BIKE TRACKER

Genevieve Heidkamp, Alison O’Connor, and Marisa Thompson
Final Design Document

April 29, 2016

BikeTracker: Table of Contents

1 Introduction

2 Detailed System Requirements

3 Detailed project description
3.1 System theory of operation
3.2 System Block diagram
3.3 Detailed Design and Operation of Wifi Capability
3.4 Detailed Design and Operation of GPS Tracking
3.5 Detailed Design and Operation of User App
Interface
3.6 Detailed Design and Operation of Battery Power
3.6 Detailed Design and Operation of Accelerometer
3.7 Interfaces

4 System Integration Testing

5 Users Manual/Installation manual

6 To-Market Design Changes

/ Conclusions

8 Appendices

1 Introduction

In the United States, it is estimated that between 800,000 and two million
bicycles are stolen each year. Many of these thefts occur because cyclists fail to lock
their bike or use bike locks that are broken easily. In addition, once a bike is stolen, it is
generally difficult to recover, especially in a city or on a college campus, because bikes
can be transported so quickly and/or can easily blend in with other bicycles on a bike
rack. Only about 5% of bicycles that are stolen are returned to their owners.

On college campuses across the nation, these issues lead students to either be
constantly preoccupied with the location of their bikes or be hesitant to buy a bike in the
first place. Why? Because of the high likelihood that their bikes could be stolen, even
while using bike locks or storing their bikes in inconspicuous locations. In order to
eradicate these fears, it would be beneficial to many college students if a GPS device
could attach to their bike to help them locate their bike in case of theft. Not only would
this help them find their stolen bike, but it could also alert them at the time of the
robbery so they could take action if desired. This concern led to the creation of
BikeTracker.

In order to prevent bicycle theft and help more bikes be returned to their owners,
we are proposing to make a smart bicycle finder. This product we are proposing is
specifically targeted towards college campuses where wifi is prevalent and will be able

to utilize a GPS signal.

' http://www.bicyclelaw.com/p.cfm/bicycle-safety/about-bike-theft

The following is a final document which outlines the project design of this
BikeTracker including system requirements, design specifications, and detailed product
description. It outlines the problem statement, our proposed solution, the overall system
requirements, detailed subsystem explanations, integrated system testing, a user's
manual, our eventual design changes for a to-market application, and our conclusions.

First, the bike finder includes a GPS device that, when connected with a
smartphone via a mobile application, can inform a user where their bike is located at
any given time.The user application is interfaced with the device in order to connect with
the bike. The device itself appears to be a reflector installed on the back of the bike seat
so as to remain inconspicuous. Also included in the design is an accelerometer that can
track movement. When the device is set in “Tracker On” mode, meaning the user is
anticipating the bike to be parked and not in use, and there is a movement detected, the
application will be triggered to notify the user. Finally, a battery will be used to power the
device. A battery will be used in order to keep the tracker in a discrete location on the
bike. The battery will power the device with specific considerations taken so that battery
need not be replaced too often.

As the design process for this BikeTracker went on, we were able to meet our
planned requirements and use hardware planned in order to get a functioning prototype.
At the current stage of development, we have created a prototype that can be seen

below.

(a) (b) (c)

Pictures: (a) Full prototype with reflector masking, (b) Board with battery set up in
casing, (c) Prototype installed underneath bike seat
The prototype we created is fully functional and able to communicate with a

mobile user application in order to provide GPS location to the user when requested as
well as notify the user when an unexpected movement occurs. At the onset of this
project, we anticipated creating a working prototype and were successful. It gives a
largely accurate location of the board when necessary and functions well with a very
user-friendly mobile application. While we did have trouble in the final development
stages as we integrated all of the subsystems together, we were able to work as a team
to generate solutions and overall had a positive experience. The main source of testing
was trial and error in order to work out any random trips in the coding, but most issues

were solved without too much manipulation. From reaching this stage in our prototype,

we noticed improvements to be made in the future which are highlighted in section 6 of

this document.

2 Detailed System Requirements

The development of the BikeTracker required a large amount of system requirements in
order to have the desired full functionality .

The primary requirement of the system was an ability to interpret GPS data through
NMEA sentences acquired from the GPS coordinate device. These sentences then needed to
be parsed so as to extract latitude and longitude. This was done through the use of the GPS
RMC sentence. This data then needed to be sent through the ESP12 device by the way of a
WiFi network which a mobile application also subscribes to and can access. This was done
using the MQTTlens application. Along with this data, the system also needed to be powered by
a rechargeable battery so as to have full range on a bicycle which does not have access to
power at all times.

The device needed to support GPS, battery, and ESP12 components together in order
to function and communicate properly. The range of this device with all these components
needed to be the approximate size of a large college campus while communicating with large
campus WiFi so that it can be used among the targeted customer. This was achieved via
access points in the WiFi networks such as ND-guest.

The device required to have a user interface in a mobile application format which shows
the GPS location of the BikeTracker at the last time a measurement was taken. This application
must contain modes so that if the location of the bike changes while in “parked” mode, an alert

is sent through the application to notify the user. This was done through “Tracker On” and

“Tracker Off’ modes. When Tracker on, any activity will trigger the device to get a GPS location
as well as a set timed interval location. This activity is triggered through an ADXL345
accelerometer. The second interrupt from this device triggers based upon activity and signals a
OneShot to send 1 high clock cycle to an n-MOSFET. This pulls the CH_PD pin low for a
moment to reset the device and start getting and GPS location device. Tracker Off mode stops
these signals from being transmitted in order to save battery power.

In order to connect the specific BikeTracker to the user in the mobile application, the
device need to utilize an MQTT protocol which can communicate with the user and the
hardware for the BikeTracker on the bicycle. MQTTbike/+ was the channel used to subscribe
and publish information between the hardware device and mobile application.

The device, being that it is a tracker and needs to stay inconspicuous, needed to be
installed under the bike seat and disguised as a reflector light. Once the battery is connected to
the outer casing, the device functions as both a reflector and a tracker. In form with this, the
device needed to be an approximate size and weight that would be able to hide behind panel

which was found to be 3 in by 2 in with depth of about 1 inch.

3 Detailed Project Description

3.1 System theory of operation

The entire system works as a whole to provide a user with the location of their bicycle
when unknown. This starts with a GPS hardware device that can pick up satellite info in order to
give exact latitude and longitude of the board. This data is then sent through an ESP12 WiFi
device which communicates with an MQTT protocol server to transmit the NMEA sentence data.

This data is then obtained by an iOS user application that subscribes to the same MQTT topic.

This application has modes that can request the location of the bicycle at any given time and

can communicate with the user when there is undesired movement.

3.2 System Block diagram

The system requirements must be met by the system as a whole. These requirements
are met through 5 subsystems: GPS location tracking, user app interface, WiFi capability,battery

power, and accelerometer.

" GPS Location
Tracking J———hv

4 N

User App |
Interface

Mobile Application

GPS BikeTracker P with User Interface

. w that displays
Wifi Capability — location of bicycle

)

i oy

Battery Power - Ny /

e “h

Accelerometer .

. -

These five subsystems divide the project into manageable segments that allow for a
gradual development of the project with consideration to testing phases until the product is fully
functional. The interfaces between these are the User application with the MQTT protocol and
WiFi network which allows the communication of the device.

The following diagram outlines the system modes that are controlled through the User

Application. This flow demonstrates the functionalities through the device and user application.

ESP ON

—> Reset

Y

¥

Turn on Wifi and Connect to

MQTT server

L]

Connect accelerometer interrupt j

—

Check server:
If Tracker Off

;

Disconnect
accelerometer
interrupt

L4

If Tracker On

Check server:

A J

If wake from
Activity interrupt

v

Check for GPS
coordinates until
user sends find

'

» Sleep ESP

If wake from Sleep
Timer

v

Check for GPS
coordinates 5
times

e

l

3.3 Detailed Design and Operation of Wifi Capability

-
Use of ESPB266 connected
to microcontroller device that
will be able to transmit signal

.

e B
Power from device battery
meeting threshold to drive

ESF
. oy

- Ty
Parsed data readily available
in order to be sent through

device to User Interface
. g

WiFi Capability

e D

Maobile application that is
synced and communicates
with device in order fo
oufput BikeTracker location
to user.

