff[100];

int frameptr = 0;

// Camera UART Function Declarations

void serial_init3(unsigned long baudrate);

unsigned char readu3(void);

void writeu3(unsigned char input);

Spring 2014 Final Report

Open Sesame 53 EE Senior Design

// Door Status #defines

#define Enable_Timer T2CONbits.ON

#define Timer_Flag IFS0bits.T3IF

int main(int argc, char** argv) {

 //Set up for switches

 int count = 0;

 int x = 0; //for light flash

 AD1PCFG=0xFFFF; //digital ports, (high voltage is 3.3V)

 TRISDbits.TRISD0 &= 1;// D0 input (top switch)

 TRISDbits.TRISD4 &= 1;// D4 input (bottom switch)

 //TRISE &= 0x0000; //set LED to output

 //LATE = 0xFFFF; //turn LEDs off

 //Timer set up

 //Enable_Timer = 1; //*enabling timer 2

 //T2CONbits.T32 = 1;

 //T2CONbits.TCKPS = 0b111; //* 1:256 prescale value

 //PR2 = 65535;

 //PR3 = 180; //*we want 45 seconds

 //Enable_Timer = 0;

 //Timer_Flag = 0;

 //Motor Control Set up

 TRISBbits.TRISB3 &= 0;// B3 out (controls door)

 TRISBbits.TRISB4 &= 0;// B4 out (controls light)

 LATBbits.LATB4 = 0;

 LATBbits.LATB3 = 0;

 // Old Motor Control pins

 //TRISDbits.TRISD1 &= 0;// d1 out (controls door)

 //TRISDbits.TRISD2 &= 0;// d2 out (controls light)

 //LATDbits.LATD1 = 0;

 //LATDbits.LATD2 = 0;

 //Camera Variables

 boolean resetresult;

 unsigned char getresult;

 unsigned char result[100];

 unsigned char version[16];

 unsigned char ColorStatus[8];

 unsigned char ImageSize[6];

 unsigned char TakePicture[6];

 unsigned char FrameLength[9];

 unsigned char Length[4];

Spring 2014 Final Report

Open Sesame 54 EE Senior Design

 unsigned char ReadStart[5];

 unsigned char ReadEnd[5];

 unsigned char ResumeReturn[5];

 unsigned char Picture[16384];

 int i = 0;

 //SPI Set up

 unsigned char send = 0; // initializing send to 0, the hex data to send

 unsigned char read = 0; // the variable that hex reads will be assigned to

 SPIinitslave(); // initialization function to set up as slave

 SPI4STATbits.SPIROV = 0; // clearing the bit

 //Camera Set up

 serial_init3(38400);

 TRISDbits.TRISD1 &= 0;

 LATDbits.LATD1 = 1;

 LATDbits.LATD1 = 0;

 LATDbits.LATD1 = 1;

 //LATDbits.LATD1=1; //sets B3 High

 //LATDbits.LATD2=1; //sets B3 High

 while(1){

 send = 0x00;

 read = do_SPI_slave(send);

 switch (read){

 case 0xCA:

 //send = 0x01;

 //read = do_SPI_slave(send);

 //Turn light on

 LATBbits.LATB4=1; //sets B4 High, turns light on

 LATBbits.LATB3=0; //sets B3 Low

 //Take Picture

 frameptr = 0;

 writeu3(0x56);

 writeu3(serialNum);

 writeu3(VC0706_FBUF_CTRL);

 writeu3(0x01);

 writeu3(VC0706_STOPCURRENTFRAME);

 for (i=0; i<5; i++){

 TakePicture[i] = readu3();

 }

 //Get Frame Length

 writeu3(0x56);

Spring 2014 Final Report

Open Sesame 55 EE Senior Design

 writeu3(serialNum);

 writeu3(VC0706_GET_FBUF_LEN);

 writeu3(0x01);

 writeu3(0x00);

 for (i=0; i<9; i++){

 FrameLength[i] = readu3();

 }

 int k = 0;

 for (k=0; k < 4; k++){

 Length[0] = FrameLength[5];

 Length[1] = FrameLength[6];

 Length[2] = FrameLength[7];

 Length[3] = FrameLength[8];

 }

 //Reading picture

 writeu3(0x56);

 writeu3(serialNum);

 writeu3(VC0706_READ_FBUF);

 writeu3(0x0C);

 writeu3(0x00);

 writeu3(0x0A);

 writeu3(0x00);

 writeu3(0x00);

 writeu3(0x00);

 writeu3(0x00);

 writeu3(Length[0]);

 writeu3(Length[1]);

 writeu3(Length[2]);

 writeu3(Length[3]);

 writeu3(0x0B);

 writeu3(0xB8);

 for (i=0; i<5; i++){

 ReadStart[i] = readu3();

 }

 unsigned long Len;

