Final Report
Team TrakPak
Bernard Floeder, Oliver Hanes, Michael Lindt & David Surine

W=

N

Table of Contents

Introduction

Detailed System Requirements
Detailed Project Description

3.1. System Theory of Operation
3.2. System Block Diagrams

3.3. Detailed Design of TrakPak
3.4. Detailed Design of Phone App
3.5. Interfaces

System Integrated Testing

4.1. Testing Description

4.2. Demonstrate Requirements are Fulfilled
User Manual

5.1. How to Install

5.2. Howto SetUp

5.3. Testitis Working

5.4. Troubleshooting

To Market Design Changes
Conclusions

Appendices

1 Introduction

The Problem

At the end of last semester, we were tasked to form teams with our peers and
brainstorm projects and products that will help make people’s lives easier. More
specifically, we were asked to think of ideas to add utility to an already existing
technology by means of wireless communication via the Internet of Things. This
requirement brought with it many challenges. Not only would it be a technical challenge
to incorporate Wifi into our project, but there was a challenge in producing a viable
project idea that incorporated WiFi. While it would be awesome to incorporate WiFi into
a toaster, there is only so much usefulness that an Internet-enabled toaster could give
you. We wanted to make sure that, whatever the project idea we chose, we chose one
that was both feasible for us to actually make, and worthwhile for us to actually make.

Many of us brought to the table ideas that incorporated passions for music,
fitness, and practicality in many different combinations. However, most of our projects
ended up being objects that only covered a small demographic and were more skin
deep. It was indeed difficult to find objects that would provide new tangible benefits to a
consumer if they were WiFi-enabled. Thus, we changed our approach for defining our
project. Instead of focusing on the objects, we decided to focus on the problem itself.
What are some problems that people have today that they cannot solve (or could be
solved in a better way)? This switch in thinking turned out to lead to the breakthrough
that led us to our final project. After some further brainstorming, we finally uncovered a
problem that we felt would be appropriate to attack with a WiFi-enabled Senior Design
project. The problem that we decided to solve with this project is the everyday lapse of
memory that leaves virtually every college student in sporadic times of crisis, in which
they are missing items essential for everyday tasks.

On any given day, it is perfectly possible for someone to go to class for an exam,
take out their calculator, do poorly on the test, and storm out of the room. In their
irritation, they forget their calculator on the ground next to where their backpack was.
Likewise, it is equally possible for a person to take out their water bottle on a hot Friday
afternoon for their 3:30 lecture and be in such a hurry to get to their room for a nap that
they leave their water bottle lying beneath their seat in 101 DeBartolo. Of course, there
is always the timeless practice of retracing steps across campus, both mentally and

physically. However, this tedious process takes away precious minutes that can be
used for studying or spending time with close friends outside of study circles. Moreover,
items that are capable of holding enormous amounts of data (i.e. tablets, smartphones,
external hard drives and laptops) carry with them incalculable consequences for school
projects and businesses when they are misplaced. Finally, backtracking your steps is
not always a very successful process! We wanted to eradicate the practice of
backtracking as best we could and help people hold on to the things that make their
world work.

Given our new problem, we began looking for any products currently on the
market that are meant for helping people keep track of their everyday items. While there
are some technologies out there that can help you keep track of your phone or keys
(Find My iPhone, Tile, etc.), we were unable to find a technology whose sole purpose is
to actively keep track of multiple items at a time in a convenient manner. This seemed
like a hole in the market to us. Wouldn’t it be great if there were a product that was
designed to keep track of any and all of the items that you considered to be valuable?
And wouldn't it be great if this product incorporated WiFi, such that there was a real
convenience in the way that you kept track of all of your belongings? Since the answers
to these questions were a definite “Yes!” for us, we decided that venturing further into
this concept would be a worthwhile project that could actually help people solve a real
problem as well as definitely incorporate the required loT technologies as mandated by
the Electrical Engineering Department.

Another important detail that we wanted to address was the market for which that
we were designing our product. We chose to design for the market that we best knew:
college students. Not only are college students often forgetful, but we know that modern
college campuses are generally blanketed (or at least largely covered) by WiFi. Thus,
given the constraints on our project, our own personal experience, and the problem that
we wanted to solve, college students became the perfect target market. This recognition
led to a few new specifications. We wanted to help each individual student without
forcing them to pay an exorbitant amount of money for the convenience. College
students, generally speaking, do not have tons of money to spend. Thus, we realized
that we would have to do our best to find reasonable compromises between cost and
functionality with our project.

Finally, although we realize that the problem of forgetting belongings is rather
“first-world” and does not really help those in developing regions of the world, we
believe that a well-conceived and well-executed project would have the potential to
eventually reach the world at large. The problem itself is quite simple, but our design

would need to be clever enough to bridge the gap between the major inconvenience of
losing an object and the helpful convenience of having each individual item’s last known
location in your back pocket. Therefore, we felt that it was important to have the needs
of everyone in mind when designing our solution, even though our project would
definitely be catered to college students in America.

The Solution

After much brainstorming, we finally settled on an idea that fit all of the above
criteria and would solve our problem: a backpack. A backpack is an object that nearly
every college student already needs and buys. A backpack is also an object that
already carries most of one’s other important objects (computer, computer charger,
books, calculator, water bottle, etc.). Thus, if we could find a way to redesign the
backpack, such that it used WiFi to alert you as to the status of your belongings in some
way, then we would have found a very elegant way to solve our problem. This is the
idea that became our Senior Design project, and we decided to call it “The TrakPak”.

At the highest level, our prototype product is a backpack that has mounted
hardware that has three major functionalities: the capability to “scan” items in and out of
the backpack, a GPS chip to provide time and location stamps, and a Wifi chip to
communicate that information to the user. In particular, we used a Wifi chip that could
send the information to an MQTT server. From that server, we are able to gather that
information with a mobile phone application, which can then format the information into
an aesthetically appealing environment within an app. Our TrakPak app welcomes any
user to name each new item scanned and see when and where they last had each item.
That being said, each item that you wish to keep track of will need its own RFID tag with
its own passive frequency to be scanned and its own serial number to be punched into
the mobile app for tracking. Each tag costs next to nothing, so the bulk of the cost of the
project will come from the hardware that will implement the software we develop for
communication.

Project Success and Functionality

We are very pleased with how our product has turned out and fully endorse its
use as a functional prototype that could possibly even stand up against a team of patent
lawyers. We believe that our work combines the aspects of our goal very fluidly and are
proud with the aesthetic that we have come up with. The hardware is all fully functional
and is able to scan in an RFID, give the user an auditory cue for successful scans,

gather GPS data unique to that scan, and transmit all of this information via the WiFi
chip to an MQTT server where it can then be picked up by the Mobile Application. The
GPS is more finicky than we expected when it comes to providing GPS data indoors,
however it is still able to ballpark the item close enough that we believe the location
accomplishes its task of simply aiding someone in remembering where they left and
item. And, while the app is only functional to the point where a person has to manually
enter the serial data unique to each RFID tag, it is still able to keep a running history of
each scan of each item and the of the backpack itself. It is able to visualize the location
of each individual item via Google Maps API and even give directions on the shortest
route that a person can take to each item. In all, we believe that we have created a
prototype that even in its crudest stages can help the average college student cut down
on lost time looking for items that should always travel with them. While our product
cannot guarantee that a person will never lose any of their things during a normal day of
class, we believe that the problem has largely been helped if not eradicated.

We are hopeful that this design has immense implications for product
development on a macroscopic scale. That is, we believe this system of tagging items
can be taken and developed much further by existing technology giants and can be
applied to a number of social realms. If we were to replace the WiFi transmitter with a
device capable of transmitting cellular data between the backpack and the mobile app,
the backpack could be taken anywhere, not just within the confines of the WiFi fields of
college campuses everywhere. For example, the backpack instead could be taken on
hiking trails and more remote areas on the backs of more adventurous users. Moreover,
if we were to be able to develop a cost effective way of tracking each item via bluetooth,
then we could keep track of items in the backpack regardless of whether they were
physically scanned right before placing them in the pack. The best part is that the
concept doesn’t even have to stay within the confines of a backpack but can extend to
general personal belongings in satchels, purses, duffle bags, luggage and briefcases.
It’'s almost surprising that we have not seen any products similar to ours with so many
possibilities for making people’s lives a little bit easier.

2 Detailed System Requirements

2.1 Embedded System Requirements

e PIC Microcontroller

o Choose from PIC family because of familiarity with
components/programming
All required passive components (Vcap, Decoupling Capacitors, etc.)
Programming Requirements
m Language
o C
m Environment
e MPLAB IDE
m Hardware
e PICKit3
e Pins on board for PICKit 3
e General Requirements
o Must be able to communicate with all auxiliary hardware, including but not
limited to:
m GPS chip
m Power Hardware
m WiFi chip
m RFID Scanner
o Must have at least 4 available interfaces for proper serial communication
with peripherals
m Each auxiliary hardware piece must have an available
communication protocol (UART, SPI, 12C, etc.)
o Must have at least 3 I/O pins for controlling power

2.2 Power Requirements

e General Requirements
o Input: Must be rechargeable via USB connection or connection to wall
o Output: Must be able to connect to our microcontroller via a microUSB
connection
o Weight Requirement
m As light as possible considering that the user will have to carry it
around
m Maximum: 5 Ibs
o Size Requirement
m Shape of battery must not be bulky such that integration into the
backpack is difficult and/or the backpack is not as usable
o Total Maximum Power Draw: ~500 mA

m The above power estimate has been made by choosing a likely
candidate for each component and then determining its maximum
power draw. This should give us a worst-case scenario power
estimate.

e Microcontroller
o PIC Datasheet
o Maximum Input Current = 300 mA

GPS chip
o Gtop GPS
o 30 uA (standby current) at 3.3V = 54 uW

LED Hardware
o Average Diode Forward Current = 150 mA
o Depends on current limiting resistor choice

WiFi chip
o ESP8266
o 15 mA typical sleep value, 170 mA TX max, 50 mA RX

max
RFID Scanner
o |D-12LA Datasheet
o 35 mA maximum
o Required Runtime: 12 hours
o Required Battery Estimate: 7200 mAh

2.3 Wireless Interface Requirements

e General Requirements
o Must be able to communicate with WiFi chip connected to the central PIC
board and RFID scanning device
m Must be able to connect to any unsecured, public networks
o Phone system and WiFi chip both must be able to communicate within the
domain of the created mobile app

2.4 User Interface Requirements

e General Requirements
o Must be able to alert the user that each item has been successfully or
unsuccessfully scanned
m This will be done with a beep on the RFID board

https://sakailogin.nd.edu/access/content/group/2d46bfa1-d0f2-4e96-bd9a-19addd93f074/PIC32%20Spec%20and%20Reference/pic32mx795.pdf
https://www.arduino.cc/documents/datasheets/E000026_gpsShieldv1_PA6B-Datasheet-A07.pdf
https://learn.sparkfun.com/tutorials/diodes
https://www.adafruit.com/images/product-files/2471/0A-ESP8266__Datasheet__EN_v4.3.pdf
http://cdn.sparkfun.com/datasheets/Sensors/ID/ID-2LA,%20ID-12LA,%20ID-20LA2013-4-10.pdf

o

Must have a functioning mobile app to provide scanned information for
each item (Object, GPS & Time Stamp)

2.5 Installation/Use Requirements

e General Requirements

o

The TrakPak will not be user-installed; we will install and assemble all
components.
The passive RFID tags will be installed by the user onto belongings of
their choice via stickers.
The following components should be able to be installed directly on or
connect directly to a PCB of dimensions ~4 in x ~3 in.

m Microcontroller (and all its required passive components)

m Clock Circuitry

m GPS Chip

m WiFi Chip
The RFID scanner must be installed in an easy-to-reach area of the
interior of the backpack to protect it from weather.

The battery and microchip must be installed in a convenient location within

the backpack to prevent damage to the battery and preserve interior
space.

m The battery’s power cord must have a way to be secured when not

in use.

All wiring must be secured and well hidden to prevent damage from wear

and tear as well as preserve a sleek look.

2.6 Safety Requirements

e Must ensure that the battery can account for overcharging without overheating
too much.

e Ensure that the battery charging process is well protected to avoid delivering
shocks to the user.

(@]

Only possible dangerously high voltage is from charging the backpack off

the wall.

e As a backpack, do not overburden yourself to avoid damage to spinal system

2.7 Mechanical Requirements

Our project is designed to improve a user’s experience with a backpack. As
such, there are several main mechanical requirements that cannot be exceeded or the
TrakPak would cease to be an advantageous product. Primarily, the TrakPak must be
able to be fully functional inside of a backpack without compromising the carrying
capabilities of a comparatively sized backpack. In order to meet this expectation, we
will have to use hardware that is small, lightweight, and durable.

The first consideration is size. Our hardware will need to be small enough to be
incorporated into an existing backpack without taking up too much space. The TrakPak
would be useless if there was no room to put anything into it. Therefore, we will need to
buy parts that will minimize space while keeping effectiveness high. The major
challenge for this consideration will be the power supply, since most power supplies are
relatively large compared to the average microcontroller. The specific size requirement
will be determined by the backpack that we choose to augment, however as a general
rule we will need to buy the smallest parts possible that fit our requirements.

The second consideration is weight. Backpacks quickly become uncomfortable
when they are filled with too much weight. While we may not be able to decrease how
much a user tends to put inside the TrakPak, we can control how much the base weight
is for an empty TrakPak. In order to keep this base TrakPak weight at a reasonable
level, we will need to find parts that have minimal weight. Most of our components, like
the microcontroller or the LEDs, will be of negligible weight. However, the power supply
may be another challenge as batteries with the power capacity that we will need tend to
be comparatively heavy. The specific base weight requirement for the TrakPak will be
highly dependent on the weight of the backpack we choose to augment, however our
other components should be under five pounds altogether.

The third consideration is durability. The TrakPak would be a highly ineffective
product if it couldn’t stand up to the rigors of daily life. Few backpack users treat their
backpacks with special care. They are often dropped on the ground, stepped on, or in
other ways misused. We cannot assume that the TrakPak will be treated any differently
than a regular backpack by a user, and so our components will need to be able to
survive these daily abuses. There are two ways we can meet the durability
requirements. The first is by purchasing already durable parts. Some parts, like the
microcontroller and its immediate plugins will be inherently fragile, but other parts, like
the power supply or the RFID scanner, may have variable durability. The second way
to meet our durability requirement is by packaging our parts. This packaging will need
to meet the size and weight considerations, as well as sufficiently protect our hardware
from the daily wear and tear of backpack usage.

In conclusion, the TrakPak is dependent on three mechanical requirements.
Firstly, the hardware must be small enough to not hinder the TrakPak’s carrying
capacity. Secondly, the hardware must be light enough to not inhibit the user's comfort.
Thirdly, the hardware must be protected so that the TrakPak’s technological
components remain functional. These three mechanical requirements will ensure the
longevity of the TrakPak functionality and the user’s satisfaction with the physical
construction of the TrakPak.

3 Detailed project description

3.1 System theory of operation (how the whole thing
works)

This section will detail how the entire TrakPak works in full detail. First, we want
to define the vocabulary that we will be using. The TrakPak system is broken down into
two main subsystems: the “TrakPak” subsystem, and the Mobile Phone App subsystem.
By “Trakpak” subsystem, we are referring to all the components that are housed within
the backpack, and the backpack itself. By “Mobile Phone App” subsystem, we are
referring to just the Android-based Mobile Phone App. The TrakPak subsystem is
further broken down into five subsystems: the RFID subsystem, the GPS subsystem,
the WiFi subsystem, the Microcontroller subsystem, and the Power subsystem.

Now, we will explain the individual task of each subsystem, and their relation to
one another. For reference, see Section 3.2 (System Block Diagram) to visually see the
subsystems and connections t5hat we are talking about. The “brain” of the TrakPak
system is our Microcontroller subsystem. The microcontroller controls when each of the
other TrakPak subsystems (RFID, GPS, WiFi) receive power. The microcontroller also
requests data and sends data to each of tho se subsystems as necessary. Each of
those subsystems, in general, has one specific task.

e RFID - Receive object scans and send that information to the
microcontroller
GPS - Acquire GPS data and send that information to the microcontroller
WiFi - Send the information that is gathered by the microcontroller to the
Mobile Phone App, via an MQTT server

e Power - Provide regulated power to all other TrakPak subsystems (via a
battery) and provide a way to charge that battery

The Mobile Phone App, in turn, has the general task of receiving the information sent by
the WiFi module, via the MQTT server, and presenting it to the user in an intuitive and
helpful manner. These are the general tasks of each subsystem. Now, we will explain
how the each of these subsystems works together to give the TrakPak its functionality.

The main functionality of the TrakPak is its ability to “scan” a user’s object, and
then tell the user what the object is, where it was scanned, and when it was scanned.
The TrakPak accomplishes this task in the following way. Note that further technical
details of how exactly each subsystem is working will be covered in the following
sections of this document.