'_ 4

The WiFi Capabilities of this device rely upon the ESP12 to be connect to the

microprocessor while being able to utilize the MQTT protocol developed on Amazon server in

order to communicate with the User Application. Power from the battery drives the device and

allows for the sleep/wake modes to occur on specified intervals. The GPS RMC sentence is
sent through this capability for full functionality of the application.

The ESP12 device was chosen based on its specifications being close to what was
needed on a campus WiFi network such as that of Notre Dame. We were provided with ESP12
data as well as code to help integrate the system together within the MQTT application through
the Arduino environment. The network was set up through a router within the Senior Design
classroom and Amazon server and we relied upon provided instructions to connect to it. Using
the MQTTlens application, we set up a topic called bikeMQTT/+ which can be subscribed and
published to by the ESP12 as well as the user application.

The code works by first setting the baud rate and connecting to the WiFi access point.
When first run, a user must select a WiFi network for the device to use. When connected to the
WiFi, the ESP12 subscribes to the MQTT protocol until successful. This allows the functionality
of both subscribing and publishing to the MQTT topic. Messages can be sent by the user and
allow communication through the user application interface. For more detailed explanation of
the MQTT interface with the user application, refer to section 3.5.

In order to test the full functionality of this subsystem, we programmed our hardware and
software and used bikeMQTT/+ to see the GPS RMC sentence transmitted and published to the
window. From here, the application was able to access the latitude and longitude for GPS

location, showing WiFi functionality.

10

3.4 Detailed Design and Operation of GPS Tracking

{GF‘S device connected fo
microprocessor of devi
icroproce of device ’ - \\

Parse NMEA sentences to GPFS Location
single out desired GPS Location Tracking e CULpUL to device for

. information communication to
User Interface

o) '\\ -/.ll
Obtain time, latitude and - ;
longitude of bike location

The GPS location tracking utilizes the Mediatech3329 GTPAO010 device to connect with

the microprocessor in order to transmit the NMEA sentences to be converted and used in the
User Application. The NMEA sentences, specifically the RMC sentence, is parsed in the user
application to obtain latitude and longitude. The device acquires data from satellites and sorts
the data into sentences. We chose to utilize the RMC sentence due to its straightforward
application of only supplying time, latitude, and longitude.

Since serial is the most straightforward way to communicate the data, the serial port is
set up with the baud rate at 9600 (as set by the hardware). A PMTK220 sentence is then used
to set the frequency at which to collect data, making the serial port ready to transmit data. Due
to issues with serial port timing, it became challenging to print the NMEA sentences into the
serial monitor. Therefore, a design decision was made to incorporate the GPS code with the
MQTT protocol code for direct transmission to the user application.

Using serial.read command, the RMC sentence is obtained and sent into strings which

are then published into bikeMQTT/+ topic for transmission to the user application. A more

11

detailed explanation of how the user application utilizes this data can be seen below in section
3.5.

In order to test the full functionality of this subsystem, we programmed our hardware and
software and used bikeMQTT/+ to see the GPS RMC sentence transmitted and published to the
window. From here, the application is able to access the latitude and longitude for GPS location.
By checking this location with the exact location when entered into Google maps, we were able

to confirm a correct location and prove functionality.

3.5 Detailed Design and Operation of User App Interface

.

Mobile application —
compatible with i0OS

Mode selection to put)

device into "park” mode or ; ~
‘ride” mode that triggers — —
when to begin taking Mobile application that
_measurements J User App can user can access in
Interface order to set mode of bike

" . , ™ " ocati
Obtain latitude, longitude, as well as check location

and time from ESP device]
8 through WiFi network

Input device information to |
link user with device

The mobile app is an iOS app. It has two different modes: “park” mode and “ride” mode.

If the bicycle moves during “park” mode, the app will send an alert to the user. The app will not
send an update while in the ride mode. It will have the ability to display the location of the device

and the time at which the location information was taken. Finally, the app has the ability to send

12

a message to the device that the bike has been found. The elements will comprise the user
mobile interface.

The app was programmed in XCode, as one of our group members has experience
working with the programming, as well as the fact that iPhones are very prevalent on college
campuses. The app consists of one view controllers. When first opened, the app connects to the
MQTT server and sets up all the MQTT protocols. Specifically, it subscribes to bikeMQTT/+
topic and sets up publishing to the bikeMQTT/inTopic topic and subscribes to the
bikeMQTT/outTopic.

On the view controller, there is a map and a Tracker ON/OFF toggle button. A user has
the option to press “Tracker On” or “Tracker Off”. When Tracker Off is pressed, the map will not
be updated and “Tracker Off” will be published to the MQTT server to alert the device that it
should not look for GPS data. Underneath the Tracker ON/OFF toggle button is a Show Last
Location ON/OFF toggle button. When ON is selected, the last location the bike has received
will be displayed on the map.

When Tracker On is pressed, the app will look for sentences published to the
bikeMQTT/+ topic with the prefix “SGPRMC”. This will signal to the app that the GPS has
published an RMC sentence. The RMC string is then converted to an array so the information in
the string, such as longitude and latitude data, can be interpreted more easily. First, the app
checks if the GPS has gotten a satellite fix by checking to see if the 19th character in the array
isa“V”oran “A”. Ifitis a “V”, the GPS has not gotten a fix yet, and a text field will display over
the map alerting the user that the GPS is looking for satellites. If it is an “A”, the GPS has gotten
a fix and the app will proceed to parse the data.

One tricky part about the parsing is that the GPS data is given in Degrees and Minutes,

while the map component of the app requires a decimal longitude and latitude. So, the Degrees

13

and Minutes are each called out of the array and converted into double form for both the
longitude and latitude. Then to determine the decimal form, the equation (decimal = degrees +
minutes/60) is used and this information is passed to the map component of the view controller.

As mentioned several times above, another major component of the second view
controller is the map. The map has two goals, to show the current location of the user and the
location of the bike. First, to determine the user’s location, the CLLocationManager manager
was used. When incorporated into a function, this manager will help the app determine the
location of the user and display it on the map. Next, to determine the location of the GPS
device, an annotation was added to the map using addAnnotion options for the MKMapView.

The final aspect of the app is the notification system. When Tracker On is pressed, the
app will also look for sentences published to the bikeMQTT/+ topic with the prefix “Activity!”. If
that sentence is received, the app uses the UlAlertController to alert the user that an activity
message sent from the accelerometer is sent to the MQTT server. This alert will appear on the
user’s lock screen or directly on the app interface. In addition, if an activity alert is received, a
sentence is received, a new button will appear on the top of the screen. When the button is
pressed, it will publish a message to the MQTT server that will tell the device to stop search for
the bike and to restart.

In order to test the full functionality of this subsystem, we programmed our hardware and
software and used bikeMQTT/+ to see the GPS RMC sentences transmitted and published to
the window. From here, the application was able to access the latitude and longitude for GPS
location. By observing the bikeMQTT/+ topic to see the subscriptions and publishings to it, we
were able to confirm that the data was being properly transmitted to the user application and the

application was able to show GPS location while also changing modes at the user’s prompting.

14

Finally, we were able to check that Activity notifications were received properly by both checking
the bikeMQTT/+ topic and seeing that alerts were properly activited.

The full code listing can be found in Appendix B and C.

3.6 Detailed Design and Operation of Battery Power

e ™

Specifications of battery met

in order to drive devices at >

various voltages ranging from

Oto 5 V.
. Battery properly connected to) .

each element in the system Power gengﬂmtmnﬁfm_ _—

while supplying proper voltage —= gxﬁ?gpsr Eg‘; indndua
h:s:;:gggﬁ:me y fo e » acceleromlér] dalriuered ta

components in order to drive

e) entire system

Battery will have a specific

lifetime and can recharge — \ _/‘

once this lifetime expires
e

- -

Board will include a battery
recharging circuit that can be »
connected to a cable outside

.\hﬂf the packaging y

The system uses a 3.7V Lithium-lon rechargeable battery. The decision to use a
rechargeable battery was based on accessibility to USB recharging and cost of battery
replacement. The Li-ion battery capacity is larger than conventional batteries, and the
dimensions of the the rechargeable battery can more easily fit inside the device packaging
along with the other device hardware. Since Li-ion batteries vary in size depending on power
capacity, the power capacity used was the largest capacity available that fits in the packaging.

The battery connects to the board via a 2-pin molex connector.