 Len = Length[0]*256^3 + Length[1]*256^2 + Length[2]*256 + Length[3];

 //unsigned char Picture[Len];

 for (i=0; i<Len-1; i++){

 Picture[i] = readu3();

 }

 for (i=0; i<5; i++){

 ReadEnd[i] = readu3();

 }

Spring 2014 Final Report

Open Sesame 56 EE Senior Design

 // Resume: required after every take and read

 writeu3(0x56);

 writeu3(serialNum);

 writeu3(VC0706_FBUF_CTRL);

 writeu3(0x01);

 writeu3(0x03);

 for (i=0; i<5; i++){

 ResumeReturn[i] = readu3();

 }

 // Wait for SPI and send length

 send = Length[2];

 read = do_SPI_slave(send); //Send 01 to get back length part 1

 send = Length[3];

 read = do_SPI_slave(send); //Send 02 to get back length part 2

 for (i=0; i<Len-1; i++){

 send = Picture[i];

 read = do_SPI_slave(send);

 }

 for (i=0; i<(16384-Len); i++){

 send = 0x00;

 read = do_SPI_slave(send);

 }

 // Ending signal

 send=0x00;

 read = do_SPI_slave(send);

 //LATBbits.LATB4=0; //sets B4 low, stops trying to turn light on

 break;

 case 0x0D:

 for (x = 0; x<4; x++){

 LATBbits.LATB4=1; //sets B3 High

 delay_ms(1000);

 LATBbits.LATB4=0;

 delay_ms(1000);

 }

 LATBbits.LATB3 = 1;

 send = 0x02;

 read = do_SPI_slave(send);

 break;

 case 0xCD:

 for (x = 0; x<4; x++){

 LATBbits.LATB4=1; //sets B3 High

 delay_ms(1000);

 LATBbits.LATB4=0;

 delay_ms(1000);

Spring 2014 Final Report

Open Sesame 57 EE Senior Design

 }

 LATBbits.LATB3=1; //sets B3 High

 send = 0x03;

 read = do_SPI_slave(send);

 break;

 case 0xD5:

 //send = 0x04;

 //read = do_SPI_slave(send);

 LATBbits.LATB3=0; //sets B3 Low

 LATBbits.LATB4=0;

 if (PORTDbits.RD0!=1 & PORTDbits.RD4!=1){ //door in limbo

 //Timer_Flag = 0;

 //Enable_Timer = 1;

 //while(PORTDbits.RD0!=1 & PORTDbits.RD4!=1){

 //if (!Timer_Flag){

 //LATE = 0xFFFF; // all off, transition

 send = 0x05;

 read = do_SPI_slave(send);//}

 // else if (Timer_Flag){ // error state

 // LATE = 0x0000; //all on!

 // send = 0x03;

 // read = do_SPI_slave(send);}

 //}

 //Enable_Timer = 0;

 //Timer_Flag = 0;

 }

 else if (PORTDbits.RD0!=0 & PORTDbits.RD4!=1){

 LATE = 0x00F0; // first half on, door closed

 send = 0x00;

 read = do_SPI_slave(send);}

 else if (PORTDbits.RD0!=1 & PORTDbits.RD4!=0){

 LATE = 0x000F; // second half off, door open

 send = 0x01;

 read = do_SPI_slave(send);}

 else if (PORTDbits.RD0!=0 & PORTDbits.RD4!=0){

 LATE = 0x0000; //all on!, error state

 send = 0x04;

 read = do_SPI_slave(send);}

 break;

 default:

 LATBbits.LATB3=0; //sets B3 Low

 LATBbits.LATB4=0;

 //send = 0x06;

 //read = do_SPI_slave(send);

 break;

Spring 2014 Final Report

Open Sesame 58 EE Senior Design

 }

 //LATBbits.LATB3=0; //sets B3 Low

 LATBbits.LATB4=0;

 }

 return (EXIT_SUCCESS);

}

// UART Functions

void serial_init3(unsigned long baudrate){

 U3MODEbits.ON = 1;

 U3MODEbits.BRGH = 1;

 U3STAbits.URXEN = 1;

 U3STAbits.UTXEN = 1;

 U3BRG = (80000000/4/baudrate) - 1;

}

unsigned char readu3(void){

 while(1){

 if(U3STAbits.URXDA == 1){

 unsigned char received = U3RXREG;

 return(received);

 }

 }

}

void writeu3(unsigned char input){

 while(1){

 if(U3STAbits.UTXBF == 0){

 U3TXREG = input;

 return;

 }

 }

}

// SPI Functions

void SPIinitslave(void){

 int rData;

 //IEC1bits.SPI4EIE = 0; // disable interrupts

 SPI4CONbits.ON = 0;

 rData = SPI4BUF; //clearing the receive buffer

 //SPI4CONbits.ENHBUF = 0; // don't run enhanced mode (defaulted to 0 already)