1. The entire TrakPak system is powered up, via the Power subsystem and
the battery.

2. The microcontroller turns on power to the GPS subsystem and initializes
it.

a. The microcontroller controls power to the GPS subsystem by
toggling a PMOS based switch on/off via one of the its digital output
pins.

b. The microcontroller confirms that the GPS is on by receiving an
acknowledgement from the GPS.

c. The microcontroller sends a command to the GPS to format its
output data in an appropriate way. It receives an acknowledgement
that this command has been received and processed successfully.

3. The microcontroller then turns on power to the RFID.

a. This power is controlled by the same type of PMOS switch,
regulated by a different digital output pin.

4. Now that the RFID is powered up, it waits indefinitely until the user scans
an object.

a. This “scanning” occurs via an RFID reader mounted in the
backpack, and small RFID tags that are placed on items of interest
(calculators, notebooks, water bottles, etc.).

b. The user has to bring the the RFID tag very close to the RFID
reader for the tag to be detected, in much the same way as one
would scan a badge in an office building.

5. Once a scan is detected, the RFID reader will send the tag’s unique RFID
tag number to the microcontroller.

a.

b.

C.

RFID tag numbers are 12 digit alphanumeric strings, unique to
each specific tag.

The RFID reader sends this string to the microcontroller via UART
communication protocol.

After the RFID tag has been successfuly read by the
microcontroller, the RFID subsystem is powered off to preserve
power and prevent the user from scanning any new tags until the
current one is processed.

6. Once the microcontroller has received the RFID tag, it checks the last
known GPS data point.

a.

The GPS subsystem operates via a timer interrupt function. Every
two minutes, this interrupt function triggers and polls the GPS
subsystem for its most recent data collection.

i. Ifthat GPS information is valid (we have a new location fix),
the microcontroller updates its GPS data point.

ii. If that GPS information is not valid (we are inside and cannot
get a fix), the microcontroller will use its most recent valid
data point.

This communication between the microcontroller and GPS
subsystems occurs via UART communication protocol.

The GPS data that we used is in GGA format. For a detailed
description of what this format looks like, see the GPS subsystem
section and the appendix.

i. Note that the GPS data also provides UTC (Coordinated
Universal Time) data. Thus, the GPS data includes both
when and where something has been scanned.

7. Once the microcontroller has the RFID and GPS data, it organizes that
data into a convenient string for sending to the WiFi.

a.

b.

This process is done is software. The code within the appendix
shows exactly how this part works.

The reason that this step is important is because we needed to
organize the data in such a way that the Mobile Phone App can
easily parse it.

8. The microcontroller powers on the WiFi subsystem and then sends this
organized string to the WiFi subsystem.

a.

The microcontroller controls power to the WiFi subsystem via the
same type of PMOS switch, which is controlled by a different digital
output pin.

b. This communication between the microcontroller and the WiFi
module occurs via UART communication protocol.

c. Before actually sending the data to the WiFi, the microcontroller
waits for confirmation from the WiFi that it is on and connected to
WiFi.

d. The organized string that contains the unique RFID tag number and
GPS time and location information is then sent.

e. The microcontroller then waits for another confirmation that the
WiFi module was able to successfully send the data to the MQTT
server.

f. Once the microcontroller has confirmation the information was
successfully sent, it powers off the WiFi subsystem.

9. Once the WiFi module has uploaded the data to the MQTT server, the
TrakPak system is essentially finished, and the Mobile Phone App comes
into play.

10.The app subscribes to the MQTT server and waits for the TrakPak to
upload new scan data.

a. The user has the ability to connect/disconnect from the MQTT
server via a button on the screen.

11.0nce the app sees that new data has been uploaded, it processes that
data and presents it in a few ways. For more detailed information on
exactly what the app is doing and what it looks like, see Section 3.4
(Mobile App).

a. The app parses the data to separate the RFID tag, the time data,
and the location.

i. The app gives the user the option to rename those
alphanumeric strings to something more useful such as
“‘water bottle” or “notebook”. Otherwise, it just displays the
alphanumeric string.

b. The app displays a running log of what was scanned, where it was
scanned, and when it was scanned.

c. The app also has a map feature, such that if a user taps a particular
scanned event, a standard mobile application map comes up with a
pin dropped at the location of that scan.

12.The action is now finished. The TrakPak will have reset to Step 4, where
the RFID system is powered up and awaiting the next scan. The Mobile
App will display past information and await the next update to the MQTT
server.

Following the steps above, we have showed how the TrakPak accomplishes its
core functionality. In addition, there are a few other actions that the TrakPak also
performs that add to its usefulness and robustness.

In addition to updating the location and time of a scanned object, the TrakPak
has the ability to periodically update the location of the TrakPak itself. Below is a
description of how this action is performed.

1. As mentioned above, the microcontroller incorporates a timed interrupt
function that will periodically check and update the current GPS location.
This same interrupt function is used to send the backpack’s GPS
information to the MQTT server.

2. Every 2 minutes, when the timed interrupt function triggers, the interrupt
function will check and increment a variable. When the variable has
reached a certain value (which occurs about every 6 minutes), the
microcontroller will acquire the most recent valid GPS data and use that
as the backpack’s most current location.

3. Following Steps 8 through 12 from the main functionality above, the
microcontroller sends the backpack’s data to the WiFi subsystem, which
sends the data to MQTT server. That information is collected by the app
and displayed to the user.

This feature of sending the backpack’s current location operates on the same
principle as the main functionality, except that it is triggered by a timed interrupt instead
of a scanned object event.

Finally, the TrakPak has the ability to save scanned data, in the event that we are
not in WiFi range when the scanning occurs. The TrakPak will then check periodically if
WiFi is available, and if so, send those saved scans to the user. Below is description on
how this process works.

1. Looking up to the main functionality description, there is a point (8.c.) in which
the microcontroller waits for the WiFi subsystem to confirm that it is connected to
WiFi. If the WiFi sends back that it is not connected, or if the WiFi subsystem
times out and does not respond for about 30 seconds, then this feature will be
implemented.

2. The software will then save the data that would have been sent (RFID tag, time
and location) in an array in software.

a. The current implementation has two such arrays, meaning that we can
only save of to two scans that occur outside of WiFi at a time. In theory,
any arbitrary numbers are possible.

3. When the timed GPS interrupt function occurs, the software will check to see if
any of the saved arrays have been populated by data. If one or both of the arrays
have scanned data, the microcontroller will implement the same sending feature
from the main functionality, starting from step 8.

a. It will check for a WiFi connection, send the data via WiFi to the MQTT
server, and the app will process and display the scanned data to the user.

b. If there still is not a WiFi connection, the data will remain saved in the
array, and the software will try again the next time that the interrupt
function is triggered.

4. Below are a couple notes on this process.

a. If the backpack tries to send its own location and cannot find a WiFi
connection, that data will also be saved into an array until WiFi is found.

b. If the TrakPak cannot send something via WiFi, and both save arrays are
already filled with data, the TrakPak will overwrite the arrays with this new
scanned data. Thus, in its current form, some scanned information can be
lost!

In conclusion of this section, we have given the detailed flow of how the TrakPak
accomplishes its main functionality of sending object information to the user. In addition,
we have detailed the TrakPak’s auxiliary functionalities of updating the backpack’s
location and saving scans when WiFi is unavailable. The detailed design of each
subsystem are given below in the subsequent subsections of Section 3 of this
document.

3.2 System Block Diagram

[ChjectGPSTime Slamg

Acknowledgerment
4[WiFi Chip J— Beep
J Scan Confirm
! Power/Data Object|Scanne

RFID
Microcontroller J f Scanner

Wdd
Power/Data Request| [GPS Chlp)
_LiPo

A

(uro] |

GPS data

3.3 Detailed design/operation of subsystem 1: TrakPak

3.3.1 Detailed design/operation of TrakPak subsystem 1: RFID

Datasheet:

http://cdn.sparkfun.com/datasheets/Sensors/ID/ID-2LA,%20ID-12LA,%201D-20LA2013-4-10.pdf

e Purpose:

o

To allow for the scanning of items

e Requirements:

o

o O O

o

e |nputs:

o

(@]

Must be able to receive a scan from any passive RFID tag and proceed to
output that RFID tag to the PIC microcontroller through serial
communication.

Low current (<50mA)

Small package size (<4in"2)

Beep/LED to notify user of scan

Ability to read passive RFID Tags

Power On/Off from Microcontroller
Data from RFID tags

e Outputs:

o

o

Data to Microcontroller
Data request to RFID tags

e Why this part was chosen:

o

The ID-12LA was chosen because for the TrakPak it is essential that
users are able to scan items in and out of the backpack conveniently. This
makes it important to have an RFID scanner that is compact, low current
(under 50mA), ability to communicate serially, and have a decent scan
range (approx 5cm). The ID-12LA was the commercial part that fulfilled all
these requirements and was easily interfaceable to other subsystems.

e Communication protocol/programming:

(@]

Serial communication was used. No programming was required for this
component, except to set up a UART so that our microcontroller and the
transmit pin on the RFID device were talking on the same line with a baud
rate of 9600.

Schematic of RFID Module:

http://cdn.sparkfun.com/datasheets/Sensors/ID/ID-2LA,%20ID-12LA,%20ID-20LA2013-4-10.pdf

8.1 Circuit Diagram for ID-12LA, ID-20LA

Parts List
Part # Value
r TEGI ouT &R R1 100R
Uin Gt I__il- CoM czél‘ £3 R2 4K7
&1+ 3 1T
R3 2K2
Bottom Uiew :
I0-12x C1 10uF 25v electrolytic
e c2 1000uF 10v electrolytic
01 16 0—
Q2 90
NCO 3 &0 C3 100nF
Nc% ; ; o— Q1 BC457 or similar
LED1 Read LED
LED2
N LED2 Tag In Range LED
Tag in Range
00 Bl 2.7khz — 3kHz 5v PKPK AC

e The circuitry above is fairly simple and straightforward. Essentially there is a
voltage that is input to pin 2, and this schematic shows a voltage regulator to
accomplish this. We bypassed this by just outputting our already regulated
voltage from our main board to pin 2 (3.3V DC). There is also LED circuitry on
this schematic which will be turned on when pin 10 goes high, which will signify a
scan has occurred. Also included on our board (and this schematic) is a beeper
that will notify when a user has successfully scanned, also triggered by the
mosfet on pin 10. The only other pins that we need to worry about on this
schematic are pin 1 which is just connected to ground and pin 9 which transmits
the RFID data to our PIC32 through a UART connection.

e How was this tested?

o The RFID module was tested by writing a program to print out the serial
information it reads to Terminal. Once an RFID card is scanned we should
see it's unique RFID tag show up on terminal if it is working. Once we
confirmed that this subsystem worked we were able to utilize it's
functionality in the overall project flow.

3.3.2 Detailed design/operation of TrakPak subsystem 2: GPS

Datasheet:
https://cdn-shop.adafruit.com/datasheets/GlobalTop-FGPMMOPAG6H-Datasheet-VOA.pdf
e Purpose:

https://cdn-shop.adafruit.com/datasheets/GlobalTop-FGPMMOPA6H-Datasheet-V0A.pdf

o To acquire GPS and real-time clock information upon request.
e Requirements:
Small package size to not take up too much space in the TrakPak
Low current (<25mA)
Give accurate latitude and longitude data +/- 30 feet
Give accurate real-time clock data
Send data via serial UART

o Recognize MTK NMEA packet commands
e |nputs:

o Data request from microcontroller via serial UART

o MTK NMEA packet commands
e Outputs:

o GGA Data

m $GPGGA,064951.000,2307.1256,N,12016.4438,E,1,8,0.95,39.9,M,

17.8,M,,*65
UTC Time (064951.000, hhmmss.sss)
Latitude (2307.1256, ddmm.mmmm)
Longitude (12016.4438, dddmm.mmmm)
Other data not important for our project
(1,8,0.95,39.9,M,17.8,M,,*65)
e Why this part was chosen:

o The GlobalTop - FGPMMOPAGH GPS was chosen for this project simply
because it is a GPS that met all of our requirements, it was simple to
communicate to, and was a fairly commercial part with good
documentation on it.

e Communication protocol/programming:

o To actually program the GPS to be in different modes or states we needed
to send MTK NMEA commands to the RX pin of the GPS. An example of
this would be the command to tell the GPS to only give us GGA Data:
$PMTK314,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*2C. The GPS then would
only send GGA data over the TX line to the microcontroller. We were
using a serial UART to establish communication with a baud rate of
38400.

O O O O O

Schematic of GPS Module:

1 20
= VCC NC ==
BEAD L 21 NRESET GND P2
P 3 GND :
FERRITEBE % Y VBACK -
ERRITEBEAD | 7 =il = Xo s
L % c2 c3 gl 3P
ol [A BAT1 | NCE
1 O1uF | 1uF - EI(\D
3l
GND 2 T
GND GND Y 100 Rx
GND
R1
AV
330
R2
330
.ﬂlm ™) \f‘

(?.q

CON-MOLEX-43XX-4M43XX-RA

GPS_MOULE

e The GPS module schematic consists of powering the gps, and then connecting

the co

mmunication pins. As you can see there are 4 pins coming from the main

microcontroller board via molex connections. To power the board we send 3.3V

to the

VCC pin with a few decoupling capacitors and a ferrite bead to reduce

power noise and provide stability to the power system. We also have a coin
battery on the board to provide backup voltage to the GPS so that it can retain its
fix while in low power mode, and have the ability to hot start. Finally the TX and
RX pins connect to serial pins in the microcontroller after going through a few

dampi

ng resistors to reduce EMI.

e How this subsystem was tested:

o

In order to test that the GPS was working we made sure to establish a
solid communication line between the UART pins of the microcontroller
and the GPS. If this was done correctly we should be able to see the
microcontroller send data to the GPS and the GPS send data back to the
microcontroller. We hooked up a logic analyzer and tested it, and once we
were able to confirm that this communication was working and that the
GPS was sending the correct data, we were able to proceed with
assimilating the GPS into our total program system

3.3.3 Detailed design/operation of TrakPak subsystem 2: WiFi

Datasheet:
https://cdn-shop.adafruit.com/product-files/2471/0A-ESP8266 Datasheet EN v4.3.pdf

e Purpose
o To communicate between the User App and the Trakpak via Wifi
e Requirements:
Connect to unsecure wifi networks
Subscribe to MQTT Servers
Publish to MQTT Servers
Powered by 3.3V DC
o Communicate via serial UART to transmit and receive data

o O O O

e Inputs:
o Data from Microcontroller (string to be sent to app)
e Outputs:

o Data request from Microcontroller
m Acknowledge that it is connected to wifi
m Acknowledge that it has sent the data to MQTT Server
o RFID Tag/GPS/Time Stamp to Phone App via wifi
e Why this part was chosen:

o The ESP8266-12E was chosen primarily because it is the leading part in
do it yourself internet of things projects (a requirement for this project),
and it fulfills all the requirements that we needed.

e Communication protocol/programming:

o We communicated to the ESP8266-12E from the microcontroller by using
serial UART communication opening up a transmit and receive line with a
baud rate of 9600. Through this serial line, we were able to send the ESP
strings we wanted sent to the MQTT server and get acknowledgments
back from the ESP that the sending completed.

o Once the ESP received strings to send to wifi, it communicated over
standard unsecured wifi networks to establish a connection with an MQTT
server and then published to a topic we specified it too.

o To program the ESP8266-12E we used the Arduino environment due to
the heavy documentation on the subject already, and the ease of
commands for our particular needs. All we needed to do in the program
was establish wifi, connect to the MQTT server, read in a string through
serial data, and then send it to a topic on the MQTT server. Utilizing the

https://cdn-shop.adafruit.com/product-files/2471/0A-ESP8266__Datasheet__EN_v4.3.pdf

ESP8266 and softwareSerial libraries on arduino this program was simple
to write and easy to implement.

Schematic of WiFi Module:

VDD

VDD

/;4—\
=1
10K

ESP12E

|

U4TX/D1 7

PMOS-3

E4

=

—AW—
10K

2]

|
O
VDD

This circuit models the WiFi system and the various connections on the
ESP-12E. To begin | will describe the more straightforward aspects of it. There is
3.3V going to VCC on the ESP (triggered by a mosfet opening up) to power the
WiFi chip. Next the TXD and RXD pins are brought to a 3 pin header used to
actually program the ESP. This allows it to be programmed serially.
GPIO13/MOSI on the ESP is connected to the UART 4 TX pin on the
microcontroller, and is used to receive information the microcontroller sends.
GPIO15/SEL is connected to the UART 4 RX pin on the microcontroller which is
used to send acknowledgements. GPIO15/SEL is also connected to GND
because it is the protocol for programming the ESP. For this same programming
protocol, GPIO2 is held high. The last aspect of programming the ESP is the
GPIOO pin, which specifies if the ESP is in programming mode or run mode
during startup. If the switch is holding GPIOO0 high the ESP is in run mode, and if
low it is in programming mode. Finally we have a switch push button to reset the
ESP device. The reset pin is held high until the switch is pressed to bring the pin
low, thus resetting the ESP8266-12E.

e How this subsystem was tested:

o The WiFi subsystem was tested in a few different steps. First we needed
to test that we could connect to a wifi network and subscribe to a MQTT
client. We tested this by using a blink program to blink the light if we send

“pblink” over the MQTT server. We were then able to verify that we were
connected properly and able to communicate over the MQTT server.