15

The components on the board require a 3.3V output. In order to step down the voltage of
the battery to this required power, a DC/DC converter was used. A DC/DC converter was
chosen because it is more efficient than a comparable voltage regulator. The footprint of the
DC/DC converter on the final board required various stabilizing capacitors and planes
connecting different pins in order to allow it to convert the voltage properly.

One aspect that was important to include in the design of the project was a backup
battery for the GPS. When the GPS sleeps, it has two different options for restart: hot restart
and cold restart. If the device has to undergo a cold restart every time it wakes from sleep, the
device could require a prolonged period to get a GPS fix. If, however, there is a backup battery
connected to the GPS, the device can save its last location and take less time to find another fix
when it wakes up. For this reason, a coin cell battery and holder were incorporated into the
board design and are included on the back of the board.

In order to increase the ease of charging the battery, a recharging circuit was
incorporated on the board that could be accessed from outside of the packaging. The main
component of this circuit is a Li-Polymer charge management controller. The battery can charge
with this circuit, regardless of whether or not the rest of the system (GPS and ESP12) is turned
on. The circuit includes an LED to indicate if the battery is charging, and it uses a USB-mini

connector.

16

3.6 Detailed Design and Operation of Accelerometer
4 ™

Specifications of the
Accelerometer met to track
movement

/ e N

Battery properly connected to

gach element in the system Movement tracking of GPS
while supplying proper voltage Accelerometer] device in any direction or
based on device speed

specifications

. J

-
Will be able to sense
movement and alert user if
unexpected movement

QCours Y,

The accelerometer is used to track the movement of the BikeTracker and alert user if
movement occurs unexpectedly. In order to code the functionality of the accelerometer, we
chose to use 12C because we wanted to use a minimal amount of pins in order to reduce
overlap with other hardware on the ESP12.

With the provided accelerometer, we used the wire.h and ADXL345.h libraries to
communicate in 12C with some additional help from online resources to help with position
acquisition. The software is setup to initialize the accelerometer device, set the baud rate, and
then uses the functions outlined in the ADXL345.h library to set the activity interrupt flag.The
final design utilizes the interrupt flag when motion occurs with the device when Tracker On
mode is activated. This will wake the device from sleep and start the program in order to get a
location. The interrupt flag on the accelerometer is connected to the B pin of a OneShot which
will send one clock cycle of a high signal. This signal is sent through an n-MOSFET which pulls

the chip enable pin low for a clock cycle. When it returns to high, the ESP will reset from sleep

and begin running the code to get a GPS location. This occurs in the Tracker On mode and will
send a notification to the user via the phone application that the bike is in motion.

In order to test the full functionality of this subsystem, we attached the accelerometer to
the ESP12 and programmed the x,y, and z coordinates to display in the serial monitor. From
here, we could see the movement of the device. When a large movement was made, the device
indicated an “Activity!” message showing that the interrupt flag was triggered and therefore that
the accelerometer was functional. When implementing the functionality onto our own board, we
made the “activity” message pop up and a serial message indicated that the entire ESP had

woken from sleep in order to get a location.

3.7 Interfaces

The main interfaces of the BikeTracker are the user mobile application on iOS and the
MQTT protocol which allows for the subscription of both the ESP and GPS hardware along with
the mobile application. MQTTlens was the main source of testing and communication between

these elements.

4 System Integration Testing

In order to test the functionality of the systems, we first used breakout boards from the
Sparkfun DevThing in order to see if we could get each subsystem correctly functioning.

To test the WiFi Capabilities, a code was developed using the templates of Basic MQTT
from Professor Schafer along with the information from various data sheets about the hardware
of the ESP8266. The code listed in Appendix F shows the functioning MQTT communication
with WiFi capabilities that was able to be achieved via the testing boards. This functionality was

tested along with the GPS data which was parsed via the RMC NMEA sentence. The GPS

18

location tracking utilizes the Mediatech3329 GTPAO010 device to connect with the
microprocessor in order to transmit the NMEA sentences to be converted and used in the User
Application. In order to test the full functionality of this subsystem, we programmed our
hardware and software and used MQT Tbike+ to see the GPS RMC sentence transmitted and
published to the window. From here, the application was able to access the latitude and
longitude for GPS location, showing WiFi functionality.

To test the accelerometer functionality, the ADXL345 was attached to the DevThing and
used the wire.h library to communicate in 12C with some additional help from online resources to
help with position acquisition. We attached the accelerometer to the ESP12 and programmed
the x,y, and z coordinates to display in the serial monitor. From here, we could see the
movement of the device. When a large movement was made, the device indicated an “Activity!”
message showing that the interrupt flag was triggered and therefore that the accelerometer was
functional. Appendix G lists the code that was used to achieve this functionality.

After achieving all these separate functionalities, we designed the board using Eagle,
creating a schematic that included all the hardware we had determined necessary through the
above testing. There was also a good amount of datasheet research necessary in order to make
sure that all extra components necessary such as resistors/capacitors were placed onto the
board. The final schematic can be seen in Appendix D. Once the schematic was complete with
all hardware, we generated a Eagle Board file in order to send in to be created. The board was
completed, checked for errors and then generated. The final Eagle Board file can be seen in

Appendix E.

The finalized board was soldered with all necessary components attached as described

by the Bills of Materials (Appendix H). This allowed for integrated testing to take place. Using

19

the codes from our individual subsystem testing, we combined these codes into one final testing
code. The final Arduino code is listed in Appendix A with the accompanying Application Xcode
in Appendices B and C. In order to test how we were communicating between all the
subsystems, we utilized the serial monitor to display each state of the code that was being run
at any given time and varying the data that was sent from the application in order to see that
each state was being received and dealt with correctly.

We encountered several errors in the final stages of implementation that we were able to
fix. First of all, we failed to ground GPIO15 in our final board design. Therefore, we replaced an
incorrect 10k resistor with a Ok resistor and then added a 10k resistor to ground. This alleviated
the problem. Also, we originally had an incorrectly positioned n-MOSFET that we switched the
direction of in order to gain functionality. Finally, we had to connect pin 16 with the reset pin in
order to get a properly functioning wake from sleep.The hardest integration we found was
flagging the interrupt with the accelerometer in order to trigger the ESP to wake up. This was
difficult because the interrupt needed to trigger a signal sent to the OneShot which sent a pulse
to trigger the chip enable pin for only one clock cycle. After reading and writing to the registers
relevant on the ADXL345, we were able to find a library on Adafruit that utilized the interrupt flag
for activity in order to reset the device.

Once the code compiled, we systematically went through each scenario in which a
specific response would be necessary and then checked to see that the response was correct.

The following table demonstrates the scenarios and the responses.

Scenario Desired Response Functional? (Y/N)

Tracker Off, No Activity | -If asleep, stays asleep Y
-Wakes up then goes straight back | Y
to sleep based on time check

20

Tracker Off, Activity

-If Asleep, stays asleep
-Wakes up then goes straight back
to sleep based on time check

Tracker On, No Activity

-If Asleep, stays asleep until next
timed wake up
-Wakes up and gets a location

Tracker On, Activity

-If Asleep, wakes up to get a
location and notifies user via app
-If awake, gets a location

-Will continue until user declares
“Bike Found”

Using this table, it is easy to trace the functionality assessed via testing. From the table, it is

clear that full functionality was achieved with the BikeTracker and it is compliant to the original

goal of creating a smart bicycle finder that is utilized via mobile application.

5 User’s Manual and Installation

Information

21

BIKE TRACKER

Your Bike Security Solution

User Manual

22

Table of Contents

Section 1: Device Installation........................... 1
Section 2: Application Installation..................... 2
Sacton 3: WL SelIp ... 4

Section 4: Bike Tracker in Action.........ccccoviiunn D

23

Device Installation
Connsching the Bike Tracker fo your bike

usar's bikke seat on the bike post. While the device will be
in plain sight, the reflective casing will disguise it from
thiewes by looking Eke a regular bike reflector.

Tha Bike Tracker device wil be installed underneath the

1. Remove the screw closest to the circular clamp.

2. Place the clamp around the bike post. Place the
clamp as close to the top of the bike as
possible. Make sure that the hale for charging is

at the bottom

3. Screw the clamp until ighL

24

Bike Tracker App Installation

Installing the Buke Tracker App to your aelluler dave

n order io use the BikaTmcker, 8 user must have access o
thia both an iPhone and a Mac computer. The user will also

have to download a program to connect the app to his/her
phone, if ha'she doesn’t have the program already.