 SPI4CONbits.CKP = 0; //must match imp

 SPI4CONbits.CKE = 1; //must match imp

 SPI4CONbits.MSTEN = 0; //making slave

 //IPC8bits.SPI4IP = 00;

Spring 2014 Final Report

Open Sesame 59 EE Senior Design

 //IEC1bits.SPI4EIE = 1; // enable interrupts

 //IEC1bits.SPI4RXIE = 1;

 //IEC1bits.SPI4TXIE = 1;

 //SPI4CONbits.SSEN = 1; //enabling slave enable

 SPI4CONbits.SRXISEL = 0b01;

 SPI4STATbits.SPIROV = 0; // clearing the bit

 SPI4CONbits.MODE32 = 0; //set to 8 bit data

 SPI4CONbits.MODE16 = 0; //set to 8 bit data

 //SPI4CONbits.SSEN = 1;

 SPI4CONbits.ON = 1;

 }

unsigned char do_SPI_slave(unsigned char VAL){

 unsigned char read;

 SPI_INT_R = 0;

 //SPI_INT_T = 0;

 SPI4BUF = VAL;

 //while(!SPI4STATbits.SPITBE){}

 while(!SPI_INT_R){}; //checking if the receive buffer is full

 //while(!SPI4STATbits.SPIRBF){}

 do{

 read = SPI4BUF;

 SPI_INT_R = 0;}

 while(SPI_INT_R);

 //while(SPI4STATbits.SPIRBF){};

 return(read);

}

Delaylib.c

#include "Delaylib.h"

#include <xc.h>

/*Default clock values */

unsigned long FCY = 80000000UL;

unsigned long PBCLK = 10000000UL;

/* delay routines */

void set_sys_clock(unsigned long val)

{

Spring 2014 Final Report

Open Sesame 60 EE Senior Design

 FCY = val;

}

unsigned long get_sys_clock(void)

{

 return FCY;

}

void set_pb_clock(unsigned long val)

{

 PBCLK = val;

}

unsigned long get_pb_clock(void)

{

 unsigned long temp;

 temp = OSCCON >> 19;

 temp &= 0X03;

 return (FCY >> temp);

}

void delay_ms(unsigned long delayms)

{

 unsigned int tWait, tStart;

 tWait = (FCY / 2000) * delayms;

 tStart = ReadCoreTimer();

 do

 {

 // do something

 _nop();

 } while ((ReadCoreTimer() - tStart) < tWait); // wait auto negotiation start

}

void delay_us(unsigned long delayus)

{

 unsigned int tWait, tStart;

 tWait = (FCY / 2000000) * delayus;

 tStart = ReadCoreTimer();

 do

 {

 // do something

 _nop();

 } while ((ReadCoreTimer() - tStart) < tWait); // wait auto negotiation start

}

Spring 2014 Final Report

Open Sesame 61 EE Senior Design

9.4 Appendix of Electric Imp Code Files

Electric Imp Agent Code

const MY_SERVER_URL = "http://10.36.251.234/pictures/upload.php";

requests <- []

jpeg_buffer <- null

local DoorStatus = 9;

local TimerCount = "0";

local lastChanged = 0;

local Datatrue = 0;

http.onrequest(function(request, response) {

 if ("pic" in request.query)

 {

 device.send("spy",request.query["pic"].tointeger()); //commented out to

take out time

 response.send(200, "Taking Picture go to:

http://10.36.251.234/pictures/testpic1.jpg");

 requests.push(response);

 response.header("Location",

"http://10.36.251.234/pictures/testpic2.jpg");

 }

 else if ("door" in request.query)

 {

 if (request.query["door"] == "1"){

 if (DoorStatus == 1){

 response.send(200,"Door is already open.");

 }

 else if (DoorStatus == 0){

 response.send(200,"Door status will be updated.");

 device.send("open",1);

 }

 else if (DoorStatus == 5){

 response.send(200,"Door is in transition, attempting to

open.")

 device.send("open",1);

 }

 else {

 response.send(200,"Error, check status before trying again.")

 }

 }

 else if (request.query["door"]=="0"){

 if (DoorStatus == 0){

 response.send(200,"Door is already closed.");

 }

 else if (DoorStatus == 1){

 response.send(200,"Door status will be updated");

 device.send("close",1);

 }

 else if (DoorStatus == 5){

Spring 2014 Final Report

Open Sesame 62 EE Senior Design

 response.send(200,"Door is in transition, you may only

attempt to open.")

 }

 else {

 response.send(200,"Error, check status before trying again.")