Following confirmation that our ESP device connected properly, we
needed to make sure that it could send/receive serial data through a
UART line to communicate with the microcontroller. We tested this by
sending data to the ESP from the microcontroller, and then having the
ESP send data back to the microcontroller once it was received. We
confirmed this was working by studying the data lines with the logic
analyzer, and confirming messages were being sent both ways.

o Finally we needed to make sure the ESP could receive data and then
send it to the MQTT server. We tested this by sending data to the ESP
through the microcontroller and then verifying that the data was published
to the MQTT Server which we could monitor on our computers.

3.3.4 Detailed design/operation of TrakPak subsystem 4
Microcontroller

Datasheet:http://ww1.microchip.com/downloads/en/DeviceDoc/61156H.pdf

e Purpose
o To coordinate all power and communication between the other TrakPak
subsystems
e Requirements
o PIC Microcontroller
m Choose from PIC family because of familiarity with
components/programming
m All required passive components (Vcap, Decoupling Capacitors,
etc.)
m Programming Requirements
e lLanguage
o C
e Environment
o MPLAB IDE
e Hardware
o PICKit 3
o Pins on board for PICKit 3
o General Requirements

http://ww1.microchip.com/downloads/en/DeviceDoc/61156H.pdf

m Must be able to communicate with all auxiliary hardware, including
but not limited to:
e GPS chip
e Power Hardware
e WiFi chip
e RFID Scanner

m Must have at least 4 available interfaces for proper serial

communication with peripherals
e FEach auxiliary hardware piece must have an available
communication protocol (UART, SPI, 12C, etc.)

m Must have at least 3 I/O pins for controlling power

e Inputs:

o Vdd from Power Circuitry

o RFID Scan Data

m UART2

o GPS Data

m UART3

o WiFi Acknowledgement Data

m UART4

e Outputs:

o Debugging Communication

m UARTI1

o GPS Commands

m UART3

o WiFi Send Data

m UART4

o MOSFET switch control signals

m 3 digital I/O pins (E2, E3, E4)

e \Why this part was chosen:

o We first wanted to use a microcontroller from the PIC family because we
were familiar with PICs from the first Senior Design class that we took. We
knew that there were PICs that could satisfy our other requirements, and it
would have difficult to learn how to work with a whole different
microcontroller. We chose the PIC32MX695F512L for two reason.

m It satisfied all of our other requirements. It had enough UART
modules for our needs, it had other available digital outpins, and it
would not consume too much power.

m We were already familiar with this exact microcontroller from the
first Senior Design class. We figured that, since there were not

drastically simpler options for us, we might as well use the exact
microcontroller that we had learned how to use.
e Communication protocol/programming:

o In order to program the microcontroller, we used the MPLAB IDE
environment and wrote our programs in C. We used a PICKit 3 to program
the device. Thus, our boards had the standard 6 pin connection that is
required to use the PICKit3. This is a standard way to program the PIC32,
and we had learned this method in the first half of the Senior Design class.

Schematic of Microcontroller Module:

e The schematic shows the major components of our microcontroller module. In
the top left, we have the microcontroller itself. All power pins are properly tied to
Vdd or GND appropriately, and Vcap is tied to a 1206 10 uF capacitor. We
designed the microcontroller to operate off its secondary oscillator pins using a
crystal in order to save power. In our actual implementation, we did not end up
actually installing the crystal because power consumption was not an issue for
our prototype. Instead, we used the internal RC oscillator as our clock source.
We can also see that certain microcontroller pins are labelled. In the top left, we
have E2, E3, and E4. These pins are the digital output pins that control power to
the RFID, GPS, and WiFi modules respectively by controlling FET switches.
Those switches are directly discussed in Section 3.3.6. Spread around the
microcontroller, we can see that UARTSs 1 through 4 are labelled because these

are the main communication pins for the project. UART1 goes to debugging pins,
UART2 to the RFID, UARTS3 to the GPS, and UART 4 to the WiFi module.

e |n the top right, we have the programming pins. These pins include a Vdd and
GND, a Reset pin tied appropriately to a push button, and two data pins for
sending the program to the microcontroller. At the bottom, we have our five
decoupling capacitors and ground. These components will be directly discussed
in Section 3.3.6.

e How this subsystem was tested:

o This subsystem was initially tested using the Dev board from Senior
Design. Since the microcontroller was exactly the same, we could work on
our programming for our project and be confident that the program would
transfer over to our own custom designed PCB fairly well.

o When we got to the point where we put our own PCB together, the first
thing we did was to check and double-check all of the PICs pins,
especially because the pins on the package we used (64 PIN QFN) are
very small. We checked that power and ground were properly connected
in all the right places, and then checked that our communication pins were
all properly hooked up.

o Once we were sure that all the pins were properly connected, the
microcontroller was tested by incrementally making additions/changes to
its program and seeing how it responded. This process was relatively
quick because once we were saw the behavior that we expected, we were
sure that the module was at least installed correctly. From there, we just
had to change our code until the project worked as we wanted it too.

3.3.5 Detailed design/operation of TrakPak subsystem 5: Power

e Purpose:
o To deliver proper power to all elements of the board
o To allow a way to charge power
e Requirements:
o General Requirements
m Input: Must be rechargeable via USB connection or connection to
wall
m Output: Must be able to connect to our microcontroller via a
microUSB connection
m Weight Requirement

e As light as possible considering that the user will have to
carry it around
e Maximum: 5 Ibs
m Size Requirement
e Shape of battery must not be bulky such that integration into
the backpack is difficult and/or the backpack is not as usable
m Total Maximum Power Draw: ~500 mA
e The above power estimate has been made by choosing a
likely candidate for each component and then determining its
maximum power draw. This should give us a worst-case
scenario power estimate.
o Microcontroller
m PIC Datasheet
m Maximum Input Current = 300 mA
o GPS chip
m Gtop GPS
m Tracking Current = 20 mA
m 30 uA (standby current) at 3.3V = 54 uW
o LED Hardware
m Average Diode Forward Current = 150 mA
m Depends on current limiting resistor choice
o WiFi chip
m ESP8266
m 15 mA typical sleep value, 170 mA TX max, 50
mA RX max
o RFID Scanner
m |D-12LA Datasheet
m 35 mA maximum
m Required Runtime: 12 hours
m Required Battery Estimate: 7200 mA

e |nputs:
o Battery source
m We chose a 5000 mAh LiPo battery with a JST connector
o USB port for recharging the battery
e Outputs:
o 3.3V power to all of our components
o Ability to source up to ~600 mA instantaneously at any given time

e Why this part was chosen:

https://sakailogin.nd.edu/access/content/group/2d46bfa1-d0f2-4e96-bd9a-19addd93f074/PIC32%20Spec%20and%20Reference/pic32mx795.pdf
https://www.arduino.cc/documents/datasheets/E000026_gpsShieldv1_PA6B-Datasheet-A07.pdf
https://learn.sparkfun.com/tutorials/diodes
https://www.adafruit.com/images/product-files/2471/0A-ESP8266__Datasheet__EN_v4.3.pdf
http://cdn.sparkfun.com/datasheets/Sensors/ID/ID-2LA,%20ID-12LA,%20ID-20LA2013-4-10.pdf

o As far as components go, we had to choose three major parts: a battery, a
charging IC, and a DC-DC converter of some kind. Below are those
choices and the reasons for them.

m Battery - 5000 mAh LiPo
e Our battery estimates were based on a worst-case scenario
of everything being on all the time, drawing maximum power,
for 12 straight hours. Since we knew that we would program
our components to be smarter than that and turn on only as
needed, we knew we could undershoot our worst-case
estimate. On the other side, we knew that this battery would
be going in a backpack, so while we wanted to keep the
weight of the battery down, we knew that it also did not have
to be the smallest battery out there since the weight would
be negligible compared to that of the backpack and its
belongings.
m Recharging - MCP73831
e This IC has the ability to regulate the charging of a LiPo. We
were exposed to it because we ordered the SparkFun LiPo
Charger Booster as part of our initial testing to be able to
charge the battery. Since that chip worked well, we borrowed
from their design for our own board, and that included using
the same charging chip.
m DC-DC boost converter - TPS61201
e This IC takes input power over anywhere between 2.4 to 5V
and delivered output power of 3.3 V. A similar chip
(TPS61200) was used on the SparkFun LiPo Charger
Booster to regulate the LiPo’s output power, so we chose a
closely related chip (TPS61201) that delivers a fixed output
voltage of 3.3 V. Additionally, this chip has upwards of 90%
efficiency for output currents of up to 300 mA. Since we
knew that we would be turn modules on and off intelligently,
we felt that this current and efficiency mark would be
sufficient for our project.

e Communication protocol/programming:

o None of these components require programming. We did have to use the
datasheets to determine the appropriate resistors, capacitors, inductors,
and board layout schemes for each of these parts. Those choices can be
seen on our schematic and board files.

http://www.alibaba.com/product-detail/high-quality-factory-price-5000mah-li_60208916077.html
http://www.microchip.com/wwwproducts/en/en024903
https://www.sparkfun.com/products/11231?gclid=CjwKEAjw9Zu5BRCS_OuVibujhQ0SJAD7t4KrNeu5XSMF4gZM692GNZ480uCLPIPFQujFw-G3iGSF9BoCu9bw_wcB
https://www.sparkfun.com/products/11231?gclid=CjwKEAjw9Zu5BRCS_OuVibujhQ0SJAD7t4KrNeu5XSMF4gZM692GNZ480uCLPIPFQujFw-G3iGSF9BoCu9bw_wcB
http://www.ti.com/product/TPS61201

Schematic of Power Module:

%

1
| ey [
3 VIN VBAT g WHAT | =
PROG > +
L crar ves ﬁ — ol
—= MCP73831 1 7UF
4. 7uF p
“¢“§ Gfip
D
Gfip
—
B
':.
=
=
=
4.7uH
2
VEAT 5 2 3
VIN L
= g EN VOUT f y— 00
~ 7 Ps WALIX lﬂ—_‘l___ E
I wo FB
. GND PGND qd “T6: 1uf
i‘ PAD PAD ié TDuE
1L | pap PAD
= L | paD
(V5] b
™~ TPS61200 2
1 r . D
ko Ghip

e The top schematic shows the MCP73831 part of the design. We can see that Vin
is connected to the Vdd line of a microUSB plug, which is properly grounded.
This connection allows us to charge the battery via that microUSB plug. The
STAT pin is connected to a 2 pin conenctor that we can opt to connect to an LED
and resistor in order to alert the user whether the battery is charging or not. If the
LED lights up, the battery is charging; if the LED is off, the battery is fully
charged. VBAT is tied to the positive terminal of the JST connector that connects
the battery to the board. The PROG pin is connected to a 2k ohm resistor to
ensure that the chip charges the battery at its maximum rate of 500 mA. The
VSS pin is tied to ground.

e The middle schematic shows the TPS61201 portion of the power circuitry. VIN is
tied to VBAT, which comes from the positive end of the battery connection. VIN is
also connected to the L pin via a 4.7 uH inductor, which was specified by the
datasheet for proper operation. The EN and PS pins are pulled high to ensure
that the chip is always functioning in normal mode. The UVLO pin is connected to
a voltage divider between a 2.2 M ohm resistor and a 250k ohm resistor. This
divider sets the cutoff input voltage below which the chip will shut itself down to
prevent internal damage. Our resistor choices set the cutoff voltage value at
about 2.5V, according to the datasheet. The GND pins, PGND pin, and PAD
pins are all tied to ground. The FB pin is tied to another voltage divider.
However, this was an error in design because we designed for the TP61200 chip,
which requires a voltage divider on the FB pin because its output voltage can be
adjusted. We ended up using the TPS61201 chip, which has a fixed output

http://www.microchip.com/wwwproducts/en/en024903
http://www.ti.com/product/TPS61201

voltage of 3.3 V and requires that FB be tied directly to VOUT. Therefore, on our
board, we replaced the 1M ohm resistor with a 0 ohm resistor, and left the 180k
ohm resistor completely uninstalled. This change ensured proper operation on
our actual board with the TPS61201 chip. VAUX is connected to a 0.1 uF
capacitor, which goes to ground. Finally, Vout has a decoupling 10 uF cap on it,
and becomes the main Vdd for the entire board.

e The bottom schematic simply shows the power LED that we designed on the
board so that we would know that the board was receiving power. The solder
jumper was added so that we could cut off power to this LED if we ever wanted
to. Otherwise, it is a basic LED circuit with a current limiting resistor.

e How this subsystem was tested:

o Before making our board at all, we had confidence in the parts we had
chosen because we used the SparkFun board to charge and discharge
the LiPo battery successfully. We knew that we would be making some
changes, such as using the TPS61201 instead of the TPS61200, but we
were confident in the general choices of our design.

o When we got our own board, the first thing that we did was checked to
ensure that Vdd and GND were not shorted out anywhere on the board.
After confirming that, we installed our components and then again
checked to ensure that we hadn’t shorted Vdd and GND. Once we were
fairly certain that all of our connections were properly made, we connected
the LiPo battery. We saw that the power LED lit up as it should. We used
a multimeter to confirm that the output of the DC-DC converter was 3.3 V.
We then checked to make sure that all parts of the board that should be
receiving power were, in fact, receiving it. We also checked various parts
of the board that we knew should not be receiving power to make sure
that they were not powered. Finally, we plugged in a USB for charging and
checked the status LED pins to ensure that the LiPo was being charged.

3.3.6 Detailed design/operation of TrakPak subsystem 6: Misc.

e Purpose:

o The purpose of this section is to account for all the smaller elements of our
design that were necessary for proper operation, but did not fit nicely into
any of the other subsystems.

o Decoupling Capacitors

m To limit/eliminate AC noise
o PMOS Switches
m To allow the microcontroller to control power to peripherals
o PCB
m To house all the designed electrical components of our project
o Debugging pins
m For debugging our PIC program using printf() statements
o 10 Pin Block
m For debugging our PIC program using a Logic Analyzer
e Requirements:
o Decoupling Capacitors
m Five .1 uF capacitors between Vdd and GN
m Placed near the Microcontroller power pins
PMOS Switches
m Three switching circuits to control RFID, GPS and WiFi power
m Must be controllable via 3.3 V logic
m Must be able to pass all required current (~170 mA max)
Main PCB
m Must be made small enough to fit conveniently into the backpack
m Must be designed correctly/intelligently to make the whole project
work
Debugging pins
m Must provide a connection to allow us to connect a computer’s
serial com port to one of our UART modules (UART1)
10 Pin Block
m Must provide a pin for each of our employed UART RX and TX pins
m Must provide a pin for Vdd and GND

O

O

O

o

e Inputs:

o Decoupling Capacitors
m Vdd and GND

o PMOS Switches
m Microcontroller pin E2 to the gate of the RFID power switch
m Microcontroller pin E3 to the gate of the GPS power switch
m Microcontroller pin E4 to the gate of the WiFi power switch
m Vdd

o Main PCB
m Battery connector
m PICKit3 connector (for programming Microcontroller)
m 3 pin connector (for programming WiFi chip)

o Debugging pins
m Communication from microcontroller via UART1
o 10 Pin Block
m Communication from microcontroller via UART modules
Outputs:
o Decoupling Capacitors
m NA
PMOS Switches
m Switched 3.3 V power
Main PCB
m Power LED and Charging Status LEDs
m Connections to GPS and RFID boards
Debugging pins
m Output UART1 communication to computer serial com
10 Pin Block
m Output UART communication signals to a Logic Analyzer
Why this part was chosen:
o Decoupling Capacitors
m It was recommended by the datasheet and confirmed by our
experience with designed a PCB around a microcontroller that we
should use decoupling capacitors.
o PMOS Switches
m The PMOS switching circuit is extremely simple in that it only
require a PMOS and a current limiting resistor. Thus, it seemed like
the easiest way to control power flow on the board.
o Main PCB
m It was a requirement of the Senior Design project to incorporate a
custom designed PCB. Additionally, it was the only sensible way to
connect all of our required components onto one package.
o Debugging pins
m We needed to have a way of getting feedback from our
microcontroller in order to debug our program. The ability to print
messages to the computer’s serial ports at arbitrary points in our
program was an invaluable debugging tool.
o 10 Pin Block
m As another debugging tool, we needed to be able to monitor our
UART communications so that we could debug our programs.
Therefore, we designed our board to output those signals to pins

o

O

o

O

that could be measured by a Logic Analyzer, which we had
available to us as a debugging tool.
e Communication protocol/programming:
o Decoupling Capacitors
m N/A
PMOS Switches
m Controlled by the microcontroller's programming via output pins
Main PCB
m N/A
Debugging pins
m Laid out UART1 signals
10 Pin Block
m Laid out UART1, UART2, UART3, UART4 signals

O

o

O

o

Schematic of Misc. Modules:

L2
L2

s 0

LA [

ot [DG DR [

CTetere] &

(:}:
O

e The top schematic shows a few of these miscellaneous components. On the top,

we see the decoupling capacitors wired between Vdd and GND. Below them, we
see two out of the three PMOS switches. The operation for the switches was the
same in all three cases. Vdd was wired to the source, and then a current limiting
resistors was placed between Vdd and the gate. The gate was also wired to the
appropriate output pin on the microcontroller (you can see E3 labelled on the
GPS switch). When E3 was set high, the voltage difference between the gate
and source would go to zero, and the switch would act as an open, cutting off
power. When E3 was set low, the voltage difference between the source and
gate would be 3.3 V, the PMOS would become active, and power would flow to
the drain and into the proper module. All three of the PMOS switches operated
on this design.