‘. 1. Download XCode from App Store on Mac

2. Download Bikelracker App File - Go to
hitp:Veeniordesign.ee.nd.edul2016Design 20
Teams/biketra'documenis.html| and download

the file entited "RikeTrackacAnn’

3. Extract the Zip File and open the file entitied
"Bike Tracker goodepioi

4. In the upper left hand Ay o
comer you will see the ;
following buttons. Click EEEEN © ="
an the device menw and -
salect the name of your i '
iPhone S .

ol §

8. Press the Run button e |

{the top left button) 1
il e -
Bl

P e

8. Follow the pop-up

25

-

ey

instructions to verify you app development
certificate.

T. A nenw application will appear on your iPhone
with the logo on the left

26

Wifi Setup

Conaecirmg dhe Hibe Tracker &5 moff

he Bike Tracker uses access points o establish a wireless
connection. The wifi connecticn needs io be established
thve first time the Bike Tracker s turmed on, and it will then
continue to connect o the selecied wifi uniil that connection has

bean dropped.
4. On iPhone, select Settings -> Wifi
‘ 2. Tum on Wifi and select "BikeTracker”
3. A new window will appear on your phone (see

balow). Select "Configure Wifi". A list of
available wireless connaeclicns will now sppear.

== 1m. v

4. A Wifi Manager will now
appear with available wifi
networks and their

il

respective signal strengths. R

Salect the wifi you would E—

like o connect to use. T

Type in password (if [ot o s |

nacessary) and select save. —
T

27

Lttt

KKKKKKKKKKKKXKKKKKKKKKH

s
SRS RRERA AN

R

PR

Bike Tracker in Action

Ulsing the Bike Treacker fo bech your buks safe!

ha Bike Tracker App has a simple interface that interacts
with the tracker device. The app tells the device fo run in
gither Park Mode or Riding Mode, and will also alert tha

'_I.’ nas Dean gelaeciad b N IreC e

Tracker On/Off -

The Tracker On'OHf toggbe will place the BikeTracker in Park
Mode (Tracker On) or Riding Mode (Tracker Off}). The toggle
is initially set to Tracker Off and will only begin to track when
the app is opened and Tracker On is selacted.

When in Park Mode, the tracker will update pericdically
update the location of the bike, which will subsegquently
be displayed on the Track Map. A notification will
appear on the Track Map if the tracker is on, but thers
is o GPS fix.

When in Riding Maode, the tracker will not updale kook
for GPS locations or alert user when bkike s in motion.

28

Last Location On/Off -

When Last Location On Is selected, the last known location of
the bike will display on the Track Map. If the tracker is on and
receiving GPS locations, the map will display both the current
and most recent bike locations. W both points are not visible,
they are likely ovarlapped. The color should then foggle
betweean purple and green, thus showing the last bwo reads
have bean in the same location.

Motion Detected -

Whean the bike is in Park Mode, the user may be aleried that
thair bike is moving and a new "Found Bike" buticn will
appear on the map. This alart is created due o activity
detected by an accelarometer an the tracker device. Tha
tracker device will then repeatedly update its location and
display this location on the app interface. When the user has
found its bika, he'/she should select the "Found Bike" button.
This will alert the tracker device that i should return to is
pericdic tracking modea.

MQTT Server Connection -

If connection betwean the MQTT Server and the phone
application is losi, the user will be alerted accordingly. The
sanyer will attempt to reconnect by [isalf. ¥ issues continue,
try to connect your phone to a different Wifi nebwork or restar
the application.

29

Charging -

Occasionally the Bike Tracker will need to be charged. This
will be noticed when GPS location cannot be found for an
extended period of time or the user opens the fracker and no
lights are on. To charge the device, place your bike im a
sacure location and remowve the tracker from the bike. Change
the tracker using the provided cord.

Reset -

If thie Bike Tracker does not appear lo be functioning
properly, prass the reset bulton using the User Application.

30

6 To-Market Design Changes

While our prototype gained full functionality, there were budget and time limitations
which inhibited the further development of the project. With the knowledge from completing a
year’s worth of work developing the BikeTracker along with the ability to further develop the
project to market, there are a few changes and adaptations that could be made.

First of all, it would be best to utilize a cellular module along with the WiFi capability in
order to make the GPS functional anywhere as opposed to only in zones with an accessible Wifi
network. This would be done using cellular hardware and could be incorporated into the board
design to bring it to fruition.

Next, the lack of a developer’s license that we had inhibited the ability for our app to be
available to all phones via the AppStore. Additionally, with a license, it would be possible for the
application to run in the background of the phone so the bike location would be able to track
regardless of whether the user has the application directly open or not. This would give the
BikeTracker a more relevant use for the user and they would not need to prompt looking for the
bike every time. To sell commercially, the application would be expanded in these ways to be
more versatile.

While we were able to sleep the ESP12 device in between GPS data readings, the way
the hardware was set up did not allow for the GPS itself to be put to sleep along with the ESP.
With more time to troubleshoot or adapt the board, it would be ideal to save battery life by
making the GPS sleep. We were able to test a modified GPS mode in which the data was
always available, but this setting did not fit into the larger scheme of our project prototype. For a
future version, the saved battery life of this action would be very beneficial for the user. This
change is already included partially in the board design of the product, since there is a backup
battery for the GPS incorporated into the design. It mounts in a battery holder on the opposite
side of the board.

Finally, after fully grasping the size of our board and all necessary components, the
prototype casing ended up being a little larger than necessary. With this information, it would be
ideal for the consumer if we reduced the size of the casing so the reflector was not quite as
large. While it does fit on a standard bike seat, a slightly smaller design would look sleek and

more inconspicuous. In a commercial selling state, the exact box would be manufactured to

31

perfectly encase the board and components while having the reflective gear on the outside fit

seamlessly around it.

7 Conclusions

After the long development of the BikeTracker, a functional prototype was created.
Through the design process, the subsystems were individually tested and developed in order to
understand how we could integrate all functionalities together.

At the conclusion of the project, a great deal was learnt about the capabilities of WiFi
utilizing an ESP12 with connection to the MQTT protocol. Additionally, the GPS module was
used with NMEA sentences that were parsed within a mobile user application in order to get a
GPS location for our hardware device. An accelerometer (ADXL345) was used which triggered
a monostable multivibrator into an n-MOSFET which allowed the ESP12 to restart via chip
enable. This interrupt allowed for a user notification to be sent when there was unexpected
movement on the bicycle. The hardware utilized was mostly part which are accessible from an
electronics distributor which allows for this product to have a large amount of possibility to be
brought to market. In total, our budget fell under $200 including all development boards, parts,
and production of the final board. With a design to keep the hardware asleep for approximately
80% of the time and a long battery life, it is likely that there would not need to be a recharge for
at least 2 months when utilizing the BikeTracker.

Overall, our group thoroughly enjoyed the chance to expand our electrical engineering
knowledge through hardware and software utilization. There were undoubtedly difficulties in
working to combine each aspect of the project, but with a functional prototype at the end, it was

well worth the struggle.

32

8 Appendices

Appendix A:

Final Main Xcode Listing

I

Final BikeTracker Code

-connects to MQTT server

-tracks GPS data

-communicates with application in order to display

*/

#include <FS.h> /Ithis needs to be first, or it all crashes and burns...