 }

 }

 else {

 response.send(200,"error in updating status");

 }

 }

 else if ("status" in request.query) {

 if (Datatrue==1){

 if (DoorStatus ==0){

 response.send(200, "Door is closed, your family and home

are safe.");

 }

 else if (DoorStatus == 1){

 response.send(200, "Door is open! CLOSE IT NOW!!!");

 }

 else if (DoorStatus == 2){

 response.send(200, "Say cheese we're taking your picture.");

 }

 else if (DoorStatus == 5){

 response.send(200, "In transition, you may only attempt to

open the door. \nCheck again in a few seconds, or take a picture to see if it

is stuck.");

 }

 else if ((DoorStatus == 3)||(DoorStatus == 4)){

 response.send(200, "In transition\ncheck again in a few

seconds, or take a picture to see if it is stuck.");}

 Datatrue = 0;

 }

 else {

 response.send(200, "refresh");

 Datatrue = 1;

 }

 device.send("doorstat",1);

 }

 else {

 response.send(200, "for picture add '?pic=1', to open door add

'?door=1', to close door add '?door=0', and to check status of door add

'?status'");

 }

 });

device.on("jpeg_start", function(size) {

 jpeg_buffer = blob(size);

});

device.on("jpeg_chunk", function(v) {

 local offset = v[0];

 local b = v[1];

Spring 2014 Final Report

Open Sesame 63 EE Senior Design

 for(local i = offset; i < (offset+b.len()); i++) {

 if(i < jpeg_buffer.len()) {

 jpeg_buffer[i] = b[i-offset];

 }

 }

});

device.on("jpeg_end", function(v) {

 local s = "";

 foreach(chr in jpeg_buffer) {

 s += format("%c", chr);

 }

 //server.log(s);

 local request = http.post(MY_SERVER_URL, {}, s);

 local response = request.sendsync();

 foreach(response in requests) {

 response.header("Location",

"http://10.36.251.234/pictures/testpic2.jpg");

 response.send(302, "Found\n");

 }

 server.log(format("Agent: JPEG Sent (%d bytes)"s.len()));

});

device.on("status", function(position) {

 DoorStatus = position;

 server.log("after refreshing status is " + DoorStatus); //n "last change

was at" + time /n "when the door " + lastChange);

});

device.on("timeOfchange", function(timer) {

 TimerCount = timer;

})

device.on("lastChange", function(lastChange) {

 lastChanged = lastChange;

})

Spring 2014 Final Report

Open Sesame 64 EE Senior Design

Electric Imp Device Code

hardware.configure(SPI_189);

hardware.spi189.configure(CLOCK_IDLE_LOW , 117);

hardware.pin2.configure(DIGITAL_OUT);

const CHUNK_SIZE = 8192;

local timeCount = 0;

local status1 = 0;

local status2 = 0;

local statgius = 0;

local loop = 0;

local a = "FF";

local runDoorStatus = 1; //variable to run door status: 1 = run, 0 = pause

local hold = 1;

local d1 = date();

local d2 = date();

local running = 1;

local datestring = "undetermined";

local lastChange = 2;

agent.on("doorstat",function(hold){

 sendandset();

 a = hardware.spi189.writeread(format("%c",0xD5));

 imp.sleep(0.1);

 status1 = hardware.spi189.readblob(1);

 //server.log("status is " + status1);

 agent.send("status",status1[0].tointeger());

});

agent.on("spy", function(hold){

 server.log("Take a pretty picture please");

 a = hardware.spi189.writeread(format("%c",0xCA)); //CAmera

 imp.sleep(4.5);

 local L0 = hardware.spi189.readblob(1);

 local L1 = hardware.spi189.readblob(1);

 local size = L0[0].tointeger() * 256 + L1[0].tointeger() +1;

 local num_chunks = math.ceil(size.tofloat()/CHUNK_SIZE).tointeger();

 agent.send("jpeg_start",size);

 for(local i = 0; i < num_chunks; i++) {

 local startingAddress = i*CHUNK_SIZE;

 local buf = hardware.spi189.readblob(CHUNK_SIZE);

 agent.send("jpeg_chunk", [startingAddress, buf]);

 }

 agent.send("jpeg_end",1);

});

agent.on("open",function(hold){

 server.log("opening");

 a = hardware.spi189.writeread(format("%c",0xD5));

Spring 2014 Final Report

Open Sesame 65 EE Senior Design

 imp.sleep(0.1);

 status1 = hardware.spi189.readblob(1);

 if (status1[0].tointeger()==0) {

 local open = hardware.spi189.writeread(format("%c",0x0D)); // open

doo

 local check = hardware.spi189.readblob(1); //check for command

 server.log(check[0].tointeger());

 }

 else {

 server.log("door open, cannot open");

 }

 imp.sleep(10);

 timesincechange();

 lastChange = 0;

 a= hardware.spi189.writeread(format("%c",0xD5)); //D5 for Door 5tatus

 imp.sleep(0.1);

 status1 = hardware.spi189.readblob(1);

 agent.send("status", status1[0].tointeger());