The middle schematic shows the 10 pin block. Vdd, GND, and all the proper
UARTSs are tied to a pin such that they can be monitored by a Logic Analyzer.
The bottom schematic simply shows the debugging pins, which are connected to
GND and the two UART1 signals, RX and TX.

How this subsystem was tested.

o The only components in this section that were specifically “tested” were
the PMOS switches. We used a multimeter to verify that the switches were
connected to the proper pins and working as we had designed them. This
was part of our initial checking to ensure that power was getting
everywhere that it needed to go. All of the other components were actually
the ones that we used to test the proper operation and programming of
our main components. Thus, aside of initially checking that the proper
connections were made when we assembled our board, we did not have
to test these auxiliary components of our design.

3.4 Detailed operation of Subsystem 2: Mobile App
3.4.1 Subsystem Requirements

The Mobile Application is the portal by which the TrakPak communicates all of its
information to the user. Thus, there are a set of major system requirements detailing
how it should ideally function. They are as follows:

m Process and relay information from backpack about items, location
to user
Easy to use interface
Allow user to customize labels for RFID tag numbers
Show last known location on a readable map

3.4.2 Mobile App Flowchart

P
New) Advanced
Connection
\
I
Home
—| History Rename

3.4.3 Mobile App Users Manual

The TrakPak Mobile App has several different screens, each containing an
additional way for the user to interact with the data sent by the TrakPak. The following

Users Manual is a detailed description of each page and how to best interact with the
Mobile App.

ﬁ TrakPack

Kimbo
Unknown connection status to senior- >
mqtt.esc.nd.edu

This is the Home screen of the Mobile App. This is the screen you see
immediately after starting the App. If you are a first time user, the white section will be
blank because you haven’t created a client yet. If you are a returning user, your name
will be shown as above as well as your connection status to whichever MQTT Server
you are connecting to. There are two main ways to interface with this screen. The first
is to click on the small “plus sign” in the top right corner. This will take you to the New
Connection screen, the screen where a user can create a client. The second interface
is to click on the connection name on the list. This will connect you to the server and
will take you to the History screen.

‘p'\ New Connection CONNECT ADVANCED

Please Enter Your Name

This is the New Connection screen. The user needs to only enter his name and
press the Connect menu button to establish a new connection. This will return the user
to the Home screen. The Advanced menu button will take the user to the Advanced
screen.

Jl 88%l 10:16 AM

‘p‘) Advanced SAVE LAST WILL

User Name |user

Password password

SSL L] filex/ select
Time Out 60

Keep Alive 200

Timaniit

This is the Advanced screen and should only be used in special cases. This is to
customize the Mqtt server interactions. For the scope of this project, it is unnecessary
to use this screen. However, future improvements on this project might require such
specifications in order to set users apart and keep their data private.

‘@“ TrakPack CONNECT

HISTORY OBJECT NAMIN(

Client: Kimbo created
29/04/16 at 10:15:51

This is the start state of the History screen. This is the screen where every
scanned item will be shown with a time stamp. It is also the screen that will notify you
when you are connected to, subscribed to, or disconnected from the MQTT Server. The
History, Map, and Object Naming tabs represent different screens for processing or
displaying information. You can navigate between them by either clicking on the tab
directly, or by swiping left or right on a given page. The “Connect” button in the top right
corner is consistent for all three tabs, and is a crucial part of the app. The “Connect”
button both connects you to the MQTT Server and subscribes you to the TrakPak topic.
Once clicked, the History screen will look like the following:

‘D‘ TrakPack DISCONNECT

HISTORY OBJECT NAMIN(

Client: Kimbo created
29/04/16 at 10:15:51

Client Connected
29/04/16 at 10:16:40

Client Connected
29/04/16 at 10:16:40

Subscribed to trakPak
29/04/16 at 10:16:40

Subscribed to trakPak
29/04/16 at 10:16:40

Subscribed to trakPak

This screen is the History screen when the Mobile App is connected to the MQTT
Server. Three things are instantly noticeable: the new button, the pop-up message and
the history log. Firstly, once the App is connected to the server, the “Connect” button
changes to a “Disconnect” button. As the name implies, this button now actively
removes you from the MQTT Server. This is especially useful when you are at home or
do not have your backpack and you want to save power on your phone. The second
noticeable change is the history log. Obviously, there have been a few postings
informing you what has happened since you hit the “Connect” button. These are the
common postings when a connection is made. The double message is a bug in the
system that was never flushed out of the system, and so was never fixed. The third
noticeable change is the temporary message on the bottom, showing the “Subscribed to
trakPak”. This is simply an update to the user that can be seen on any screen as soon
as the App is connected to the MQTT Server.

‘D‘ TrakPack DISCONNECT

HISTORY OBJECT NAMIN(

Client: Kimbo created
29/04/16 at 10:15:51

Client Connected
29/04/16 at 10:16:40

Client Connected
29/04/16 at 10:16:40

Subscribed to trakPak
29/04/16 at 10:16:40

Subscribed to trakPak
29/04/16 at 10:16:40

Connection Lost
29/04/16 at 10:17:07

Connection Lost
29/04/16 at 10:17:07

Client Connected
29/04/16 at 10:17:27

Client Connected
29/04/16 at 10:17:27

Client Connected
29/04/16 at 10:17:27

Occasionally, the Mobile App will lose connection with the MQTT Server. When
this happens, the Connection Lost message will be displayed on the screen. To
re-connect, simply click the “Connect” button, as the above user did, to re-connect to
the Server. Besides the connection notifications, any scanned object will be displayed
on this screen along with a timestamp. In clicking on that notification, the user will be
placing a marker on the Map screen. Once they navigate to the Map screen, the user
will be able to see where his item was last scanned.

‘D‘w TrakPack DISCONNECT

HISTORY OBJECT NAMING
*("0%9 2
(=
& =
(2}
Alliance for o
:atholic Education
Grotto of Our
Lady of Lourdes
1h
Admissions
(Main Building)

Basilica of the ™
Sacred Heart

Lafortune
Student Center

=

Google

This is the Map screen. The Map screen defaults to the above location when no
marker has been set yet. Once the user has selected a scanned object on the History,
the map will look similarly to the image below. The map is fully scrollable and features
all the features of a typical Google Map interface.

ﬁ) TrakPack DISCONNECT

HISTORY OBJECT NAMING

Un
Damr

Stinson@ick Hall @
()

Av

N Notre Dame

Google

Holy Cross Dr

This is what the Map screen looks like when it has a marker placed on it. If the

marker is clicked, then the item name pops up. In the bottom right corner of the display

there is an icon that would allow a user to take the gps location of the item and access
Google Maps in order to get directions to the item.

U TrakPack RENAME DISCONNECT

HISTORY OBJECT NAMING

ID Number

Object Name

This is the Object Naming screen. Once an object has been scanned for the first
time, it shows as a number instead of an item name. If that number is put in the ID
Number line, then the user has to merely type a relevant item name on the Object
Name line and press the Rename button on the menu bar. If that item is then scanned
again, then it will appear as whatever the user named it. The screen below shows the
toast when an item is successfully renamed.

‘D TrakPack RENAME DISCONNECT

HISTORY OBJECT NAMING

Test ID

Test Dummy

You renamed your item

3.4.4 Mobile App Testing

The Mobile App was tested mostly by sending a message to the topic the App
was subscribed to via a computer program and following that input through every
screen of the App. This allowed first the testing of the Mqtt functionality, and then the
testing of functionality for the rest of the App. The majority of the Mqtt functionality is
easily tested for, on account of that being the only real input to the App. After that input
is established, there was a lot of testing done to ensure that the three fragments
(History, Map, and Object Naming) communicated together properly. This testing was
done by focussing on one process at a time and stepping through the code to ensure
robust coding practices. Then we attempted to test the code with every possible
instance that it would see in order to check for quality and robustness.

3.5 Interfaces

All interfaces between the modules have been sufficiently discussed in Sections
2 and 3 above.

4 System Integration Testing

4.1 Describe how the integrated set of subsystems was tested.

The first task for testing our integrated system was confirming that our board
design and assembly process had produced a board that had all the proper components
connected in all the proper places. In some sense, this was Step 0. Before we could
even worry about making our project functional, we had to confirm that the hardware
was properly connected. As mentioned above in the subsystem testing procedure, we
checked to make sure that Vdd and GND were not shorted. We checked all the pins of
our small packaged parts to confirm that there were no shorts or missing connections,
especially on the power pins. This process was a bit tedious, but we caught a few
mistakes while they were still small and fixed them before they became large problems.

Once the system was fully “integrated” (all subsystems were properly connected
and talking to each other, everything was properly powered, etc.), the testing procedure
took place in two major steps.

Step 1 - Indoor Testing (Code Debugging)

When we got the point where we had assembled our own board and confirmed
that everything was connected as it should be, our base code was probably about 80%
functional in terms of satisfying our requirements. Thus, the first task was to finish
writing our main program for the PIC. This process was done by writing a program,
running it on our board, and then monitoring the activity via the UART1 serial port, Logic
Analyzer and multimeter use. This process was a bit tedious, but after many iterations
we finally got the code to a functional state.

From there, we spent some time indoors with our system trying to break it. That
is, we basically tried to think of ways that a user would use the TrakPak that our current
code could not properly account for or handle. Based on those actions, we had to
modify our code and then test that modified code. This process took a little while as
well, but it was important because it allowed us to produce a much more robust system
before ever even taking it outside. It was during this indoor testing that we added the
feature of saving scan information if there was no WiFi in range, and having the GPS
save its last known location in the event that we cannot get a GPS fix. During this time,

we debugged the phone app in much the same way. Without going outside at all, we
were able to test the functionality in the app.

Step 2 - Outdoor Testing (Code Refining)

After fully testing the system as much as we could inside, we then started to run
outdoor tests. These tests were not as in depth as the previous testing because we only
wanted to ensure that we had a functional prototype, so we only needed to confirm that
our TrakPak was functional per our requirements. However, this testing was still vital.
We were able to catch a few more bugs and update the code appropriately to fix them.
We also were able to learn that our packaging and orientation did not seem to affect the
WiFi and GPS modules’ abilities to get a good signal. Nevertheless, we would want to
take care to make sure that we do not do anything to interfere with or block these
signals. The final testing that took place was a walk around campus with the backpack
on and the phone app in hand. We walked from Fisher Hall to Debartolo, and then from
Debartolo down to Eddy Street. From there, we returned to Stinson-Remick. All the
while, we scanned items in and out and checked to make sure that we were seeing the
proper updates on the app as appropriate. With this test being successful, we ended our
testing of the prototype.

4.2 Show how the testing demonstrates that the overall system meets the
design requirements

To show that our testing satisfied our requirements, we have repeated our
requirements below, and then with each requirement, we commented in bold how our
testing showed that we satisfied the requirement.

Embedded System Requirements

e PIC Microcontroller
o All required passive components (Vcap, Decoupling Capacitors, etc.)
m All required components were designed and assembled on the
board
o Programming Requirements
m Language
e C
m Environment

e MPLAB IDE
m Hardware
e PICKit3
e Pins on board for PICKit 3
m All coding and programming was done in accordance with
these requirements.
e General Requirements
o Must be able to communicate with all auxiliary hardware, including but not
limited to:
m GPS chip
e UART3 communication was verified and successful
e Successfully commanded the GPS module
e Successfully read back GPS data
m Power Hardware
e All PMOS switches worked as designed. Power was
controlled to the other modules
e The microcontroller itself was successfully powered
m WiFi chip
e UART4 communication was verified and successful
e Data was successfully sent to the WiFi module
e Acknowledgements were received from WiFi module
m RFID Scanner
e UART2 communication was verified and successful
e RFID tag numbers were read back into microcontroller
o Must have at least 4 available interfaces for proper serial communication
with peripherals
m Each auxiliary hardware piece must have an available
communication protocol (UART, SPI, 12C, etc.)
e 4 UART modules worked successfully
o Must have at least 3 I/O pins for controlling power
m Digital output pins E2, E3, and E4 worked

2.2 Power Requirements

e General Requirements
o Input: Must be rechargeable via USB connection or connection to wall
m Ability to charge battery was verified by testing

o Output: Must be able to connect to our microcontroller via a microUSB
connection
m We modified this requirement thanks to an external USB-UART
device provided by the professor. Successully communicated
with UART1 for debugging, confirmed by testing.
o Weight Requirement
m As light as possible considering that the user will have to carry it
around
m Maximum: 5 Ibs
e Easily came in under 2 Ibs with all of our circuitry, not
juut the battery
o Size Requirement
m Shape of battery must not be bulky such that integration into the
backpack is difficult and/or the backpack is not as usable
e Battery was flat and easily mounted in the same box as
our PCB
o Total Maximum Power Draw: ~500 mA
m The above power estimate has been made by choosing a likely
candidate for each component and then determining its maximum
power draw. This should give us a worst-case scenario power
estimate.
e Microcontroller
o PIC Datasheet
o Maximum Input Current = 300 mA
GPS chip
o Gtop GPS
o 30 uA (standby current) at 3.3V = 54 uW
LED Hardware
o Average Diode Forward Current = 150 mA
o Depends on current limiting resistor choice
WiFi chip
o ESP8266
o 15 mA typical sleep value, 170 mA TX max, 50 mA RX
max
RFID Scanner
o |D-12LA Datasheet
o 35 mA maximum
o Required Runtime: 12 hours
o Required Battery Estimate: 7200 mAh

https://sakailogin.nd.edu/access/content/group/2d46bfa1-d0f2-4e96-bd9a-19addd93f074/PIC32%20Spec%20and%20Reference/pic32mx795.pdf
https://www.arduino.cc/documents/datasheets/E000026_gpsShieldv1_PA6B-Datasheet-A07.pdf
https://learn.sparkfun.com/tutorials/diodes
https://www.adafruit.com/images/product-files/2471/0A-ESP8266__Datasheet__EN_v4.3.pdf
http://cdn.sparkfun.com/datasheets/Sensors/ID/ID-2LA,%20ID-12LA,%20ID-20LA2013-4-10.pdf

m This estimate was the absolute maximum for the worst-case,
most poorly engineered design. Thus, we selected a 5000 mAh
battery, which still was far above our needs.

m The power solution was able to source enough current at all
times based on our testing, and all devices received proper
power and functioned as designed.

2.3 Wireless Interface Requirements

e General Requirements
o Must be able to communicate with WiFi chip connected to the central PIC
board and RFID scanning device
m UART4 provided the proper communication channel between
the WiFi chip and the PIC
m Received acknowledgement from the WiFi
Successfully sent data to the WiFi chip
Must be able to connect to any unsecured, public networks
e We did not implement this requirement, but it turned out
that for our prototype, we only had to be able to connect
to ND-guest to achieve the functionality that we wanted,
which was a WiFi connection throughout the majority of
Notre Dame’s campus
o Phone system and WiFi chip both must be able to communicate within the
domain of the created mobile app
m Successfully sent information from the WiFi chip to the phone
app via the class Amazon MQTT server
m Phone App successfully could pull, parse, and present data
from the MQTT server

2.4 User Interface Requirements

e General Requirements
o Must be able to alert the user that each item has been successfully or
unsuccessfully scanned
m This will be done with a beep on the RFID board
m Successfully implemented a non-intrusive beeping sound
using the Sparkfun RFID chip

o Must have a functioning mobile app to provide scanned information for
each item (Object, GPS & Time Stamp)

m The phone app provided a history of the object that was
scanned and when it was scanned. If the user tapped that
object, they could navigate to a map that showed a pin with
that object’s location.

2.5 Installation/Use Requirements

e General Requirements
o The TrakPak will not be user-installed; we will install and assemble all
components.

m This did not change; the TrakPak is still installed on our end.

o The passive RFID tags will be installed by the user onto belongings of
their choice via stickers.

m We found cheap, non-obtrusive RFID stickers that stuck onto
most everyday objects that we tested.

o The following components should be able to be installed directly on or
connect directly to a PCB of dimensions ~4 in x ~3 in.

m Microcontroller (and all its required passive components)

m Clock Circuitry

m GPS Chip

m WiFi Chip

m The microcontroller and WiFi chip were successfully installed
on a PCB of dimensions 3” x 3.5”, the same size as our
battery. The GPS chip was installed on its own PCB board of
about 1.75” x 2” so that it could be mounted closer to the top
of the backpack. We did not require clock circuitry by the end
of the project, because we instead used the GPS data for our
time.

o The RFID scanner must be installed in an easy-to-reach area of the
interior of the backpack to protect it from weather.

m The RFID scanner was installed on the inside of the backpack,
close to the top, such that it was both easy to access and
protected from the elements.

o The battery and microchip must be installed in a convenient location within
the backpack to prevent damage to the battery and preserve interior
space.

m The battery and main PCB board were housed in a Polycase
plastic case, which protected them from damage and
unnecessary motion. This case was mounted in one of the top
pockets of the backpack for our prototype.

m The battery’s power cord must have a way to be secured when not
in use.

e The USB cord could be wrapped up into this same top
pocket if the TrakPak was not being charged.
o All wiring must be secured and well hidden to prevent damage from wear
and tear as well as preserve a sleek look.

m All wiring and boards were secured in Polycases or tucked
away in a pocket, such that the user would not see any
electronics aside from the RFID scanner.