#include <ESP8266WiFi.h>
#include <DNSServer.h>

#include <ESP8266WebServer.h>
#include <WiFiManager.h>

#include <PubSubClient.h>

/ WiFi Access Point /

#define WLAN_SSID "ND-guest"
#define WLAN_PASS "CapstoneProject"

/ Adafruit.io Setup /

#define SERVER_ADDRESS "senior-mqtt.esc.nd.edu" // serverin 213 SR senior-mgtt.esc.nd.edu 10.176.58.5
#define SERVER_PORT 1883 /l standard port

/IGPS Variables
String inputString="";

/IAccelerometer Variables

#include <Wire.h>

#include <ADXL345.h>

ADXL345 adxl; //variable adxl is an instance of the ADXL345 library

/IOther Variables
int counter = 0;
int activity = 0;
int found = 1;

void callback(const MQTT::Publish& pub) {
/I handle message arrived
/ISerial.swap(); //ADD
/Idelay(1000);
Serial.print("Message arrived [");
Serial.print(pub.topic());

33

http://senior-mqtt.esc.nd.edu/
http://senior-mqtt.esc.nd.edu/

Serial.print("] ");

Serial.printin(pub.payload_string());

Serial.printin();

if (pub.payload_string() == "Tracker Off"){
adxl.setActivityX(0);
adxl.setActivityY(0);
adxl.setActivityZ(0);

delay(1000);

ESP.deepSleep(30000000); /30000000 30 sec

}
if (pub.payload_string() == "Bike Found"){

ESP.deepSleep(30000000);
}

/ISerial.swap(); //ADD
delay(1000);
Y/ end of callback function

/I Create an ESP8266 WiFiClient class to connect to the MQTT server.
WiFiClient wf_client; // instantiate wifi client
PubSubClient client(wf_client, SERVER_ADDRESS); // pass to pubsub

void setup() {

/I Setup console
Serial.begin(9600);
delay(10);
Serial.printIn();
Serial.printIn();

Serial.printin(("Modified pubsub client basic code using modified pubsub software"));

client.set_callback(callback);

/I Connect to WiFi access point.
Serial.printin(); Serial.printin();
/ISerial.print("Connecting to ");

/[Local intialization. Once its business is done, there is no need to keep it around
WiFiManager wifiManager;

/lexit after config instead of connecting
wifiManager.setBreakAfterConfig(true);

/Ireset settings - for testing
/lwifiManager.resetSettings();

34

/ltries to connect to last known settings

/lif it does not connect it starts an access point with the specified name

/Ihere "AutoConnectAP" with password "password"

/land goes into a blocking loop awaiting configuration

if ('wifiManager.autoConnect("BikeTracker", "glenna")) {
Serial.printin("failed to connect, we should reset as see if it connects");
delay(3000);
ESP.reset();
delay(5000);

}

/lif you get here you have connected to the WiFi
Serial.printIn("connected :)");

Serial.printIn("local ip");
Serial.printin(WiFi.locallP());

/IAccelerometer Setup

adxl.powerOn();

/Iset activity/ inactivity thresholds (0-255)
adxl.setActivityThreshold(75); //62.5mg per increment
/llook of activity movement on this axes - 1 == on; 0 == off
adxl.setActivityX(1);

adxl.setActivityY(1);

adxl.setActivityZ(1);

/Isetting all interupts to take place on int pin 1

/Il had issues with int pin 2, was unable to reset it
adxl.setInterruptMapping(ADXL345_INT_ACTIVITY_BIT, ADXL345_INT2_PIN);
/Iregister interupt actions - 1 == on; 0 == off
adxl.setInterrupt(ADXL345_INT_ACTIVITY_BIT, 1);

byte interrupts = adxl.getInterruptSource();

[lactivity

if(adxl.triggered(interrupts, ADXL345_ACTIVITY)X
activity = 1;
found = 0;
Serial.print("activity");

/ladd code here to do when activity is sensed

!

/IGPS Setup
delay(1000);
Serial.swap(); //ADD
delay(1000);

Serial.print("$PMTK220,3000*1D\r\n"); //ADD
Serial.print("$PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*29\r\n"); //ADD
Serial.print("$PMTK225,0*2B\r\n"); //Normal mode
/ISerial.print("$PMTK225,8*23\r\n"); //Always locate mode

void loop() {

35

byte interrupts = adxl.getInterruptSource();

if (counter == 5) {
ESP.deepSleep(30000000); /30000000 30 sec
}

if (WiFi.status() == WL_CONNECTED) {
if (Iclient.connected()) {
if (client.connect("mydevice")){
/lif (client.connect(MQTT::Connect("mydevice").unset_clean_session().set_auth("BikeTracker","glenna").set_keepalive(30)));{ //
/[Serial.swap(); //ADD
//delay(1000);
/ISerial.printin("Connected to MQTT server");

client.publish("bikeMQTT2/outTopic","hello world");
/[client.publish(MQTT::Publish("bikeMQTT/outTopic", "hello world gos=2").set_qos(0));

/[Serial.printin("Just published hello world to outTopic");

client.subscribe("bikeMQTT2/inTopic");
/lclient.subscribe(MQTT::Subscribe().add_topic("bikeMQTT/inTopic",0));

client.loop();

}
}

/* wait for incoming messages */

if (client.connected()
client.loop();

readGPS();
counter++;

!

if(activity == 1)
adxl.setActivityX(0);
adxl.setActivityY(0);
adxl.setActivityZ(0);
client.publish("bikeMQTT2/outTopic", "Activity!");
/lclient.publish(MQTT::Publish("bikeMQTT/outTopic", "Activity!").set_qos(0));
}

while(activity == 1){
readGPS();
client.loop();
/*if (found == 1){
ESP.deepSleep(30000000);
el

36

void readGPS(){
while(!Serial.available()){}

delay(1000);

while (Serial.available())}
delay(1);
char incomingByte = Serial.read();
inputString += incomingByte;

}

/Idelay(3000);

Serial.swap(); //ADD

delay(1000);

Serial.printIn(inputString);
client.publish("bikeMQTT2/outTopic",inputString);
delay(1000);

Serial.swap(); //ADD

delay(1000);

/[client.publish(MQTT::Publish("bikeMQTT/outTopic", inputString).set_qos(0));
inputString = "";

Appendix B:

Final Main Xcode Listing

1

/I ViewController.swift

/I MapApp2

1

/I Created by Alison O'Connor on 9/16/15.

/I Copyright © 2015 Alison O'Connor. All rights reserved.

1

/I $GPRMC,064951.000,A,4141.1456,N,08614.4338,E,0.03,165.48,260406,3.05,W,A*2C

/I Done: save/show last location, customize annotations
/I To do: notifications

import UIKit

import MapKit
import CoreLocation
import CoreMotion
import CocoaMQTT
import Foundation

class MapViewController: UlViewController, MKMapViewDelegate,CLLocationManagerDelegate{

37

var onOff: String! = "Tracker Off"
var lastOnOff:String! = "Last Off"
var window: UIWindow?

var timeOfDay: String!

var timeHourDouble: Int!

var info1 = Annotation()
var info2 = Annotation()

var found:Bool = true

@IBOutlet weak var foundButton: UlButton!

@IBAction func foundButton(sender: AnyObject) {
foundWarn()

}

@IBOutlet weak var resetButton: UIButton!

@IBAction func resetButton(sender: AnyObject) {
self.mqtt!.publish("bikeMQTT2/inTopic", withString: "Bike Found", gos: .QOS1)

}

@IBOutlet weak var foundBackground: UlTextField!

@IBOutlet weak var timeText: UlTextView!

@IBOutlet weak var segmentedControl2: UISegmentedControl!
@IBOutlet weak var mapView: MKMapView!

@IBOutlet weak var waitBox: UlTextView!

@IBOutlet weak var segmentedControl: UISegmentedControl!

@IBAction func segmentedControlAction(sender: AnyObject) {
switch segmentedControl.selectedSegmentindex

{
case 0:
onOff = "Tracker On"
self.waitBox.hidden = false
case 1:
onOff = "Tracker Off"
waitBox.hidden = true
default:

break;

}
/Imqtt!.publish("bikeMQTT/inTopic", withString: onOff, qos: .Q0S1)

@IBAction func segmentedControl2Action(sender: AnyObject) {

switch segmentedControl2.selectedSegmentindex{

38

case 0:
lastOnOff = "Last On"
let defaults = NSUserDefaults.standardUserDefaults()
let lastTime = defaults.stringForKey("StartTime")
self.timeText.text = "Last Updated: " + lastTime!
timeText.hidden = false
print(lastTime)

let lastLongitude = defaults.stringForKey("StartLongitude")
let lastLatitude = defaults.stringForKey("StartLatitude")

let lastLongDoub = Double(lastLongitude!)
let lastLatDoub = Double(lastLatitude!)

print(lastLongDoub)
print(lastLatDoub)

if (lastLongDoub != nil){
let location = CLLocationCoordinate2D(

latitude: lastLatDoub!,
longitude: lastLongDoub!

info2.coordinate = location
info2.color = .Purple

mapView.addAnnotation(info2)

case 1:
lastOnOff = "Last Off"
mapView.removeAnnotation(info2)

default:

break

}

var mqtt: CocoaMQTT?

let locationManager = CLLocationManager()

override func viewDidLoad() {
super.viewDidLoad()

39

foundBackground.hidden = true
foundButton.hidden = true

waitBox.hidden = true
timeText.hidden = true

mapView.mapType = MKMapType.Hybrid
let mapCenter = CLLocationCoordinate2D(
latitude: 41.701564,
longitude: -86.237426
)
let span = MKCoordinateSpanMake(0.03, 0.03)
let region = MKCoordinateRegion(center: mapCenter, span: span)
self. mapView.setRegion(region, animated: true)

navigationController?.interactivePopGestureRecognizer?.enabled = false
mqttSetting()
mgqtt!.connect()

self. mapView.delegate = self
/Iself.locationManager.delegate = self

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
/I Dispose of any resources that can be recreated.