});

agent.on("close", function(hold){

 server.log("closing");

 a = hardware.spi189.writeread(format("%c",0xD5));

 imp.sleep(0.1);

 status1 = hardware.spi189.readblob(1);

 if (status1[0].tointeger()==1) {

 local close = hardware.spi189.writeread(format("%c",0xCD));

 local check = hardware.spi189.readblob(1); //check for command

 server.log(check[0].tointeger());

 }

 else {

 server.log("door closed, cannot close");

 }

 imp.sleep(10);

 timesincechange();

 lastChange = 0;

 a= hardware.spi189.writeread(format("%c",0xD5)); //D5 for Door 5tatus

 imp.sleep(0.1);

 status1 = hardware.spi189.readblob(1);

 agent.send("status", status1[0].tointeger());

});

function timesincechange(){

 d1 = date();

 datestring = format("%04d%02d%02d-%02d:%02d:%02d", d1.year, d1.month+1,

d1.day, d1.hour-4, d1.min, d1.sec);

 server.log(datestring);

}

function sendandset(){

 agent.send("timeOfchange", datestring);

 agent.send("lastChange", lastChange);

}

Spring 2014 Final Report

Open Sesame 66 EE Senior Design

 a = hardware.spi189.writeread(format("%c",0xD5));

 imp.sleep(0.1);

 status1 = hardware.spi189.readblob(1);

 agent.send("status",status1[0].tointeger());

Spring 2014 Final Report

Open Sesame 67 EE Senior Design

9.5 Appendix of Android Application Code Files

activity_main.xml

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/

android"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:paddingBottom="@dimen/activity_vertical_margin"

android:paddingLeft="@dimen/activity_horizontal_margin"

android:paddingRight="@dimen/activity_horizontal_margin"

android:paddingTop="@dimen/activity_vertical_margin"

tools:context=".MainActivity" >

</RelativeLayout>

AndroidManifest.xml <?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.osesame_tab"

android:versionCode="1"

android:versionName="1.0" >

<uses-sdk

android:minSdkVersion="14" android:targetSdkVersion="18" />

<!-- Gives permission to access the internet -->

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission

android:name="android.permission.ACCESS_NETWORK_STATE" />

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"

/>

<uses-permission android:name="android.permission.CHANGE_WIFI_STATE"

/>

<uses-permission

android:name="android.permission.CHANGE_NETWORK_STATE" />

<application

android:allowBackup="true" android:icon="@drawable/ic_launcher"

android:label="@string/app_name" android:theme="@style/AppTheme"

android:debuggable="true" > <!-- Should take out

debuggable for final product! -->

<activity android:name="com.example.osesame_tab.MainActivity"

android:label="@string/app_name" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter> </activity>

</application>

</manifest>

MainActivity.java

package com.example.osesame_tab; import java.io.BufferedInputStream;

public class MainActivity extends Activity implements OnClickListener

{

Spring 2014 Final Report

Open Sesame 68 EE Senior Design

private static final String IMP_URL1 = "https://

agent.electricimp.com/0hHlDZd2PRqR?door=1";

private static final String IMP_URL2 = "https://

agent.electricimp.com/0hHlDZd2PRqR?door=0 ";

private static final String IMP_URL3 = "https://

agent.electricimp.com/0hHlDZd2PRqR?pic=1";

private static final String IMP_URL4 = "https://

agent.electricimp.com/0hHlDZd2PRqR?status=1";

private static final String

private static final String

private static final String

private TextView textView;

private TextView textView2;

private BroadcastReceiver receiver;

DEBUG_TAG = "HttpExample"; homeWifi = "University Edge WiFi";

homeWifi2 = "ND-secure";

@Override

protected void onCreate(Bundle savedInstanceState) { //TODO Auto-

generate method stub super.onCreate(savedInstanceState);

setContentView(R.layout.tabs);

TabHost th = (TabHost)findViewById(R.id.tabhost); th.setup();

Button bOpen = (Button)findViewById(R.id.open_button); Button bClose =

(Button)findViewById(R.id.close_button); Button bCapture =

(Button)findViewById(R.id.capture_button); Button bStatus =

(Button)findViewById(R.id.status_button); Switch sDetection =

(Switch)findViewById(R.id.switch1); textView =

(TextView)findViewById(R.id.status);

textView2 = (TextView)findViewById(R.id.status1);

bOpen.setOnClickListener(this); bClose.setOnClickListener(this);

bCapture.setOnClickListener(this); bStatus.setOnClickListener(this);

/**Set up each tab using TabSpec */

TabSpec specs = th.newTabSpec("tag1"); specs.setContent(R.id.tab1);

specs.setIndicator("Status"); th.addTab(specs);

// Controls Tab

specs = th.newTabSpec("tag2"); specs.setContent(R.id.tab2);

specs.setIndicator("Controls"); th.addTab(specs);