2.6 Safety Requirements

e Must ensure that the battery can account for overcharging without overheating
too much.

o The battery charging circuit had built-in charge limiting to avoid
over-charging the battery.

e Ensure that the battery charging process is well protected to avoid delivering
shocks to the user.

o Only possible dangerously high voltage is from charging the backpack off
the wall.

o All electronics were tucked away from the user and away from the
elements, such that normal use would not present the user with any
risk of shock.

e As a backpack, do not overburden yourself to avoid damage to spinal system.

o Our backpack is lightweight, and our electronic additions are not

perceptible as additional weight.

2.7 Mechanical Requirements

Our project is designed to improve a user’s experience with a backpack. As
such, there are several main mechanical requirements that cannot be exceeded or the
TrakPak would cease to be an advantageous product. Primarily, the TrakPak must be
able to be fully functional inside of a backpack without compromising the carrying

capabilities of a comparatively sized backpack. In order to meet this expectation, we
will have to use hardware that is small, lightweight, and durable.

Our backpack was of typical size, lightweight even with all of our electronics
installed, and the electronics were durable enough, considering that it was a
prototype.

The first consideration is size. Our hardware will need to be small enough to be
incorporated into an existing backpack without taking up too much space. The TrakPak
would be useless if there was no room to put anything into it. Therefore, we will need to
buy parts that will minimize space while keeping effectiveness high. The major
challenge for this consideration will be the power supply, since most power supplies are
relatively large compared to the average microcontroller. The specific size requirement
will be determined by the backpack that we choose to augment, however as a general
rule we will need to buy the smallest parts possible that fit our requirements.

We passed our size requirement, in that our battery and board (the largest
components) fit snugly into a small plastic case and easily tucked out of sight
within the backpack.

The second consideration is weight. Backpacks quickly become uncomfortable
when they are filled with too much weight. While we may not be able to decrease how
much a user tends to put inside the TrakPak, we can control how much the base weight
is for an empty TrakPak. In order to keep this base TrakPak weight at a reasonable
level, we will need to find parts that have minimal weight. Most of our components, like
the microcontroller or the LEDs, will be of negligible weight. However, the power supply
may be another challenge as batteries with the power capacity that we will need tend to
be comparatively heavy. The specific base weight requirement for the TrakPak will be
highly dependent on the weight of the backpack we choose to augment, however our
other components should be under five pounds altogether.

All electronic components and cases combined barely amounted to 2.5 pounds,
so we passed our weight requirement.

The third consideration is durability. The TrakPak would be a highly ineffective
product if it couldn’t stand up to the rigors of daily life. Few backpack users treat their
backpacks with special care. They are often dropped on the ground, stepped on, or in
other ways misused. We cannot assume that the TrakPak will be treated any differently
than a regular backpack by a user, and so our components will need to be able to
survive these daily abuses. There are two ways we can meet the durability
requirements. The first is by purchasing already durable parts. Some parts, like the
microcontroller and its immediate plugins will be inherently fragile, but other parts, like

the power supply or the RFID scanner, may have variable durability. The second way
to meet our durability requirement is by packaging our parts. This packaging will need
to meet the size and weight considerations, as well as sufficiently protect our hardware
from the daily wear and tear of backpack usage.

Our prototype was durable enough that the backpack functioned properly as we
tested how a typical student would use it. While it probably would not stand up to
the rigors of a whole semester of use, it was durable enough to function as a
working prototype.

In conclusion, the TrakPak is dependent on three mechanical requirements.
Firstly, the hardware must be small enough to not hinder the TrakPak’s carrying
capacity. Secondly, the hardware must be light enough to not inhibit the user's comfort.
Thirdly, the hardware must be protected so that the TrakPak’s technological
components remain functional. These three mechanical requirements will ensure the
longevity of the TrakPak functionality and the user’s satisfaction with the physical
construction of the TrakPak.

5 Users Manual/Installation manual

5.1 How to install your product

In order to install this product, the user must buy the TrakPak, and download the

arduino firmware that is included after the product is purchased. All the user must do is
open the file up, and specify what WiFi networks will be primarily used by the user. This
information should be included in the NetID and Password fields. By inputting multiple
WiFi specifications the user will be able to utilize the TrakPak on more networks. After
the WiFi networks are set up, all one needs to do is click program, and put the TrakPak
back in it's packaging so that it can be installed in the backpack. The enclosed TrakPak
box should be placed inside the bag with the RFID scanner connected as well. The next
step to installation is to place the circular adhesive RFID tags on items that one wants to
track in the TrakPak. Once all these steps are completed one should download the
TrakPak mobile app to their smartphone so the installation can be fully complete.

5.2 How to setup your product

In order to set up the TrakPak once everything in the backpack is enclosed, the
user should place the RFID scanner in the interior of the backpack where the user is

able to easily and conveniently scan items in and out of the backpack. This spot will
differ for every user, so this is an important step to the setup.

It is also important to do some preliminary scans of the RFID tags in order to
label them in the app prior to everyday use. This is the place where you can scan a tag
and name it things such as calculator, notebook, or water bottle. Finally one must make
sure the battery is charged before using. It can be charged using a USB port, and it is
recommended that it is charged in the evening. Hopefully this is an effortless last step
before the user can go out and put the TrakPak to daily use.

5.3 How the user can tell if the product is working

Once the TrakPak is on, items have been tagged, WiFi networks have been
specified, and the mobile app has been downloaded, the user is able to let the TrakPak
do the heavy lifting. Of course it is important for the user to be able to tell if it working.
This is actually a very straightforward test. Simply take an item out of the backpack and
check the update on the mobile app to see if it gives the proper GPS and time location.
If it does you know the TrakPak is working and if not, you know you got one of the very
very few malfunctioning TrakPak’s.

Some user’s may be confused if they hear a beep when they scan, and other
times not a hear a beep. This is something the user should take note of. If they try to
scan an item and the RFID scanner does not beep, they must scan that item again. The
reason it did not scan is because the TrakPak is busy thinking and sending the
information of the previous scan. Once the previous scan is sent and the TrakPak is
ready for another input, the RFID scanner will be enabled once again so the user can
scan more items.

5.4 How the user can troubleshoot the product

If for some strange reason the user is experiencing difficulty in using the
TrakPak, or it malfunctions, there are a few ways the user can troubleshoot their
product before sending it into the experts. The most common issue we believe users will
face is the RFID scanner not turning on after a timeout. This may occur due to low
battery typically, or a strange state when the firmware gets stuck in a gps loop. In order
to fix this issue, the user should open up the TrakPak box, and click the reset button.
This should solve the problem and allow the user to go right back to where they left off.
It would also be a good idea to charge the battery if this occurs.

Other than this issue of the RFID scanner sometimes not turning on, the user
should not experience issues. If the user does end up experiencing other issues they
must either consult a TrakPak expert or have tremendous MPLAB programming skills to
try to debug the issues personally. The user should be able to just restart the app if it
ends up crashing for some reason.

6 To-Market Design Changes

The first generation TrakPak was a great prototype for sure, but had our team
had more time and budget we think the product could have been taken to the next level.
Highlighted below are a few key ways we think our product could have been improved,
and some design targets for the second generation TrakPak:

e Include an accelerometer on our design to be smarter about triggering when to
receive GPS data. This would essentially keep the GPS on until the
accelerometer sensed that the user was moving. Once the microcontroller is
notified by the accelerometer that the user is moving it will begin to request data
from the GPS. This was the TrakPak is only using the GPS when it needs to:
when the user is moving to a new place. This would improve battery life and
efficiency of our program for when this product is on the market.

e Although it is doable, a user isn’t going to want to scan in items every time they
put them in and out of a backpack. In order to improve this we are looking into
incorporating low energy bluetooth into our backpack instead of RFID Scanning.
This will allow users to tag their items with a bluetooth beacon (such as an
iBeacon) and then have a bluetooth reader in the bag so it can tell which
beacons are in the bag due to proximity instead of having to always scan. This
feature would be very nice, but would cause a price increase in the TrakPak
because the beacons are much more expensive than adhesive RFID tags.

e The TrakPak is a great backpack, but we would like “TrakPak” to be more
versatile than just one backpack. If we were able to get the guts of the TrakPak
packaged in a neat and tight portable package, we would be able to sell the
TrakPak as a device that anyone can put in any backpack, purse, etc. By doing
this the uses of our product would increase, and people could put it in whatever
backpack they want, making it more marketable. Another perk is people wouldn’t
have to buy new backpacks if they wanted the TrakPak.

e Though the WiFi form of the TrakPak is very practical to college campuses or
places where WiFi is heavily prevalent, it may not be the most practical where
that isn’t the case. To improve on this issue we would like to transition the
TrakPak from a WiFi device to a cellular device so that one can get all the perks
of the TrakPak anywhere they have cellular service. This may make the TrakPak
come with a small rate plan, but if we team up with cellular companies this could
simply be included on somebody’s phone plan. This would allow much more
versatility and expand where the TrakPak can be a valuable asset.

e A final improvement that is much needed before this product is taken to market is
the ability to turn the TrakPak on/off with a switch as well as a way to see how
much charge is left on the battery. This is an absolute must for the product
version because users need to know when they need to charge the TrakPak and
they need to be able to turn it off if they don’t want to use it for a period of time.
This would be a feature so the users can have more control of when they want to
use the TrakPak as well as giving them the ability to see when they need to
charge it up so it doesn’t die while in use.

7 Conclusions

This project introduced a wide scope of necessary applications that pulled
experience from many of our learning experiences as students of Notre Dame’s
electrical engineering program. While there weren’t any occasions for our specific
project to use knowledge gained from classes involving signals and systems, we still
utilized problem solving abilities gained from classes involving coding, embedded
systems and electronics. We had to step up our abilities in terms of software in order to
understand how mobile applications work, yet we got everything we planned to get done
completed and integrated into the final product.

As stated in the beginning of this paper, we are extremely pleased with how our
product has turned out and fully endorse its use as a functional prototype that has a
strong case in terms of its patentability. Our design is aesthetically pleasing and gets
the job done. The hardware is all fully functional and is able to scan in an RFID, give the
user an auditory cue for a successful scan, gather GPS data, and communicate all
information via WiFi to an MQTT server that can communicate with our Mobile
Application. While the GPS cannot give extremely accurate information while indoors, it
is fully capable of providing the user with good enough of a guess as to where an item
might be. The app is fully functional to the point where a person has to manually enter

the serial data unique to each RFID tag, and is able to keep a running history of each
item and the of the backpack itself. It is able to visualize the location of each item via
Google Maps. The weight of the design overall adds next to nothing in terms of any sort
of noticeable weight, depending on the size of the battery that a person chooses to
include. In all, we conclude that we have created a working prototype that can help
college students cut down on time looking for items that should always travel with them.
We are confident that this design has copious implications for further development and
can be applied to many different lifestyles, not just those that are found on university
campuses. We believe that the concept can be extended to a wide variety of activities
ranging from corporate work in the city to adventurous hikes in the mountains. If we
were to have more time to gain knowledge and work on further hardware development,
we could add this next level of functionality. While the project is far from fulfilling its
ultimate potential, we are on the right track, so to speak, and have many ideas that we
are confident would help a product like this thrive in the marketplace.

We fully support the use of the TrakPak, regardless of whether you decide that
the technology is to be used in a backpack or in another implementation. The aid in
memory is invaluable and far and wide can assist not only those who suffer from
occasional lapses in memory, but even more so those with diagnosed Parkinson’s and
Alzheimer’s disease. The technology itself can exist in any environment where tracking
items is necessary and forgetting items is possible. We believe that we have started the
TrakPak down its path as a simple but driving force for good.

8 Appendices

Complete hardware schematics

Complete Software listings

Relevant parts or component data sheets (do NOT include the data sheets for the
microcontroller or other huge files but give good links to where they may be found.)

8.1 Hardware Schematics

8.1.1 Main Board (Schematics and Board)

Schematics:

u::: = ; _L'" B 10t T8 e B e [0 TR,
— -+

4

4/27/2016 3:47 PM =083 C;\Users\bafloeder\Downloads\trakPakBoard.sch (Sheet: 1/1)

128

E

[L]
=T
i
TrakPak HMotherBoard H
Bernad Floadst H
I:I!.'L - H-I-r _|_

Hichael Lirdt O
O=vid Surine i

L

=]
= LI LL I T[]
E
- 1
Nl
ED
B 1Bk
= -
[- RFI0Q_CO
=
4
yel

o =9 =% = A PP

8.1.2 Gps Board (Schematics and Board)

Schematics:

e

LA

=™
- 1

P N - \
x]
hJ ==
- -
= =
= B
U
o
1o
\ C 220 O
8.1.3 RFID Board (Schematics and Board)
Schematic:
vDD
Us1
viu 5V 11 UH_H"-J MOLEX-4 2XX-2WM-4200-V O
_. 1
! — 10 L ED
s e — ?
- S D0
—— ANTI p1 &
— AnT2 - =
=1 P FUTLRE |-
D-12/205MD =, m
T1
o — 2N222250723
: = LED 180 I:
3 WW
e 2 R2
]
GND CON-MOLEX-43XX-3RA

<
GN

‘() __RFID Board

|
MLz o

LEDN

UEL

8.2 Software Listings

8.2.1 Hardware Code

Arduino Code:

#include <ESP8266WiFi.h>
#include <MQTT.h>
#include <PubSubClient.h>
#include <SoftwareSerial.h>

/************************* WiFi ACCGSS Point *********************************/

#define WLAN_SSID "ND-guest"
#define WLAN_PASS "jimmyeatworld"

/ i Adafruit.io Setup i */

#define SERVER_ADDRESS "senior-mqtt.esc.nd.edu" // server in 213 SR

#define SERVER_PORT 1883 /I standard port

http://senior-mqtt.esc.nd.edu/

String str;
int i;
int j;

/I Create an ESP8266 WiFiClient class to connect to the MQTT server.
WiFiClient wf_client; // instantiate wifi client
PubSubClient client(wf_client, SERVER_ADDRESS); // pass to pubsub

void setup() {

/I Setup console
Serial.begin(9600);
Serial.swap();
delay(10);

/I Connect to WiFi access point.
i=0;
WiFi.begin(WLAN_SSID, WLAN_PASS);
while (WiFi.status() '= WL_CONNECTED) {
delay(500);
/[Serial.print(".");
i=i+1;
if (i == 40)
{
Serial.print("s");
}

}

if (WiFi.status() == WL_CONNECTEDX
Serial.print("g");

}

}

void loop() {
if (WiFi.status() == WL_CONNECTED) {
delay(10);
if (client.connect("mydevice")) {

if(Serial.available() > 0)
{
str = Serial.readStringUntil('+");
Serial.print(str);
}
if (str ==""){}
else{
client.publish("trakPak",str);
delay(50);
Serial.print("z");
str=""

}
}

Mplab Code:

/*

* File: rtccl.c

* Author: dsurine

* Created on April 11, 2016, 3:18 PM
*/

/l Working on the final code here
/Il GPS and RFID code, no WiFi yet

#include <stdio.h>

#include <stdlib.h>

#include <proc/p32mx695f512h.h>
#include <xc.h>

#include "configbits-16ex8.h"
#include "SDIib16.h"

#include <sys/attribs.h>
void UART _init(void){
/I Set up UART1 = USB to computer
U1MODEDbits.ON = 1;
U1MODEDbits.BRGH = 0;
U1STADbits.URXEN = 1;
U1STAbits.UTXEN = 1;
U1BRG=51; // Setting baud rate to 9600 manually (BRGH=0)
set_output_device(1);

/I Set up UART2 = RFID (Rx is RF4, Tx is RF5 on Dev board) (13 is Rx and 15 is Tx on Wifi)

U2MODEDits.ON = 1;

U2MODEDbits.BRGH = 0;

U2STADbits.URXEN = 1;

U2STADbits.UTXEN = 1;

U2BRG=51; // Setting baud rate to 9600 manually (BRGH=0)

/I Set up UART3 = GPS connection

U3MODEDbits.ON = 1;

U3MODEDbits.BRGH = 0;

U3STADbits.URXEN = 1;

U3STADbits.UTXEN = 1;

U3BRG=51; // Setting baud rate to 9600 manually (BRGH=0)

/I Setting up UART4 WIFI (Rx is D9, Tx is D1 on Dev board)

U4MODEDbits.ON = 1;

U4MODEDbits.BRGH = 0;

U4STADbits.URXEN = 1;

U4STADbits.UTXEN = 1;