}

func mqttSetting() {
mqtt = CocoaMQTT(clientld: "BikeTracker", host: "senior-mqtt.esc.nd.edu”, port:1883)
/Isenior-mgtt.esc.nd.edu 10.176.58.5
if let mqgtt = mqtt {
mgqtt.username = "test"
mqtt.password = "public"
maqtt.willMessage = CocoaMQTTWill(topic: "/will", message: "dieout")
maqtt.keepAlive = 90
mgqtt.delegate = self

/IGet current location
func locationManager(manager: CLLocationManager, didUpdateLocations locations: [CLLocation]) {

let location = locations.last
let currentCords = CLLocationCoordinate2D(latitude: location!.coordinate.latitude, longitude: location!.coordinate.longitude)
let currentLocation = MKPointAnnotation()

currentLocation.coordinate = currentCords

self.locationManager.stopUpdatingLocation()

func locationManager(manager: CLLocationManager, didFailWithError error: NSError) {

40

http://senior-mqtt.esc.nd.edu/
http://senior-mqtt.esc.nd.edu/

print("Error: " + error.localizedDescription)

/IStop updating location/motion when closed
override func viewDidDisappear(animated: Bool) {
super.viewDidDisappear(animated)

if CLLocationManager.locationServicesEnabled() {
locationManager.stopUpdatingLocation()

func moveWarn() {
var notification = UlLocalNotification()
notification.alertBody = "Your Bike is Moving" // text that will be displayed in the notification
notification.alertAction = "open" // text that is displayed after "slide to..." on the lock screen - defaults to "slide to view'
notification.soundName = UlLocalNotificationDefaultSoundName // play default sound
notification.fireDate = NSDate(timelntervalSinceNow: 5)
UlApplication.sharedApplication().applicationlconBadgeNumber = 0
UlApplication.sharedApplication().scheduleLocalNotification(notification)

let cheerText = ("Your Bike is Moving")

let messager = ("The Track Map will update shortly")

let alert = UlAlertController(title: cheerText, message: messager, preferredStyle: UlAlertControllerStyle.Alert)
alert.addAction(UlAlertAction(title: "Close", style: UlAlertActionStyle.Default, handler: nil))
self.presentViewController(alert, animated: true, completion: nil)

func foundWarn() {

let cheerText = ("Hooray!")
let messager = ("You Found Your Bike")
let alert = UlAlertController(title: cheerText, message: messager, preferredStyle: UlAlertControllerStyle.Alert)
alert.addAction(UlAlertAction(title: "Oops! My Bike is Still Lost!", style: .Default, handler: nil))
alert.addAction(UlAlertAction(title: "Return to Normal Track Mode", style: .Cancel, handler: { action in

switch action.style{

case .Default:

print("default")

case .Cancel:
let found = true
self.foundBackground.hidden = true
self.foundButton.hidden = true
self.mqtt!.publish("bikeMQTT2/inTopic", withString: "Bike Found", gos: .QOS1)

case .Destructive:
print("destructive")

}
M)

self.presentViewController(alert, animated: true, completion: nil)

41

func mapView(mapView: MKMapView, viewForAnnotation annotation: MKAnnotation) -> MKAnnotationView? {
if (annotation is MKUserLocation) {
return nil

let reuseld = "pin"
var anView = mapView.dequeueReusableAnnotationViewWithldentifier(reuseld)
if anView == nil {
if let anAnnotation = annotation as? Annotation {
let pinView = MKPinAnnotationView(annotation: annotation, reuseldentifier: reuseld)
pinView.pinColor = anAnnotation.color
anView = pinView

}

anView!.canShowCallout = false
}
else {

anView!.annotation = annotation
}

return anView

class Annotation: NSObject, MKAnnotation

{
var coordinate: CLLocationCoordinate2D = CLLocationCoordinate2D(latitude: 0.0, longitude: 0.0)
var color: MKPinAnnotationColor = .Red

extension Double {
func format(f: String) -> String {
return String(format: "%\(f)f", self)
}
func roundToPlaces(places:Int) -> Double {
let divisor = pow(10.0, Double(places))
return round(self * divisor) / divisor
}
}

extension MapViewController: CocoaMQTTDelegate {

func mqtt(mqtt: CocoaMQTT, didConnect host: String, port: Int) {
print("didConnect \(host):\(port)")

if (onOff == "Tracker On"}{
self.waitBox.hidden = false
self.waitBox.text = "Looking for GPS location..."
self.waitBox.backgroundColor = .whiteColor()
self.waitBox.textColor = .blackColor()
self.waitBox.font = UIFont (name: "Helvetica Neue", size: 16.0)
self.waitBox.textAlignment = .Center

42

func mqtt(mqtt: CocoaMQTT, didConnectAck ack: CocoaMQTTConnAck) {
if ack == .ACCEPT {
mgqtt.subscribe("bikeMQTT2/+", gos: CocoaMQTTQOS.QO0S1)

matt.ping()

func mqtt(mgqtt: CocoaMQTT, didPublishMessage message: CocoaMQTTMessage, id:UInt16) {
print("didPublishMessage with message: \(message.string)")

}

func mqtt(mqtt: CocoaMQTT, didPublishAck id: UInt16) {
print("didPublishAck with id: \(id)")

func mqtt(mgtt: CocoaMQTT, didReceiveMessage message: CocoaMQTTMessage, id: UInt16) {
print("didReceiveMessage: \(message.string) with id \(message.topic)")

if (message.string != nil){

if (lastOnOff == "Last On"){
mapView.removeAnnotation(info2)
let defaults = NSUserDefaults.standardUserDefaults()
let lastLongitude = defaults.stringForKey("StartLongitude")
let lastLatitude = defaults.stringForKey("StartLatitude")

let lastLongDoub = Double(lastLongitude!)
let lastLatDoub = Double(lastLatitude!)

print(lastLongDoub!)
print(lastLatDoub!)

if (lastLongDoub != nil){
let location = CLLocationCoordinate2D(

latitude: lastLatDoub!,
longitude: lastLongDoub!

)

info2.coordinate = location
info2.color = .Purple

mapView.addAnnotation(info2)

if (message.string!.hasPrefix("hello world")){

43

magqtt.publish("bikeMQTT2/inTopic", withString: onOff, gos: .Q0S2)

if (onOff == "Tracker On"}{
if (message.string != nil){
if (message.string!.hasPrefix("Activity!")){
self. moveWarn()
let found = false;

foundBackground.hidden = false
foundButton.hidden = false

if (message.string!.hasPrefix("$GPRMC")}{
self.mapView.removeAnnotation(info1)
let gpsArray = [Character](message.string!.characters)
if (gpsArray[18] == "A"X

let latitudeDeg = gpsArray[20...21]
let latitudeMin = gpsArray[22...28]

let latDegString = String(latitudeDeg)
let latMinString = String(latitudeMin)

let latDegDouble = Double(latDegString)
let latMinDouble = Double(latMinString)

let latMinDoubleMod = Double(latMinDouble! / 60)
let newLatitude = latDegDouble! + latMinDoubleMod

print(latDegDouble!)
print(latMinDoubleMod)

let longitudeDeg = gpsArray[32...34]
let longitudeMin = gpsArray[35...41]

let longDegString = String(longitudeDeg)
let longMinString = String(longitudeMin)

let longDegDouble = Double(longDegString)
let longMinDouble = Double(longMinString)

let longMinDoubleMod = Double(longMinDouble! / 60)

print(longDegString)
print(longMinDoubleMod)

let newLongitude = -(longDegDouble! + longMinDoubleMod)

print(newLatitude)
print(newLongitude)

let defaults = NSUserDefaults.standardUserDefaults()
defaults.setObject(newLongitude, forKey: "StartLongitude")
defaults.synchronize()

defaults.setObject(newLatitude, forKey: "StartLatitude")
defaults.synchronize()

waitBox.hidden = true

/I Get Current Location

self.locationManager.delegate = self
self.locationManager.desiredAccuracy = kCLLocationAccuracyBest
self.locationManager.requestWhenlnUseAuthorization()
self.locationManager.startUpdatingLocation()

self. mapView.showsUserlLocation = true

/I Set Bike Location

let location = CLLocationCoordinate2D(
latitude: newLatitude,
longitude: newLongitude