// Camera Tab

specs = th.newTabSpec("tag3"); specs.setContent(R.id.tab3);

specs.setIndicator("Camera"); th.addTab(specs);

//create BroadcastReceiver

receiver = new BroadcastReceiver(){

@Override

public void onReceive(Context context, Intent intent) { boolean

connected = false;

final String action = intent.getAction();

if

(WifiManager.SUPPLICANT_STATE_CHANGED_ACTION.equals(action)){

SupplicantState state =

intent.getParcelableExtra(WifiManager.EXTRA_NEW_STATE);

if (SupplicantState.isValidState(state) && state

Spring 2014 Final Report

Open Sesame 69 EE Senior Design

== SupplicantState.COMPLETED){

connected = checkConnectedToDesiredWifi();

}

if (connected){

new DownloadWebpageTask().execute(IMP_URL1);

Toast.makeText(context, "Welcome Home...Opening Door.",

Toast.LENGTH_LONG).show();

}

else{

new DownloadWebpageTask().execute(IMP_URL2); Toast.makeText(context,

"Leaving

Home...Closing Door.", Toast.LENGTH_LONG).show(); }

} }

//Detect if on the right wifi connection

private boolean checkConnectedToDesiredWifi(){ boolean connected =

false;

WifiManager wifiManager =

(WifiManager)getSystemService(WIFI_SERVICE);

WifiInfo wifi = wifiManager.getConnectionInfo();

if(wifi != null){ //get wif name

homeWifi2.equals(ssid); }

};

String ssid = wifi.getSSID(); connected = homeWifi.equals(ssid) ||

return connected; }

sDetection.setOnCheckedChangeListener(new

CompoundButton.OnCheckedChangeListener() {

@Override

public void onCheckedChanged(CompoundButton buttonView, boolean

isChecked) {

if(isChecked){

IntentFilter filter = new IntentFilter();

filter.addAction(WifiManager.SUPPLICANT_STATE_CHANGED_ACTION);

//register BroadcastReceiver

registerReceiver(receiver, filter); }

else{ unregisterReceiver(receiver);

} }

}); }

/**

* Create onClick method to handle the button clicks */

@Override

public void onClick(View arg0) {

// Switch between which button was pressed switch(arg0.getId()){

case R.id.open_button:

// Gets the URL from the UI's text field.

ConnectivityManager connMgr = (ConnectivityManager)

getSystemService(Context.CONNECTIVITY_SERVICE);

NetworkInfo networkInfo = connMgr.getActiveNetworkInfo();

if (networkInfo != null && networkInfo.isConnected())

{

/*I changed the parameter to IMP_URL instead of stringURL from the

text field*/

Spring 2014 Final Report

Open Sesame 70 EE Senior Design

available."); available.");

new DownloadWebpageTask().execute(IMP_URL1); } else{

textView.setText("No network connectivity

textView2.setText("No network connectivity

} break;

case R.id.close_button:

// Gets the URL from the UI's text field.

ConnectivityManager connMgr1 = (ConnectivityManager)

getSystemService(Context.CONNECTIVITY_SERVICE);

NetworkInfo networkInfo1 = connMgr1.getActiveNetworkInfo();

if (networkInfo1 != null && networkInfo1.isConnected()) {

/*I changed the parameter to IMP_URL instead of stringURL from the

text field*/

available."); available.");

new DownloadWebpageTask().execute(IMP_URL2); } else{

textView.setText("no network connectivity

textView2.setText("No network connectivity

} break;

case R.id.capture_button:

// Gets the URL from the UI's text field.

ConnectivityManager connMgr2 = (ConnectivityManager)

getSystemService(Context.CONNECTIVITY_SERVICE);

NetworkInfo networkInfo2 = connMgr2.getActiveNetworkInfo();

if (networkInfo2 != null && networkInfo2.isConnected()) {

/*I changed the parameter to IMP_URL instead of stringURL from the

text field*/

new DownloadWebpageTask().execute(IMP_URL3);

new

DownloadImageTask((ImageView)findViewById(R.id.imageView1))

.execute("http://10.36.251.234/pictures/

testpic1.jpg");

} else{

textView.setText("no network connectivity

textView2.setText("No network connectivity

} break;

case R.id.status_button:

// Gets the URL from the UI's text field.