U4BRG=51; // Setting baud rate to 9600 manually (BRGH=0)

}

void timer_setup(void){

__builtin_enable_interrupts();
INTCONDits.MVEC = 1;

T2CON = 0x0;

T3CON = 0x0;

T2CONSET = 0x0008;

TMR2 = 0x0; // Clear contents of the TMR4 and TMR5

PR2 = OxOFFFFFFF; // Load PR4 and PR5 registers with 32-bit value
IFSObits. T3IF = 0; // Clear the Timer5 interrupt status flag

IECODbits. T3IE = 1;

#define Time3 IFSObits. T3IF

T4CON = 0x0;

T5CON = 0x0;

T4CONSET = 0x0008;

TMR4 = 0x0; // Clear contents of the TMR4 and TMR5

PR4 = OxOFFFFFFF; // Load PR4 and PR5 registers with 32-bit value

IPC5bits.T5IP = 2;
IPC5bits.IC51S= 1;

IFSObits. T5IF = 0; // Clear the Timer5 interrupt status flag
IECObits.T5IE = 1;

#define GPStimer5 IFSObits. T5IF

}

void define_function(void){

/I Defining our MOSFET switches (1 = OFF!!)
TRISEbits. TRISE4=0; //set E4 to output
TRISEDbits. TRISE3=0; //set E3 to output
TRISEbits. TRISE2=0; //set E2 to output

#define wifiswitch LATEDbits.LATE4

#define GPSswitch LATEDbits.LATE3

#define RFIDswitch LATEDbits.LATE2
#define RXfullbufferRFID U2STADbits.URXDA
#define RFIDoverrun U2STAbits. OERR
#define GPSoverrun U3STAbits.OERR
#define RXfullbufferGPS U3STAbits. URXDA
#define GPSoverrun U3STAbits.OERR
#define RXfullbufferGPS U3STAbits. URXDA
#define RXfullbufferWiFi U4STAbits.URXDA
#define WiFioverrun U4STADbits. OERR

}

/I Global variables (for the interrupt subroutine)
unsigned char GPSdata[150];

int GPSfinish=0;

int g=0;

int r=0;

unsigned int save1=0;

unsigned int save2=1;

unsigned char save1array[100];

unsigned char save2array[100];

/l Main Function

int main(int argc, char** argv) {

wifiswitch=1; // Ensure everything off to start
GPSswitch=1; // Off
RFIDswitch=1; // Ensure everything off to start

//nitialize UARTs/timers/define statements

UART _init();
timer_setup();
define_function();

/I Defining Variables/Arrays
unsigned char data1[150];
unsigned char data2[150];
int i=0;

int j=0;

unsigned char RFIDtag[20];
int RFIDcount=0;
int readerror=0;

/I This is our System test
printf("\n\nThis is our System test\n");

/[Turning on GPS right now
GPSswitch=0; // Turning on GPS
printf("Waiting for Start Up Acks\n");

/I Wait for start up Acknowledgements
GPSoverrun=0;
i=0;
=0;
while (1) {
if (RXfullbufferGPS){
data1[i] = USRXREG;
printf("%c", data1[i]);
if(data1[i]=="\n"){
if (j<4){j++:}
else if (j==4) {break;}
}

i++:
}
}

printf("Got GPS acks. GPS is started and searching.\n");
printf("Command GPS to only give GGA data.\n");

/I Sending the GGA command to GPS
char GGA[] = "$PMTK314,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0*29\r\n";
int loopGPS=51;
i=0;
while (i<loopGPS) {
while (U3STADbits.UTXBF ==1) {}
U3TXREG = GGA][i];
i++;
}
//Wait for Acknowledgement of Command
GPSoverrun=0;
i=0;
j=0;
while (1) {
if (RXfullbufferGPS){
data1[i] = USRXREG;
printf("%c", data1[i]);
if(data1[i]=="\n"){break;}
i++:
}
}
while (1) {
if (RXfullbufferGPS){
data1[i] = USRXREG;
printf("%c", data1[i]);
if(data1[i]=="\n"){break;}
i++;
}
}
/I Collect initial GPSdata/GPSfinish
GPSoverrun=0;
GPSfinish=0;
j=0;

while (1) {
if (RXfullbufferGPS){
GPSdata[GPSfinish] = U3RXREG;
printf("%c", GPSdata[GPSfinish]);
if(GPSdata[GPSfinish]=="n"){
if j==0){j++;GPSfinish=-1;}
else if (j==1) {break;}
}
GPSfinish++;
}
}

/l Main System Loop
while(1){

/I Turn on GPS timer
T4CONDits.ON = 1;

// Turn on RFID
RFIDswitch=0; //ON
printf("\nReady for a Scan\n");

// Wait for RFID scan
RFIDoverrun=0;// Wipes out any superfluous data
RFIDcount=0;
while(1){
if(RFIDoverrun){printf("\nOverrun\n");RFIDoverrun=0;T4CONbits.ON = 1;}
if(RXfullbufferRFID)Y
RFIDtag[RFIDcount] = U2RXREG;
if(RFIDtag[RFIDcount]=="\n"}{break;}
RFIDcount++;

}
}

printf("RFID scanned. RFIDCount = %d.\n\n",RFIDcount);

T4CONDbits.ON = 0;TMR4=0; GPStimer5=0; // Turn GPSTimer off while we process data
/I Turn off RFID

RFIDswitch=1; //OFF

// Writing to an Array to Send to WiFi

int k=0;

unsigned char exportWiFi[RFIDcount+GPSfinish+4];
exportWiFi[0]="[";

for (k=2;k<(RFIDcount);k++){exportWiFi[k]=RFIDtag[k-1];}

exportWiFi[RFIDcount+1]="";

for
(k=(RFIDcount+2);k<(RFIDcount+1+GPSfinish+1+1);k++){exportWiFi[k]=GPSdata[k-(RFIDcount
+2)];}

exportWiFi[RFIDcount+GPSfinish+1+1+1]="+",

// Print to Terminal as a test

for (k=3;k<(RFIDcount+GPSfinish+4);k++){
if (k==3){printf("exportWiFi given below.\n\n");}
printf("%c",exportWiFi[k]);

}

/l Turn On WiFi
wifiswitch=0; //ON

/I Wait for WiFi to acknowledge that it is connected
unsigned char WiFiack[100];
int WiFicount=-1;
WiFioverrun = 0;
int readerror=0;
TMR2=0; Time3=0; // Resets Timer
while(1){
if(WiFicount==-1){WiFicount=0; T2CONDbits.ON=1;printf("\nTimer has Started. Waiting for
WiFi Connection.\n");}
if(RXfullbufferWiFi){
if (WiFioverrun) {WiFioverrun = 0;}
WiFiack[WiFicount] = U4RXREG;
if(WiFiack[WiFicount]=="g"){printf("WiFi Connected!\n");break;}
if(WiFiack[WiFicount]=="s"X{printf("WiFi Not Connected!\n");break;}
WiFicount++;
}
if (Time3){Time3=0;readerror=1;break;}
}
T2CONDbits.ON=0;
if(readerror==0}{TMR2=0; Time3=0;}
/I In Case the WiFi timed out
if(readerror==1){printf("\nError! WiFi Timeout.\n");wifiswitch=1;}
/lif(readerror==1){readerror=0;continue;} //From previous code, before the saving code

/[If WiFi didn't connect/timed out, saving the data and resetting

if(WiFiack[WiFicount]=='s'||readerror==1){
printf("Now saving read data.\n");
/[Saving to next open array
if((save1==1)&&(save2==1)){save1=0;}

if (save2==0)
for (k=0;k<(RFIDcount+GPSfinish+4);k++){
{
saveZ2array[k]=exportWiFi[k];
// Print to terminal as test
if (k==0){printf("Saved version of exportWiFi given below.\n");}
printf("%c",save2array[K]);
}
}
save2=1;

}

if (save1==0)
for (k=0;k<(RFIDcount+GPSfinish+4);k++){
{
savelarray[k]=exportWiFi[k];
// Print to terminal as test
if (k==0){printf("Saved version of exportWiFi given below.\n");}
printf("%c",save1array[K]);
}
}
save1=1;save2=0;

}

if (readerror==1){readerror=0;}
printf("Data now saved in array. Reseting to the Top.\n");
continue;

}

printf("\nSending Scanned Array to Wifi.\n");

/I Sending that array to the WiFi Chip

i=3;

while (i<(RFIDcount+GPSfinish+4)) {
while (U4STAbits. UTXBF ==1) {}
U4TXREG = exportWiFi[i];

printf("%c",exportWiFi[i]);
i++;
if(i==15){i=16;}

}

printf("Done Sending to Wifi.\n");
/I Wait for WiFi to send back

unsigned char WiFitest[100];
WiFicount=-1;
WiFioverrun = 0;
readerror=0;
TMR2=0; Time3=0; // Resets Timer Stuff
while(1){
if(WiFicount==-1){WiFicount=0;T2CONbits.ON=1;printf("\nTimer has Started. Waiting for
WiFi Acknowledgement of the Send.\n");}
if(RXfullbufferWiFiY{
if (Time3){Time3=0;readerror=1;break;}
if (WiFioverrun) {WiFioverrun = 0;}
WiFitest[WiFicount] = U4RXREG;
if(WiFitest{WiFicount]=="z"){break;}
WiFicount++;
}
if (Time3){Time3=0;readerror=1;break;}
}
T2CONDbits.ON=0;
if(readerror==1){printf("\nError! WiFi Timeout, never acknowledged the
send.\n");wifiswitch=1;readerror=0;continue;}
if(readerror==0}{TMR2=0; Time3=0;}

printf("\nWiFi acknowledged. Reset to the Top.\n");

/I Turn Off WiFi
wifiswitch=1; //OFF

}

return (EXIT_SUCCESS);
}

void __ISR(20, IPL2AUTO)
GPS2update(void)

printf("In the time 5 interrupt. Collecting GGA data.\n");
delay_ms(100);

unsigned char data1[150];
unsigned char data2[150];
int i=0;
int j=0;

/I Collect one line of GPS data back
GPSoverrun=0;
int GPScount=0;
j=0;
while (1) {
if (RXfullbufferGPS){
data2[GPScount] = U3RXREG;
printf("%c", data2[GPScount]);
if(data2[GPScount]=="\n"){
if (j==0){j++;GPScount=-1;}
else if (j==1) {break;}
}
GPScount++;
}
}

printf("GPS received. GPSfinish = %d.\n\n",GPScount);

if(GPScount>45)

{ for (j=0;j<GPScount;j++){GPSdata[j]=dataZ2[j];}
GPSfinish=GPScount;

}

/I Checking WiFi to see if we can send saved data
int gmax=2;
if (save1&&qg>gmax)

{
/I Check for WiFi

wifiswitch=0; // Turn on WiFi

unsigned char WiFiack[100];

int WiFicount=-1;
WiFioverrun = 0;
int readerror=0;
TMR2=0; Time3=0; // Resets Timer
while(1){
if(WiFicount==-1){WiFicount=0;T2CONDbits.ON=1;printf("\nTimer has Started. Waiting for
WiFi Connection.\n");}
if(RXfullbufferWiFi){
if (WiFioverrun) {WiFioverrun = 0;}
WiFiack[WiFicount] = U4RXREG;
if(WiFiack[WiFicount]=="g"){printf("WiFi Connected!\n");break;}
if(WiFiack[WiFicount]=="s"X{printf("WiFi Not Connected!\n");break;}
WiFicount++;
}
if (Time3){Time3=0;readerror=1;break;}
}
T2CONDits.ON=0;
if(readerror==0}{TMR2=0; Time3=0;}
/I In Case the WiFi timed out
if(readerror==1){printf("\nError! WiFi Timeout.\n");wifiswitch=1;}

/I If Wifi is found, send it

if(WiFiack[WiFicount]=='g")
{

printf("\nSending Scanned Array to Wifi.\n");
/l Sending that array to the WiFi Chip

if (save1){
i=3;
while (i<(15+GPSfinish+4)) {
while (U4STAbits.UTXBF ==1) {}
U4TXREG = savelarray[il;
printf("%c",savelarrayl[i]);
i++:
if(i==15){i=16;}

}

save1=0;

/l Wait for WiFi to send back

unsigned char WiFitest[100];
WiFicount=-1;
WiFioverrun = 0;
readerror=0;
TMR2=0; Time3=0; // Resets Timer Stuff
while(1)Y
if(WiFicount==-1){WiFicount=0;T2CONbits.ON=1;printf("\nTimer has Started.
Waiting for WiFi Acknowledgement on sending array1.\n");}
if(RXfullbufferWiFi){
if (Time3){Time3=0;readerror=1;break;}
if (WiFioverrun) {WiFioverrun = 0;}
WiFitest[WiFicount] = U4RXREG;
if(WiFitest[WiFicount]=="z"){break;}
WiFicount++;
}
if (Time3){Time3=0;readerror=1;break;}
}
T2CONDits.ON=0;
if(readerror==1){printf("\nError! WiFi Timeout, never acknowledged the
send.\n");wifiswitch=1;}
if(readerror==0}{TMR2=0; Time3=0;save1=0;q=0;printf("q is now reset to zero.\n");}
//IReset looping variable

printf("\nWiFi acknowledged on sending array1\n");

}

if (save2){
i=3;
while (i<(15+GPSfinish+4)) {
while (U4STAbits.UTXBF ==1) {}
U4TXREG = saveZ2array[il;
printf("%c",save2array][i]);
I++;
if(i==15){i=16;}

}
if(lsave1){save2=1;}
else {save2=0;}

printf("Done Sending to Wifi.\n");

/I Wait for WiFi to send back

unsigned char WiFitest[100];
WiFicount=-1;
WiFioverrun = 0;
readerror=0;
TMR2=0; Time3=0; // Resets Timer Stuff
while(1)Y
if(WiFicount==-1){WiFicount=0;T2CONbits.ON=1;printf("\nTimer has Started.
Waiting for WiFi Acknowledgement of the Send.\n");}
if(RXfullbufferWiFi){
if (Time3){Time3=0;readerror=1;break;}
if (WiFioverrun) {WiFioverrun = 0;}
WiFitest[WiFicount] = U4RXREG;
if(WiFitest[WiFicount]=="z"){break;}
WiFicount++;
}
if (Time3){Time3=0;readerror=1;break;}
}
T2CONDits.ON=0;
if(readerror==1){printf("\nError! WiFi Timeout, never acknowledged the
send.\n");wifiswitch=1;}
if(readerror==0}{TMR2=0; Time3=0;save1=0;q=0;printf("q is now reset to zero.\n");}
//IReset looping variable

printf("\nWiFi acknowledged on sending array2.\n");

}
}
}

else {if(q>gmax){q=0;}q++;printf("q = %i. Leaving interrupt function.\n",q);}

wifiswitch=1; // Wifi off

/I Checking to see if sending backpack

int rmax=1; // Define how long to wait for backpack to automatically update
char backpack[] =" TRAKPAK SPOT ";

int b=15;

if(r>rmax){

// Writing Backpack Array to Send to WiFi

int k=0;

unsigned char exportWiFi[b+GPSfinish+4];

for (k=2;k<(b);k++){exportWiFi[k]=backpack[k-1];}

exportWiFi[b+1]=",";

for (k=(b+2);k<(b+1+GPSfinish+1+1);k++){exportWiFi[k]=GPSdata[k-(b+2)];}
exportWiFi[b+GPSfinish+1+1+1]="+"

// Print to Terminal as a test

for (k=3;k<(b+GPSfinish+4);k++){
if (k==3){printf("Backpack array given below.\n\n");}
printf("%c",exportWiFi[k]);

}

/l Turn On WiFi
wifiswitch=0; //ON

/I Wait for WiFi to acknowledge that it is connected
unsigned char WiFiack[100];
int WiFicount=-1;
WiFioverrun = 0;
int readerror=0;
TMR2=0; Time3=0; // Resets Timer
while(1){
if(WiFicount==-1){WiFicount=0; T2CONDbits.ON=1;printf("\nTimer has Started. Waiting for
WiFi Connection.\n");}
if(RXfullbufferWiFi){
if (WiFioverrun) {WiFioverrun = 0;}
WiFiack[WiFicount] = U4RXREG;
if(WiFiack[WiFicount]=="g"){printf("WiFi Connected!\n");break;}
if(WiFiack[WiFicount]=="s"X{printf("WiFi Not Connected!\n");break;}
WiFicount++;
}
if (Time3){Time3=0;readerror=1;break;}
}
T2CONDbits.ON=0;
if(readerror==0}{TMR2=0; Time3=0;}
/I In Case the WiFi timed out
if(readerror==1){printf("\nError! WiFi Timeout.\n");wifiswitch=1;}
/lif(readerror==1){readerror=0;continue;} //From previous code, before the saving code

/I'If WiFi didn't connect/timed out, saving the data and resetting

if(WiFiack[WiFicount]=='s'||readerror==1)
printf("Now saving read data.\n");
/I Saving to next open array
if((save1==1)&&(save2==1)){save1=0;}

if (save2==0)
for (k=0;k<(b+GPSfinish+4);k++){
{
saveZ2array[k]=exportWiFi[k];
// Print to terminal as test
if (k==0){printf("Saved version of exportWiFi given below.\n");}
printf("%c",save2array[K]);