)

self. mapView.showsUserlLocation = true

info1.coordinate = location
info1.color = .Green

mapView.addAnnotation(info1)

let timeHour = gpsArray[7...8]
let timeMinute = gpsArray[9...10]
let timeSecond = gpsArray[11...12]

let timeHourString = String(timeHour)
let timeMinString = String(timeMinute)
let timeSecString = String(timeSecond)
/lprint(timeString)

let timeHourDoubleOrig = Int(timeHourString)
timeHourDouble = timeHourDoubleOrig! - 4
if timeHourDouble < 12 {
timeOfDay = "AM"
}else {
timeOfDay = "PM"
if (timeHourDouble != 12) {
timeHourDouble = timeHourDouble! - 12
}
}

let timeHourStringMod = String(timeHourDouble)

45

self.timeText.text = "Last Updated: " + timeHourStringMod + ":" + timeMinString + ":" + timeSecString + " " +

timeOfDay
let timeString = timeHourStringMod + ":" + timeMinString + ":" + timeSecString + " " + timeOfDay

print(timeString)
timeText.hidden = false

defaults.setObject(timeString, forKey: "StartTime")
defaults.synchronize()

}else {

self.waitBox.hidden = false

self.waitBox.text = "Waiting for GPS Location..."
self.waitBox.font = UIFont (name: "Helvetica Neue", size: 16.0)
self.waitBox.textAlignment = .Center

self.waitBox.backgroundColor = UlColor.whiteColor()
self.waitBox.textColor = UlColor.blackColor()
self.mapView.showsUserlLocation = false

} else if (onOff == "Tracker Off"){

self.mapView.showsUserlLocation = false
self. mapView.removeAnnotation(info1)
waitBox.hidden = true

func mqtt(mqtt: CocoaMQTT, didSubscribeTopic topic: String) {
print("didSubscribeTopic to \(topic)")

func mqtt(mqtt: CocoaMQTT, didUnsubscribeTopic topic: String) {
print("didUnsubscribeTopic to \(topic)")
}

func mqttDidPing(mgqtt: CocoaMQTT) {
print("didPing")

func mqgttDidReceivePong(mqtt: CocoaMQTT) {
_console("didReceivePong")

}

func mqttDidDisconnect(maqtt: CocoaMQTT, withError err: NSError?) {
_console("mqttDidDisconnect")

46

if (onOff == "Tracker On"}{
self.waitBox.hidden = false
self.waitBox.text = "Connecting to Server..."
self.waitBox.font = UIFont (name: "Helvetica Neue", size: 16.0)
self.waitBox.textAlignment = .Center
self.waitBox.backgroundColor = UlColor(red: 242/255, green: 38/255, blue:19/255, alpha: 1.0)
self.waitBox.textColor = .whiteColor()

self.mqtt!.connect()

func _console(info: String) {
print("Delegate: \(info)")
}

Appendix C:

Final AppDelegate Xcode Listing

1

/I AppDelegate.swift

/I Example

1

/I Created by CrazyWisdom on 15/12/14.

/I Copyright © 2015% emgtt.io. All rights reserved.
1

import UIKit

@UlApplicationMain
class AppDelegate: UIResponder, UlApplicationDelegate {

var window: UIWindow?

func application(application: UlApplication, didFinishLaunchingWithOptions launchOptions: [NSObject: AnyObject]?) -> Bool {

let notificationTypes: UlUserNotificationType = [UIUserNotificationType.Alert,UlUserNotificationType.Badge,
UlUserNotificationType.Sound]
let pushNotificationSettings = UlUserNotificationSettings(forTypes: notificationTypes, categories: nil)

application.registerUserNotificationSettings(pushNotificationSettings)
application.registerForRemoteNotifications()
application.beginBackgroundTaskWithName("showNotification", expirationHandler:nil)

let defaults = NSUserDefaults.standardUserDefaults()
let defaultValueLong = ["StartLongitude" : "]

let defaultValueLat = ["StartLatitude" : "]

let defaultValueTime = ["StartTime" : "]
defaults.registerDefaults(defaultValueLong)
defaults.registerDefaults(defaultValuelLat)
defaults.registerDefaults(defaultValueTime)

47

http://emqtt.io/

return true

func application(application: UlApplication, didRegisterForRemoteNotificationsWithDeviceToken deviceToken: NSData) {
print("DEVICE TOKEN = \(deviceToken)")
}

func application(application: UlApplication, didFailToRegisterForRemoteNotificationsWithError error: NSError) {
print(error)

func application(application: UlApplication, didReceiveRemoteNotification userinfo: [NSObject : AnyObject]) {
print(userinfo)

}

func applicationWillResignActive(application: UlApplication) {

/I Sent when the application is about to move from active to inactive state. This can occur for certain types of temporary
interruptions (such as an incoming phone call or SMS message) or when the user quits the application and it begins the transition to
the background state.

/I Use this method to pause ongoing tasks, disable timers, and throttle down OpenGL ES frame rates. Games should use this
method to pause the game.

}

func applicationDidEnterBackground(application: UlApplication) {
/I Use this method to release shared resources, save user data, invalidate timers, and store enough application state
information to restore your application to its current state in case it is terminated later.
/I'If your application supports background execution, this method is called instead of applicationWillTerminate: when the user
quits.

}

func applicationWillEnterForeground(application: UlApplication) {
/I Called as part of the transition from the background to the inactive state; here you can undo many of the changes made on
entering the background.

}

func applicationDidBecomeActive(application: UlApplication) {
/I Restart any tasks that were paused (or not yet started) while the application was inactive. If the application was previously in
the background, optionally refresh the user interface.

!

func applicationWillTerminate(application: UlApplication) {
/I Called when the application is about to terminate. Save data if appropriate. See also applicationDidEnterBackground:.

}

Appendix D:

Final Board Schematic

48

Appendix E:
Final Board Eagle File

Antenna

S5

L

5
L

49

Appendix F:

MQTT/WiFi Capability Testing Code:
-
Basic MQTT

*/

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

/ WiFi Access Point /

#define WLAN_SSID "ND-guest"
#define WLAN_PASS "CapstoneProject"

/ Adafruit.io Setup /
#define SERVER_ADDRESS "senior-mqtt.esc.nd.edu" // server in 213 SR
#define SERVER_PORT 1883 /I standard port

#define LED 5

void callback(const MQTT::Publish& pub) {
/I handle message arrived
/[Serial.swap();
/[Serial.print("Message arrived [");
/ISerial.print(pub.topic());
/ISerial.print("] ");

/ISerial.printin(pub.payload_string());

/ISerial.printin();
/[Serial.swap();

if (pub.payload_string() == "Tracker Off"){
digitalWrite(LED, 0);
delay(1000);
digitalWrite(LED, 1);

}

Y/ end of callback function

/I Create an ESP8266 WiFiClient class to connect to the MQTT server.
WiFiClient wf_client; // instantiate wifi client
PubSubClient client(wf_client, SERVER_ADDRESS); // pass to pubsub

String inputString="";
/Nlong lastMsg = 0;
/lchar msg[50];

/lint value = 0;

void setup() {

50

/I Setup console

Serial.begin(38400); // opens serial port, sets data rate to 38400 bps
delay(10);

/I Connect to WiFi access point.