ConnectivityManager connMgr3 = (ConnectivityManager)

getSystemService(Context.CONNECTIVITY_SERVICE);

NetworkInfo networkInfo3 = connMgr3.getActiveNetworkInfo();

if (networkInfo3 != null && networkInfo3.isConnected()) {

/*I changed the parameter to IMP_URL instead of

stringURL from the text field*/

available."); available.");

new DownloadWebpageTask().execute(IMP_URL4); } else{

textView.setText("no network connectivity

textView2.setText("No network connectivity

} break;

} }

//Create AsyncTask to get image from URL

Spring 2014 Final Report

Open Sesame 71 EE Senior Design

private class DownloadImageTask extends AsyncTask<String, Void,

Bitmap>{

ImageView bmImage;

public DownloadImageTask(ImageView bmImage){ this.bmImage = bmImage;

}

protected Bitmap doInBackground(String... urls) { String urldisplay =

urls[0];

Bitmap mIcon11 = null;

try {

InputStream in = new java.net.URL(urldisplay).openStream();

mIcon11 = BitmapFactory.decodeStream(in); } catch (Exception e) {

Log.e("Error", e.getMessage());

e.printStackTrace(); }

return mIcon11; }

protected void onPostExecute(Bitmap result){

bmImage.setImageBitmap(result);

} }

// Uses AsyncTask to create a task away from the main UI thread. This

task takes a

// URL string and uses it to create an HttpUrlConnection. Once the

connection

// has been established, the AsyncTask downloads the contents of the

webpage as

// an InputStream. Finally, the InputStream is converted into a

string, which is

// displayed in the UI by the AsyncTask's onPostExecute method.

private class DownloadWebpageTask extends AsyncTask<String, Void,

String> {

@Override

protected String doInBackground(String... urls) {

url.

// params comes from the execute() call: params[0] is the

try {

return downloadUrl(urls[0]);

} catch (IOException e) {

return "Unable to retrieve web page. URL may be

invalid.";

}

}

// onPostExecute displays the results of the AsyncTask.

@Override

protected void onPostExecute(String result) {

textView.setText(result); textView2.setText(result);

} }

Given a URL, establishes an HttpUrlConnection and retrieves the web

page content as a InputStream, which it returns as a string.

//

//

//

private String downloadUrl(String myurl) throws IOException {

Spring 2014 Final Report

Open Sesame 72 EE Senior Design

InputStream is = null;

// Only display the first 500 characters of the retrieved // web page

content.

int len = 500;

try {

URL url = new URL(myurl);

HttpURLConnection conn = (HttpURLConnection)

url.openConnection();

conn.setReadTimeout(10000 /* milliseconds */);

conn.setConnectTimeout(15000 /* milliseconds */);

conn.setRequestMethod("GET");

is

conn.setDoInput(true);

// Starts the query

conn.connect();

int response = conn.getResponseCode(); Log.d(DEBUG_TAG, "The response

is: " + response); is = conn.getInputStream();

// Convert the InputStream into a string

String contentAsString = readIt(is, len); return contentAsString;

// Makes sure that the InputStream is closed after the app

// finished using it.

} finally {

if (is != null) {

is.close();

}

} }

// Reads an InputStream and converts it to a String.

public String readIt(InputStream stream, int len) throws

IOException,

}

UnsupportedEncodingException {

Reader reader = null;

reader = new InputStreamReader(stream, "UTF-8"); char[] buffer = new

char[len]; reader.read(buffer);

return new String(buffer);

}

tabs.xml <?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/

android"

android:layout_width="match_parent"

android:layout_height="match_parent" android:orientation="vertical" >

<TabHost

android:id="@+id/tabhost" android:layout_width="match_parent"

android:layout_height="match_parent" >

<LinearLayout android:layout_width="match_parent"

android:layout_height="match_parent" android:orientation="vertical" >

<TabWidget

android:id="@android:id/tabs" android:layout_width="match_parent"

android:layout_height="wrap_content" >

</TabWidget>

Spring 2014 Final Report

Open Sesame 73 EE Senior Design

<FrameLayout android:id="@android:id/tabcontent"

android:layout_width="match_parent"

android:layout_height="match_parent">

<LinearLayout

android:id="@+id/tab1" android:orientation="vertical"

android:layout_width="match_parent"

android:layout_height="match_parent">

<RelativeLayout android:layout_width="match_parent"

android:layout_height="match_parent">

<TextView android:id="@+id/status1"

android:layout_width="match_parent"

android:layout_height="wrap_content" android:gravity="center"

android:textSize="20sp" android:maxHeight="50dp"

android:paddingTop="20dp" />

<Button

android:id="@+id/status_button" android:layout_width="match_parent"

android:layout_height="wrap_content"

android:layout_below="@id/status1" android:text="STATUS"

android:textSize="40sp" />

<TextView

android:id="@+id/detection" android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_centerHorizontal="true"

android:layout_centerVertical="true" android:text="Wi-Fi Detection

Mode" android:textSize="25sp" />

<Switch

android:id="@+id/switch1" android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:layout_below="@+id/detection"

android:layout_centerHorizontal="true" android:layout_marginTop="26dp"

android:textOff="Off" android:textOn="On" />

</RelativeLayout> </LinearLayout>

<LinearLayout android:id="@+id/tab2" android:orientation="vertical"

android:layout_width="match_parent"

android:layout_height="match_parent">

<TextView

android:id="@+id/status" android:layout_width="wrap_content"

android:layout_height="wrap_content" android:gravity="center"

android:textSize="20sp" android:layout_weight="1"/>

<Button

android:id="@+id/open_button" android:layout_width="match_parent"

android:layout_height="wrap_content" android:layout_weight="4"

android:text="OPEN" android:textSize="50sp" />

<Button

android:id="@+id/close_button" android:layout_width="match_parent"

android:layout_height="wrap_content" android:layout_weight="4"

android:text="CLOSE" android:textSize="50sp" />

</LinearLayout>

<LinearLayout

android:id="@+id/tab3" android:orientation="vertical"