}
}

save2=1;

}

if (save1==0)
for (k=0;k<(b+GPSfinish+4);k++){
{
savelarray[k]=exportWiFi[k];
// Print to terminal as test
if (k==0){printf("Saved version of exportWiFi given below.\n");}
printf("%c",save1array[K]);

}
}

save1=1;save2=0;

}

if (readerror==1){readerror=0;}

printf("Data now saved in array. Reseting to the Top.\n");
}
else {

printf("\nSending Backpack Array to Wifi.\n");

/I Sending that array to the WiFi Chip
i=3;
while (i<(b+GPSfinish+4)) {

while (U4STAbits.UTXBF ==1) {}

U4TXREG = exportWiFi[i];
printf("%c",exportWiFi[i]);
i++;
if(i==15){i=16;}

}

printf("\nDone Sending Backpack to Wifi.\n");
/I Wait for WiFi to send back

unsigned char WiFitest[100];
WiFicount=-1;
WiFioverrun = 0;
readerror=0;
TMR2=0; Time3=0; // Resets Timer Stuff
while(1){
if(WiFicount==-1){WiFicount=0;T2CONbits.ON=1;printf("\nTimer has Started. Waiting
for WiFi Acknowledgement of sending Backpack GPS.\n");}
if(RXfullbufferWiFi}{
if (Time3){Time3=0;readerror=1;break;}
if (WiFioverrun) {WiFioverrun = 0;}
WiFitest[WiFicount] = U4RXREG;
if(WiFitest[WiFicount]=="z"){break;}
WiFicount++;
}
if (Time3){Time3=0;readerror=1;break;}
}
T2CONDbits.ON=0;
if(readerror==1){printf("\nError! WiFi Timeout, never acknowledged the
send.\n");wifiswitch=1;readerror=0;}
else if(readerror==0){TMR2=0; Time3=0;r=0;}

printf("\nWiFi acknowledged. Leaving Interrupt Function\n");

/I Turn Off WiFi
wifiswitch=1; //OFF
Y
}

else {if(r>rmax){r=0;}r++;printf("r = %i. Leaving interrupt function.\n",r);}

GPStimer5= 0; //Set flag low

8.2.2 Mobile App Code
ANDROID MANIFEST:

Android Manifest
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.eclipse.paho.android.service.sample"
android:versionCode="1"
android:versionName="1.0" >

<uses-sdk
android:minSdkVersion="19"
android:targetSdkVersion="21" />

<I-- Permissions the Application Requires -->

<uses-permission android:name="android.permission. WAKE_LOCK" />

<uses-permission android:name="android.permission.INTERNET" />

<uses-permission android:name="android.permission. WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.ACCESS NETWORK_STATE" />

<application
android:allowBackup="true"
android:icon="@drawable/ic_launcher"
android:label="@string/app_name"
android:theme="@style/AppTheme" >

<!-- Mqtt Service -->
<service android:name="org.eclipse.paho.android.service.MqttService" >
</service>

<l-- Connection Details Activity -->

<activity
android:name="org.eclipse.paho.android.service.sample.ConnectionDetails"
>//android:label="@string/title_activity _connection_details">

</activity>

<!I-- Main Activity -->
<activity android:name="org.eclipse.paho.android.service.sample.ClientConnections" >

<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category. LAUNCHER" />
</intent-filter>
</activity>

<!-- New Connection Activity -->

<activity
android:name="org.eclipse.paho.android.service.sample.NewConnection"
android:label="@string/title_activity_new_connection" >

</activity>

<!-- Advanced Options Screen -->

<activity
android:name="org.eclipse.paho.android.service.sample.Advanced"
android:label="@string/title_activity_advanced" >

</activity>

<!I-- Last Will Activity -->

<activity
android:name="org.eclipse.paho.android.service.sample.LastWill"
android:label="@string/title_activity_last_will" >

</activity>

<activity
android:name="org.eclipse.paho.android.service.sample.notification"
android:label="@string/title_activity notification"
>

</activity>

<activity android:name="org.eclipse.paho.android.service.sample.MapsActivity"
android:label="@string/title_maps_activity"
>

</activity>

<meta-data
android:name="com.google.android.gms.version"
android:value="@integer/google _play_services_version"
/>

<meta-data
android:name="com.google.android.geo.APl_KEY"
android:value= "AlzaSyB5eSIRErRiNQhEKzGMsGvVX6QzSEGoF5U"
/>

</application>

</manifest>

JAVA FILES:

Action Listener

/***

* Copyright (c) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at

* http://www.eclipse.org/org/documents/ed|-v10.php.

*/

package org.eclipse.paho.android.service.sample;

import android.content.Context;
import android.util.Log;
import android.widget.Toast;

import org.eclipse.paho.android.service.MqttAndroidClient;

import org.eclipse.paho.android.service.sample.Connection.ConnectionStatus;
import org.eclipse.paho.client.mqttv3.IMqgttActionListener;

import org.eclipse.paho.client.mqttv3.IMqttToken;

import org.eclipse.paho.client. mqttv3.MqttException;

import org.eclipse.paho.client.mqttv3.MqttSecurityException;

/**

* This Class handles receiving information from the

* {@link MqttAndroidClient} and updating the {@link Connection} associated with
* the action

*/

class ActionListener implements IMqttActionListener {

/**

* Actions that can be performed Asynchronously and associated
with a
* {@link ActionListener} object
*/
enum Action {
/** Connect Action **/
CONNECT,
/** Disconnect Action **/
DISCONNECT,
/** Subscribe Action **/
SUBSCRIBE,
/** Publish Action **/
PUBLISH

}

[
* The {@link Action} that is associated with this instance of

* <code>ActionListener</code>

xk

private Action action;

/** The arguments passed to be used for formatting strings**/

private String[] additionalArgs;

/** Handle of the {@link Connection} this action was being executed on **/
private String clientHandle;

I** {@link Context} for performing various operations **/

private Context context;

[
* Creates a generic action listener for actions performed form any activity
* @param context
* The application context
* @param action
* The action that is being performed
* @param clientHandle
* The handle for the client which the action is being performed

* on

* @param additionalArgs

* Used for as arguments for string formating
*/

public ActionListener(Context context, Action action,
String clientHandle, String... additionalArgs) {

this.context = context;

this.action = action;
this.clientHandle = clientHandle;
this.additionalArgs = additionalArgs;

}

[
* The action associated with this listener has been successful.
* @param asyncActionToken
* This argument is not used
*/

@Override
public void onSuccess(IMqttToken asyncActionToken) {
switch (action) {

case CONNECT :
connect();
String topic = "trakPak";
int qos = 1;
try{

Connections.getinstance(context).getConnection(clientHandle).getClient().subscribe(topic, qos,
null, new ActionListener(context, Action.SUBSCRIBE, clientHandle, topic));
}
catch (MqttSecurityException e){
Log.e(this.getClass().getCanonicalName(), "Failed to subscribe to" + topic + " the
client with the handle " + clientHandle, e);
}
catch (MqttException e) {
Log.e(this.getClass().getCanonicalName(), "Failed to subscribe to" + topic + " the
client with the handle " + clientHandle, e);
}
break;
case DISCONNECT :
disconnect();
break;
case SUBSCRIBE :
subscribe();
break;
case PUBLISH :
publish();
break;

}

[e*
* A publish action has been successfully completed, update connection
* object associated with the client this action belongs to, then notify the
* user of success

*/

private void publish() {

Connection ¢ = Connections.getinstance(context).getConnection(clientHandle);
String actionTaken = context.getString(R.string.toast_pub_success,
(Object[]) additionalArgs);
c.addAction(actionTaken);
Notify.toast(context, actionTaken, Toast.LENGTH_SHORT);

}

[
* A subscribe action has been successfully completed, update the connection
* object associated with the client this action belongs to and then notify
* the user of success
*/
private void subscribe() {
Connection ¢ = Connections.getinstance(context).getConnection(clientHandle);
String actionTaken = context.getString(R.string.toast_sub_success,
(Object[]) additionalArgs);
c.addAction(actionTaken);
Notify.toast(context, actionTaken, Toast.LENGTH_SHORT);

}

[
* A disconnection action has been successfully completed, update the

* connection object associated with the client this action belongs to and

* then notify the user of success.

*/

private void disconnect() {
Connection ¢ = Connections.getinstance(context).getConnection(clientHandle);
c.changeConnectionStatus(ConnectionStatus.DISCONNECTED);
String actionTaken = context.getString(R.string.toast_disconnected);
c.addAction(actionTaken);

[e*
* A connection action has been successfully completed, update the

* connection object associated with the client this action belongs to and
* then notify the user of success.

*/

private void connect() {

Connection ¢ = Connections.getinstance(context).getConnection(clientHandle);
c.changeConnectionStatus(Connection.ConnectionStatus. CONNECTED);
c.addAction("Client Connected");

}

[
* The action associated with the object was a failure
* @param token
* This argument is not used
* @param exception
* The exception which indicates why the action failed
*/
@Override
public void onFailure(IMqttToken token, Throwable exception) {
switch (action) {
case CONNECT :
connect(exception);
break;
case DISCONNECT :
disconnect(exception);
break;
case SUBSCRIBE :
subscribe(exception);
break;
case PUBLISH :
publish(exception);
break;

}

/**
* A publish action was unsuccessful, notify user and update client history

*

* @param exception
* This argument is not used
*/
private void publish(Throwable exception) {
Connection ¢ = Connections.getinstance(context).getConnection(clientHandle);
String action = context.getString(R.string.toast_pub_failed,
(Object[]) additionalArgs);
c.addAction(action);
Notify.toast(context, action, Toast.LENGTH_SHORT);

}

[e*
* A subscribe action was unsuccessful, notify user and update client history
* @param exception This argument is not used
*/
private void subscribe(Throwable exception) {
Connection ¢ = Connections.getinstance(context).getConnection(clientHandle);
String action = context.getString(R.string.toast_sub_failed,
(Object[]) additionalArgs);
c.addAction(action);
Notify.toast(context, action, Toast. LENGTH_SHORT);

}

[
* A disconnect action was unsuccessful, notify user and update client history

* @param exception This argument is not used

*/

private void disconnect(Throwable exception) {
Connection ¢ = Connections.getinstance(context).getConnection(clientHandle);
c.changeConnectionStatus(ConnectionStatus.DISCONNECTED);
c.addAction("Disconnect Failed - an error occured");

}

/**
* A connect action was unsuccessful, notify the user and update client history
* @param exception This argument is not used
*/
private void connect(Throwable exception) {
Connection ¢ = Connections.getinstance(context).getConnection(clientHandle);

c.changeConnectionStatus(Connection.ConnectionStatus.ERROR);
c.addAction("Client failed to connect");

}

Activity Constants

/***

* Copyright (c) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at

* http://www.eclipse.org/org/documents/ed|-v10.php.

*/

package org.eclipse.paho.android.service.sample;

import org.eclipse.paho.client. mqttv3.MqgttMessage;

/**

* This Class provides constants used for returning results from an activity

*/
public class ActivityConstants {

I** Application TAG for logs where class name is not used*/
static final String TAG = "MQTT Android";

[*Default values **/

/** Default QOS value*/

static final int defaultQos = 1;

/** Default timeout*/

static final int defaultTimeOut = 1000;
/** Default keep alive value*/

static final int defaultKeepAlive = 10;
/** Default SSL enabled flag*/

static final boolean defaultSsl = false;

[** Default message retained flag */

static final boolean defaultRetained = false;
[** Default last will message*/

static final MgttMessage defaultLastWill = null;
/** Default port*/

static final int defaultPort = 1883;

/** Connect Request Code */

static final int connect = 0;

/** Advanced Connect Request Code **/
static final int advancedConnect = 1;

/** Last will Request Code **/

static final int lastWill = 2;

/** Show History Request Code **/
static final int showHistory = 3;

/* Bundle Keys */

[** Server Bundle Key **/

static final String server = "server";

[** Port Bundle Key **/

static final String port = "port";

/** ClientID Bundle Key **/

static final String clientld = "clientld";

[** Topic Bundle Key **/

static final String topic = "topic";

/** History Bundle Key **/

static final String history = "history";

[** Message Bundle Key **/

static final String message = "message”;
[** Retained Flag Bundle Key **/

static final String retained = "retained";
/** QOS Value Bundle Key **/

static final String qos = "qos";

/** User name Bundle Key **/

static final String username = "username";
[** Password Bundle Key **/

static final String password = "password";
I** Keep Alive value Bundle Key **/
static final String keepalive = "keepalive";
/** Timeout Bundle Key **/

static final String timeout = "timeout";

/** SSL Enabled Flag Bundle Key **/

static final String ssl = "ssl";

/** SSL Key File Bundle Key **/

static final String ssl_key = "ssl_key";

/** Connections Bundle Key **/

static final String connections = "connections";
/** Clean Session Flag Bundle Key **/

static final String cleanSession = "cleanSession";
/** Action Bundle Key **/

static final String action = "action";

I* Property names */

I** Property name for the history field in {@link Connection} object for use with {@link
java.beans.PropertyChangeEvent} **/
static final String historyProperty = "history";

I** Property name for the connection status field in {@link Connection} object for use
with {@link java.beans.PropertyChangeEvent} **/
static final String ConnectionStatusProperty = "connectionStatus";

/* Useful constants™®/

[** Space String Literal **/
static final String space =" ";
[** Empty String for comparisons **/

static final String empty = new String();

}

Advanced

/***

* Copyright (c) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at

* http://www.eclipse.org/org/documents/ed|-v10.php.

*/

package org.eclipse.paho.android.service.sample;

import android.app.Activity;

import android.app.Dialog;

import android.content.Intent;

import android.os.Bundle;

import android.support.v4.app.NavUltils;
import android.view.Menu;

import android.view.Menultem;

import android.view.Menultem.OnMenultemClickListener;
import android.view.View;

import android.view.View.OnClickListener;
import android.widget.Button;

import android.widget.CheckBox;

import android.widget.EditText;

import java.util.HashMap;
import java.util.Map;

/**
* Advanced connection options activity

*/
@SuppressWarnings("ALL")
public class Advanced extends Activity {

[
* Reference to this class used in {@link Advanced.Listener} methods
*/

private Advanced advanced = this;

[

* Holds the result data from activities launched from this activity

*/

private Bundle resultData = null;

private int openfileDialogld = O;

[ex
* @see Activity#onCreate(Bundle)

*/

@Override

protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedInstanceState);

setContentView(R.layout.activity_advanced);
((Button) findViewByld(R.id.ssIKeyBut)).setOnClickListener(new OnClickListener()}{

@Override

public void onClick(View v) {
//IshowFileChooser();
showDialog(openfileDialogld);

0

((CheckBox) findViewByld(R.id.ssICheckBox)).setOnClickListener(new
OnClickListener(){

@~Override
public void onClick(View v) {
if(((CheckBox)v).isChecked())
{
((Button)findViewByld(R.id.ssIKeyBut)).setClickable(true);
lelse

{
((Button)findViewByld(R.id.ssIKeyBut)).setClickable(false);

}
)

((Button)findViewByld(R.id.ssIKeyBut)).setClickable(false);
}

/**

* @see android.app.Activity#onCreateOptionsMenu(android.view.Menu)
*/

@Override

public boolean onCreateOptionsMenu(Menu menu) {
getMenulnflater().inflate(R.menu.activity_advanced, menu);

Listener listener = new Listener();
menu.findltem(R.id.setLastWill).setOnMenultemClickListener(listener);
menu.findltem(R.id.ok).setOnMenultemClickListener(listener);

return true;

}

/**

* @see android.app.Activity#onOptionsltemSelected(android.view.Menultem)
*/
@Override
public boolean onOptionsltemSelected(Menultem item) {
switch (item.getltemld()) {
case android.R.id.home :
NavUtils.navigateUpFromSameTask(this);
return true;

}

return super.onOptionsltemSelected(item);

}

[
* @see android.app.Activity#onActivityResult(int, int, android.content.Intent)
*/
@Override
protected void onActivityResult(int requestCode, int resultCode,
Intent intent) {
/I get the last will data
if (resultCode == RESULT_CANCELED) {
return;

}

resultData = intent.getExtras();

/**

* @see android.app.Activity#onCreateDialog(int)
*/
@~Override
protected Dialog onCreateDialog(int id) {
if (id == openfileDialogld) {
Map<String, Integer> images = new HashMap<String, Integer>();
images.put(OpenFileDialog.sRoot, R.drawable.ic_launcher);
images.put(OpenFileDialog.sParent, R.drawable.ic_launcher);
images.put(OpenFileDialog.sFolder, R.drawable.ic_launcher);
images.put("bks", R.drawable.ic_launcher);
images.put(OpenFileDialog.sEmpty, R.drawable.ic_launcher);
Dialog dialog = OpenFileDialog.createDialog(id, this, "openfile",
new CallbackBundle() {
@Override
public void callback(Bundle bundle) {

String filepath =
bundle.getString("path");

/I setTitle(filepath);

((EditText)
findViewByld(R.id.ssIKeyLocaltion))