Serial.printin();

Serial.print("Connecting to ");

Serial.printin(WLAN_SSID);

WiFi.begin(WLAN_SSID, WLAN_PASS);
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.printin();

Serial.printin("WiFi connected");
Serial.printin("IP address: ");
Serial.printin(WiFi.locallP());

client.set_callback(callback);
pinMode(LED, OUTPUT);

Serial.swap(); //ADD

void reconnect() {
// Loop until we're reconnected
Serial.swap();
delay(5);
while (Iclient.connected()) {
Serial.print("Attempting MQTT connection...");
/I Attempt to connect
if (client.connect("ESP8266Client")) {
Serial.printIn("connected");
/I Once connected, publish an announcement...
client.publish("bikeMQTT/outTopic", "hello world");
/I ... and resubscribe
client.subscribe("bikeMQTT/inTopic");
}else {
Serial.printIn(" try again in 5 seconds");
/I Wait 5 seconds before retrying
delay(5000);
}
}

Serial.swap();
delay(1000);

void loop() {
digitalWrite(LED, 1);
if (WiFi.status() == WL_CONNECTED) {

if (!client.connected()) {
reconnect();

51

}

client.loop();

/Nlong now = millis();
/lif (now - lastMsg > 3000) {
/I lastMsg = now;
/I ++value;
/I snprintf (msg, 75, "Longitude #%Id", value);

/IStart ADD
while(!Serial.available()){}

Serial.printin("$PMTK220,3000*1D\r\n"); //ADD
Serial.printin("$PMTK314,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0“29\r\n"); //ADD

while (Serial.available()}

delay(1);
/linputArray[a] = Serial.read();
lla++;
char incomingByte = Serial.read();
inputString += incomingByte;

}

la=0;

/IEnd ADD

/[Serial.print("Publish message: ");
/[Serial.printin(msg);
client.publish("bikeMQTT/outTopic", inputString);
/ISerial.swap();

inputString ="";

I}

Appendix G:

Accelerometer Testing Code:

/I Cabling for i2c using Sparkfun breakout with an Arduino Uno / Duemilanove:
// Arduino <-> Breakout board

/I Gnd - GND
//33v - VCC
/133v - CS

/I Analog 2 - SDA
/I Analog 14 - SCL
// Analog O - Int1
// Gnd - SDO

#include <Wire.h>

#define DEVICE (0x53) // Device address as specified in data sheet
#define LED 5

volatile int activity = 0;

byte _buff[6];
int Xold = 0;
int Yold = 0;
int Zold = 0;

char POWER_CTL = 0x2D; //Power Control Register
char DATA_FORMAT = 0x31;

char DATAXO = 0x32; //X-Axis Data 0

char DATAX1 = 0x33; //X-Axis Data 1

char DATAYO = 0x34; //Y-Axis Data 0

char DATAY1 = 0x35; //Y-Axis Data 1

char DATAZO0 = 0x36; //Z-Axis Data 0

char DATAZ1 = 0x37; //Z-Axis Data 1

void setup()

{
Wire.begin(); /I join i2¢c bus (address optional for master)
Serial.begin(38400); // start serial for output. Make sure you set your Serial Monitor to the same!
Serial.print("init");

//Put the ADXL345 into +/- 4G range by writing the value 0x01 to the DATA_FORMAT register.
writeTo(DATA_FORMAT, 0x01);

/[Put the ADXL345 into Measurement Mode by writing 0x08 to the POWER_CTL register.
writeTo(POWER_CTL, 0x08);

/lattachinterrupt(0, toggle, RISING);
pinMode(LED, OUTPUT);

void loop()

{
readAccel(); // read the x/y/z tilt
delay(3000); // only read every 0,5 seconds

}
void readAccel() {

uint8_t howManyBytesToRead = 6;
readFrom(DATAXO0, howManyBytesToRead, _buff); //read the acceleration data from the ADXL345

/l each axis reading comes in 10 bit resolution, ie 2 bytes. Least Significat Byte first!!
/I thus we are converting both bytes in to one int
int Xnew = (((int)_buff[1]) << 8) | _buff[0];

int Ynew = (((int)_buff[3]) << 8) | _buff[2];

int Znew = (((int)_buff[5]) << 8) | _buff[4];
Serial.print("x: ");

Serial.print(Xnew);

Serial.print(" y: ");

Serial.print(Ynew);

Serial.print(" z: "

Serial.printin(Znew);

int deltaX = Xnew-Xold;
int delta¥ = Ynew-Yold;

53

int deltaZ = Znew-Zold;

if (deltaX > 100 || deltaX < -100 || deltaY > 100 || deltaY < -100 || deltaZ > 100 || deltaZ < -100){
attachinterrupt(0, toggle, RISING);
activity = 1;

}

if(activity == 1)

{
Serial.printin("Activity!");
digitalWrite(LED, 0);
delay(500);

}

activity = 0;

Xold=Xnew;

Yold=Ynew;

Zold=Znew;

digitalWrite(LED, 1);

void writeTo(byte address, byte val) {
Wire.beginTransmission(DEVICE); // start transmission to device

Wire.write(address); /I send register address
Wire.write(val); /I send value to write
Wire.endTransmission(); /I end transmission

}

/I Reads num bytes starting from address register on device in to _buff array

void readFrom(byte address, int num, byte _buff[]) {
Wire.beginTransmission(DEVICE); // start transmission to device
Wire.write(address); /I sends address to read from
Wire.endTransmission(); /I end transmission

Wire.beginTransmission(DEVICE); // start transmission to device
Wire.requestFrom(DEVICE, num); // request 6 bytes from device

inti=0;
while(Wire.available()) /I device may send less than requested (abnormal)

{
_bufffi] = Wire.read(); // receive a byte
i++;

}

Wire.endTransmission(); /I end transmission

}

void toggle(){
activity = 1;

}

Appendix H:
Bill of Materials

Team Name Part Description Sourca/Supplier Part Number Packaging Quantity
Bk Tracker |TOUF capacior [=21] T L}
1uF capacitor C-USCO603 COG0a 3
0. TuF capacitor C-USCH603 CO60T Fri
0.0TuF capacitor C-USCo603 [¥i%] T
4. TuF capacitor C-USC0603 GO 2
F-pin Mclex connector CON-MOLER-G2/A-2Fth | Wi-4300 1
DOC-to-DC booster TPSE1201 GFN-10_PAD i
Accsleromater ADXLI4E LzAT4 1
E-pin pin header |FIRAD-125 TXO6N 1
4. TuH inductor INDUCTORCDRA CRDOH i
LEDs LEDCHIPLED_0B05 0805 2z
F-Channel MOSEET M-MOSFET- ElFE] 1
530 ohm resistor F-U5_ROa05 ROEIE]
2. 2x-0hm resistor R-US_R0O805 ROBOG 1
10k-ohrm resisior] "EOB0S 1
PG Fecelvar with antenna MEDIATER3I3 | MEDIATERIS® T
Firrite Baad FERRITEEEAD CO80S 1
liding switch 5126 SLIDE-SPOTCUS128 |CUS128 1
El—putyrmr charge managemant controller MCF73831 SOTL3-5 1
ingle refriggerable mongtable mullivibrstor [DneShot) TR 74LMC1G1230CTR SOPESP400X130-8N 1
Micro-LJSB connectar LUSB-MINI-MICRO-BMI NI USB-MINI-FCI1 0033527 1
ESPWitl Device EGP-12 ESP-12 i
Coin Cell Ballery Hoider BATTERT12MM BATTCON_12MM 1

Appendix I:

Relevant Hardware Datasheets and Information

ADXL345 Datasheet and Information:

http://www.analog.com/en/products/mems/mems-accelerometers/adx|345.html#product-overvie

W

DC to DC Converter Datasheet and Information:
http://www.alldatasheet.com/datasheet-pdf/pdf/94087/T1/TPS62101.html

ESP12 Datasheet and Information:

https://cdn-shop.adafruit.com/product-files/2471/0A-ESP8266 Datasheet

EN_v4.3.pdf

GPS MediaTek3339 Datasheet and Information:
http://www.datasheet-pdf.com/PDF/MT3339-Datasheet-MEDIATEK-900724

MCP73831 Datasheet and Information:

https://www.sparkfun.com/datasheets/Prototyping/Batteries/MCP73831T.pdf

Monostable Multivibrator (OneShot) Datasheet and Information:
http://www.nxp.com/documents/data_sheet/74LVC1G123.pdf

55

http://www.analog.com/en/products/mems/mems-accelerometers/adxl345.html#product-overview
http://www.analog.com/en/products/mems/mems-accelerometers/adxl345.html#product-overview
http://www.alldatasheet.com/datasheet-pdf/pdf/94087/TI/TPS62101.html
https://cdn-shop.adafruit.com/product-files/2471/0A-ESP8266__Datasheet__EN_v4.3.pdf
http://www.datasheet-pdf.com/PDF/MT3339-Datasheet-MEDIATEK-900724
https://www.sparkfun.com/datasheets/Prototyping/Batteries/MCP73831T.pdf
http://www.nxp.com/documents/data_sheet/74LVC1G123.pdf