Spring 2014 Final Report

Open Sesame 74 EE Senior Design

android:layout_width="match_parent"

android:layout_height="match_parent">

<ImageView

android:id="@+id/imageView1" android:layout_width="match_parent"

android:layout_height="wrap_content" android:layout_weight="7"/>

<Button

android:id="@+id/capture_button" android:layout_width="match_parent"

android:layout_height="wrap_content" android:textSize="30sp"

android:layout_weight="1" android:text="CAPTURE" />

</LinearLayout> </FrameLayout>

</LinearLayout> </TabHost>

</LinearLayout>

Spring 2014 Final Report

Open Sesame 75 EE Senior Design

9.6 Appendix of Server Code Files

upload.php
<?php

$s = file_get_contents("php://input");

$fp = fopen("/var/www/pictures/testpic1.jpg","w");

fwrite($fp, $s);

//file_put_contents("/var/www/pictures/testpic1.jpg", $s);

fclose($fp);

?>

testupload.php

<html>

 <head>

 <title>PHP Test</title>

 </head>

 <body>

 <? echo '<p>Hello World</p>';

$content = file_get_contents("http://evbdn.eventbrite.com/s3-

s3/eventlogos/1832816/google.png");

$fp = fopen("/var/www/pictures/googlelogo.jpg","w");

fwrite($fp, $content);

fclose($fp);

//header('Content-Type: image/jpeg');

//file_put_contents($patrick.jpg,$content);

//echo '';

?>

</body>

</html>

check_php.php

<html>

<title>Check PHP</title>

<body>

<?php

print "<h1>I'm Alive!</h1>";

phpinfo();

exit();

?>

<h1>Oops, PHP is not enabled on this server.</h1>

</body>

</html>

patrickpic.php
<html>

 <head>

Spring 2014 Final Report

Open Sesame 76 EE Senior Design

 <meta name="viewport" content="width=device-width, minimum-scale=0.1">

 <title>Patrick Says Open Sesame (350×263)</title>

 <style type="text/css"></style>

 </head>

 <body style="margin: 0px;">

 <img style="-webkit-user-select: none"

src="http://medias.gifboom.com/medias/t_a4ea053fc45d4361bcf891599e3491ab.jpg">

 </body>

</html>

stringimage.php
<?

//$url = 'http://10.36.251.234/pictures/patrickpic.php';

//$img = '/var/www/pictures/patrick.jpg';

//file_put_contents($img, file_get_contents($url));

copy("http://10.36.251.234/pictures/patrickpic.php", "/var/www/pictures/patrick.jpg");

?>

Spring 2014 Final Report

Open Sesame 77 EE Senior Design

9.7 Appendix of Website Code Files

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<!-- Open Sesame Documents page -->
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Open Sesame Documents</title>
<meta name="keywords" content="" />
<meta name="description" content="" />
<link
href="http://fonts.googleapis.com/css?family=Source+Sans+Pro:200,300,400,600,
700,900" rel="stylesheet" />
<link href="stylesheet.css" rel="stylesheet" type="text/css" media="all" />
<link href="fonts.css" rel="stylesheet" type="text/css" media="all" />
</head>

<body>
<div id="header-wrapper">
 <div id="header" class="container">
 <div id="logo">
 <h1>Demo</h1>
 </div>
 <div id="menu">

 <a href="index.html" accesskey="1"
title="">Home
 <a href="Documents.html" accesskey="2"
title="">Documents
 <a href="AboutUs.html" accesskey="3"
title="">About Us
 <li class="current_page_item"><a href="#"
accesskey="4" title="">Demo

 </div>
 </div>
</div>

<div id="page-wrapper">
 <div id="page" class="container">
 <a id ="switch" href="#" class="button" onclick
="ControlDoor()" style ="text-decoration: none">Close Door
 <a id = "doorstatus" href="#" class="button" onclick =
"CheckStatus()" style = "text-decoration: none">Check Door Status
 <a id = "picture" href="#" class="button" onclick =
"TakePicture()" style = "text-decoration: none">Take Picture
 </div>
</div>

<div id="copyright" class="container">
 <p>Copyright (c) Open Sesame 2013-2014</p>
</div>
<script src="MyScript.js"></script>
</body>
</html>