.setText(filepath);
}
}, ".bks;", images);
return dialog;

}

return null;

/**
* Deals with button clicks for the advanced options page

*/
private class Listener implements OnMenultemClickListener {

[
* @see
android.view.Menultem.OnMenultemClickListener#onMenultemClick(Menultem)
*/
@~Override
public boolean onMenultemClick(Menultem item) {

int button = item.getltemId();

switch (button) {
case R.id.ok :
ok();
break;

case R.id.setLastWill :
lastWill();
break;

}

return false;

}
/**

* Packs the default options into an intent
* @return intent packed with default options

*/

@SuppressWarnings("unused")

private Intent packDefaults() {
Intent intent = new Intent();

Il check to see if there is any result data if there is not any
/I result data build some with defaults

intent.putExtras(resultData);
intent.putExtra(ActivityConstants.username, ActivityConstants.empty);
intent.putExtra(ActivityConstants.password, ActivityConstants.empty);

intent.putExtra(ActivityConstants.timeout, ActivityConstants.defaultTimeOut);

intent.putExtra(ActivityConstants.keepalive,
ActivityConstants.defaultkKeepAlive);

intent.putExtra(ActivityConstants.ssl, ActivityConstants.defaultSsl);

return intent;

}

/**

* Starts an activity to collect last will options
*/

private void lastWill() {

Intent intent = new Intent();
intent.setClassName(advanced, "org.eclipse.paho.android.service.sample.LastWill");
advanced.startActivityForResult(intent, ActivityConstants.lastWill);

[ex
* Packs all the options the user has chosen, along with defaults the user has not
chosen
*/
private void ok() {

int keepalive;
int timeout;

Intent intent = new Intent();

if (resultData == null) {

resultData = new Bundle();

resultData.putString(ActivityConstants.message, ActivityConstants.empty);

resultData.putString(ActivityConstants.topic, ActivityConstants.empty);

resultData.putint(ActivityConstants.qos, ActivityConstants.defaultQos);

resultData.putBoolean(ActivityConstants.retained,
ActivityConstants.defaultRetained);

}

intent.putExtras(resultData);

/I get all advance options

String username = ((EditText) findViewByld(R.id.uname)).getText()
.toString();

String password = ((EditText) findViewByld(R.id.password))
.getText().toString();

String sslkey = null;

boolean ssl = ((CheckBox) findViewByld(R.id.ssICheckBox)).isChecked();

if(ssl)

{
sslkey = ((EditText) findViewByld(R.id.ssIKeyLocaltion))
.getText().toString();
}
try {

timeout = Integer
.parselnt(((EditText) findViewByld(R.id.timeout))
.getText().toString());
}
catch (NumberFormatException nfe) {
timeout = ActivityConstants.defaultTimeOut;

}
try {

keepalive = Integer

.parselnt(((EditText) findViewByld(R.id.keepalive))
.getText().toString());

}
catch (NumberFormatException nfe) {

keepalive = ActivityConstants.defaultkKeepAlive;

}

//put the daya collected into the intent
intent.putExtra(ActivityConstants.username, username);
intent.putExtra(ActivityConstants.password, password);

intent.putExtra(ActivityConstants.timeout, timeout);
intent.putExtra(ActivityConstants.keepalive, keepalive);
intent.putExtra(ActivityConstants.ssl, ssl);
intent.putExtra(ActivityConstants.ssl_key, sslkey);

/Iset the result as okay, with the data, and finish
advanced.setResult(RESULT_OK, intent);
advanced.finish();

Callback Bundle

/***

* Copyright (c) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at

* http://www.eclipse.org/org/documents/ed|-v10.php.

*/

package org.eclipse.paho.android.service.sample;

import android.os.Bundle;

/**
* For File selector to share data
*/
public interface CallbackBundle {
abstract void callback(Bundle bundle);

Client Connections

/***

* Copyright (¢) 1999, 2014 IBM Corp.

*

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at

* http://www.eclipse.org/org/documents/ed|-v10.php.

*/

package org.eclipse.paho.android.service.sample;

import android.app.AlertDialog;

import android.app.ListActivity;

import android.content.DialogInterface;

import android.content.Dialoglnterface.OnClickListener;
import android.content.Intent;

import android.os.Bundle;

import android.util.Log;

import android.view.ActionMode;

import android.view.Menu;

import android.view.Menulnflater;

import android.view.Menultem;

import android.view.Menultem.OnMenultemClickListener;
import android.view.View;

import android.widget.AdapterView;

import android.widget.AdapterView.OnltemLongClickListener;
import android.widget.ArrayAdapter;

import android.widget.ListView;

import org.eclipse.paho.android.service.MqttAndroidClient;

import org.eclipse.paho.android.service.sample.Connection.ConnectionStatus;
import org.eclipse.paho.client.mqttv3.MqttConnectOptions;

import org.eclipse.paho.client. mqttv3.MqttException;

import org.eclipse.paho.client. mqttv3.MqttSecurityException;

import java.beans.PropertyChangeEvent;
import java.beans.PropertyChangelListener;
import java.io.FilelnputStream;

import java.io.FileNotFoundException;
import java.util.Map;

/**
* ClientConnections is the main activity for the sample application, it

* displays all the active connections.

*/
@SuppressWarnings("ALL")
public class ClientConnections extends ListActivity {

/**

* Token to pass to the MQTT Service

*/

final static String TOKEN = "org.eclipse.paho.android.service.sample.ClientConnections";

/**

* ArrayAdapter to populate the list view

*/

private ArrayAdapter<Connection> arrayAdapter = null;

/**

* {@link ChangeListener} for use with all {@link Connection} objects created by this instance
of <code>ClientConnections</code>

*/

private ChangeListener changeListener = new ChangeListener();

[ex
* This instance of <code>ClientConnections</code> used to update the Ul in {@link
ChangelListener}
*/
private ClientConnections clientConnections = this;

/**

* Contextual action bar active or not

*/

private boolean contextualActionBarActive = false;

/**

* @see android.app.ListActivity#onCreate(Bundle)

*/

@Override

protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedInstanceState);

ListView connectionList = getListView();
connectionList.setOnltemLongClickListener(new LongClickltemListener());
connectionList.setTextFilterEnabled(true);

arrayAdapter = new ArrayAdapter<Connection>(this,
R.layout.connection_text_view);
setListAdapter(arrayAdapter);

/I get all the available connections
Map<String, Connection> connections = Connections.getinstance(this)
.getConnections();

if (connections != null) {
for (String s : connections.keySet())
{
arrayAdapter.add(connections.get(s));
}
}

}

/**

* Creates the action bar for the activity

* @see ListActivity#onCreateOptionsMenu(Menu)
*/

@Override

public boolean onCreateOptionsMenu(Menu menu) {

OnMenultemClickListener menultemClickListener = new Listener(this);

/Nload the correct menu depending on the status of logging
if (Listener.logging)
{
getMenulnflater().inflate(R.menu.activity_connections_logging, menu);
menu.findltem(R.id.endLogging).setOnMenultemClickListener(menultemClickListener);
Y
else {
getMenulnflater().inflate(R.menu.activity_connections, menu);
menu.findltem(R.id.startLogging).setOnMenultemClickListener(menultemClickListener);

}

menu.findltem(R.id.newConnection).setOnMenultemClickListener(
menultemClickListener);

return true;

}

[e*

* Listens for item clicks on the view

* @param listView

* The list view where the click originated from

* @param view

* The view which was clicked

* @param position

* The position in the list that was clicked

*/

@Override

protected void onListltemClick(ListView listView, View view, int position,
long id) {

super.onListltemClick(listView, view, position, id);

if (lcontextualActionBarActive) {
Connection ¢ = arrayAdapter.getltem(position);

// start the connectionDetails activity to display the details about the

I selected connection

Intent intent = new Intent();

intent.setClassName(getApplicationContext().getPackageName(),
"org.eclipse.paho.android.service.sample.ConnectionDetails");

intent.putExtra("handle", c.handle());

startActivity(intent);

}

[ex
* @see ListActivity#onActivityResult(int,int,Intent)

*/

@Override

protected void onActivityResult(int requestCode, int resultCode, Intent data) {

if (resultCode == RESULT_CANCELED) {
return;

}

Bundle dataBundle = data.getExtras();

/I perform connection create and connect

connectAction(dataBundle);

}

/**

* @see ListActivity#onResume()

*/

@Override

protected void onResume() {
super.onResume();
arrayAdapter.notifyDataSetChanged();

//IRecover connections.
Map<String, Connection> connections = Connections.getinstance(this).getConnections();

//IRegister receivers again
for (Connection connection : connections.values()){
connection.getClient().registerResources(this);
connection.getClient().setCallback(new MqttCallbackHandler(this,
connection.getClient().getServerURI()+connection.getClient().getClientld()));
}
}

/**

* @see ListActivity#onDestroy()
*/

@Override

protected void onDestroy() {

Map<String, Connection> connections = Connections.getinstance(this).getConnections();

for (Connection connection : connections.values()){
connection.registerChangeListener(changelListener);
connection.getClient().unregisterResources();

}

super.onDestroy();

}

/**

* Process data from the connect action

* @param data the {@link Bundle} returned by the {@link NewConnection} Acitivty
*/

private void connectAction(Bundle data) {
MqttConnectOptions conOpt = new MqttConnectOptions();
/*
* Mutal Auth connections could do something like this

*

*

* SSLContext context = SSLContext.getDefault();

* context.init({new CustomX509KeyManager()},null,null); //where CustomX509KeyManager
proxies calls to keychain api

* SSLSocketFactory factory = context.getSSLSocketFactory();

* MqgttConnectOptions options = new MqttConnectOptions();

* options.setSocketFactory(factory);

*

* client.connect(options);

*

*/

/I The basic client information

String server = "senior-mqtt.esc.nd.edu”;//(String) data.get(ActivityConstants.server);
String clientld = (String) data.get(ActivityConstants.clientld);

int port = 1883;//Integer.parselnt((String) data.get(ActivityConstants.port));

boolean cleanSession = true;//(Boolean) data.get(ActivityConstants.cleanSession);

boolean ssl = false;//(Boolean) data.get(ActivityConstants.ssl);
String ssl_key = (String) data.get(ActivityConstants.ssl_key);
String uri = null;
if (ssl) {

Log.e("SSLConnection", "Doing an SSL Connect");

uri = "ssl://";

}

else {
uri = "tep://";
}

uri = uri + server +"." + port;

MgqttAndroidClient client;
client = Connections.getinstance(this).createClient(this, uri, clientld);

if (ssl)
try {

if(ssl_key != null && !ssl_key.equalsignoreCase(™))

{
FileInputStream key = new FilelnputStream(ssl_key);
conOpt.setSocketFactory(client.getSSLSocketFactory(key,
"mqtttest"));
}

} catch (MqttSecurityException e) {
Log.e(this.getClass().getCanonicalName(),
"MqttException Occured: ", e);

} catch (FileNotFoundException €) {
Log.e(this.getClass().getCanonicalName(),
"MqttException Occured: SSL Key file not found", e);

}

// create a client handle
String clientHandle = uri + clientld;

I last will message

String message = (String) data.get(ActivityConstants.message);
String topic = (String) data.get(ActivityConstants.topic);

Integer qos = (Integer) data.get(ActivityConstants.qos);

Boolean retained = (Boolean) data.get(ActivityConstants.retained);

/I connection options
String username = (String) data.get(ActivityConstants.username);
String password = (String) data.get(ActivityConstants.password);

int timeout = (Integer) data.get(ActivityConstants.timeout);
int keepalive = (Integer) data.get(ActivityConstants.keepalive);

Connection connection = new Connection(clientHandle, clientld, server, port,
this, client, ssl);
arrayAdapter.add(connection);

connection.registerChangeListener(changeListener);
/I connect client

String[] actionArgs = new String[1];
actionArgs[0] = clientld;

connection.changeConnectionStatus(ConnectionStatus. CONNECTING);

conOpt.setCleanSession(cleanSession);

conOpt.setConnectionTimeout(timeout);

conOpt.setKeepAlivelnterval(keepalive);

if (lusername.equals(ActivityConstants.empty)) {
conOpt.setUserName(username);

}

if (Ipassword.equals(ActivityConstants.empty)) {
conOpt.setPassword(password.toCharArray());

}

final ActionListener callback = new ActionListener(this,
ActionListener.Action.CONNECT, clientHandle, actionArgs);

boolean doConnect = true;

if (('message.equals(ActivityConstants.empty))
|| ('topic.equals(ActivityConstants.empty))) {
// need to make a message since last will is set
try {
conOpt.setWill(topic, message.getBytes(), qos.intValue(),
retained.booleanValue());
}
catch (Exception e) {
Log.e(this.getClass().getCanonicalName(), "Exception Occured", e);
doConnect = false;
callback.onFailure(null, e);

}

}
client.setCallback(new MqttCallbackHandler(this, clientHandle));

/Iset traceCallback
client.setTraceCallback(new MqttTraceCallback());

connection.addConnectionOptions(conOpt);
Connections.getinstance(this).addConnection(connection);
if (doConnect) {

try {
client.connect(conOpt, null, callback);

}
catch (MqttException e) {

Log.e(this.getClass().getCanonicalName(),
"MqttException Occured”, e);

}

/**

* <code>LongClickltemListener</code> deals with enabling and disabling the contextual
action bar and

* processing the actions selected.

*/

private class LongClickltemListener implements OnltemLongClickListener,
ActionMode.Callback, OnClickListener {

/** The index of the item selected, or -1 if an item is not selected **/
private int selected = -1;
/** The view of the item selected **/
private View selectedView = null;
/** The connection the view is representing **/
private Connection connection = null;

/* (non-Javadoc)

* @see
android.widget.AdapterView.OnltemLongClickListener#onltemLongClick(android.widget.Adapte
rView, android.view.View, int, long)

*/

@Override

public boolean onltemLongClick(AdapterView<?> parent, View view, int position, long id) {

clientConnections.startActionMode(this);

selected = position;

selectedView = view;

clientConnections.getListView().setSelection(position);

view.setBackgroundColor(getResources().getColor(android.R.color.holo_blue_dark));
return true;

}

/* (non-Javadoc)

* @see android.view.ActionMode.Callback#onActionltemClicked(android.view.ActionMode,
android.view.Menultem)

*/

@Override

public boolean onActionltemClicked(ActionMode mode, Menultem item) {
selectedView.setBackgroundColor(getResources().getColor(android.R.color.white));
switch (item.getltemld()) {
case R.id.delete :
delete();
mode.finish();
return true;
default :
return false;

}
}

/* (non-Javadoc)
* @see android.view.ActionMode.Callback#onCreateActionMode(android.view.ActionMode,
android.view.Menu)

*/

@Override

public boolean onCreateActionMode(ActionMode mode, Menu menu) {
Menulnflater inflater = mode.getMenulnflater();
inflater.inflate(R.menu.activity_client_connections_contextual, menu);
clientConnections.contextualActionBarActive = true;
return true;

}

/* (non-Javadoc)
* @see android.view.ActionMode.Callback#onDestroyActionMode(android.view.ActionMode)
*/

@~Override
public void onDestroyActionMode(ActionMode mode) {
selected = -1;

selectedView = null;

}

/* (non-Javadoc)
* @see android.view.ActionMode.Callback#onPrepareActionMode(android.view.ActionMode,
android.view.Menu)
*/
@Override
public boolean onPrepareActionMode(ActionMode mode, Menu menu) {
return false;

}

Jrx
* Deletes the connection, disconnecting if required.
*/
private void delete()
{

connection = arrayAdapter.getltem(selected);

if (connection.isConnectedOrConnecting()) {

//display a dialog

AlertDialog.Builder builder = new AlertDialog.Builder(clientConnections);

builder.setTitle(R.string.disconnectClient)
.setMessage(getString(R.string.deleteDialog))
.setNegativeButton(R.string.cancelBtn, new OnClickListener() {

@Override
public void onClick(Dialoglnterface arg0, int arg1) {
//do nothing user cancelled action

}
1
.setPositiveButton(R.string.continueBtn, this)
.show();
}
else {

arrayAdapter.remove(connection);
Connections.getinstance(clientConnections).removeConnection(connection);

}
}

@~Override
public void onClick(Dialoglnterface dialog, int which) {
/luser pressed continue disconnect client and delete
try {
connection.getClient().disconnect();

}
catch (MqgttException e) {

e.printStackTrace();
}
arrayAdapter.remove(connection);
Connections.getinstance(clientConnections).removeConnection(connection);

/**
* This class ensures that the user interface is updated as the Connection objects change their
states

*/
private class ChangeListener implements PropertyChangelListener {

/**

* @see
java.beans.PropertyChangeListener#propertyChange(java.beans.PropertyChangeEvent)

*/

@~Override

public void propertyChange(PropertyChangeEvent event) {

if (levent.getPropertyName().equals(ActivityConstants.ConnectionStatusProperty)) {
return;

}

clientConnections.runOnUiThread(new Runnable() {

@~Override
public void run() {
clientConnections.arrayAdapter.notifyDataSetChanged();

Connection

/***

* Copyright (c) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at
* http://www.eclipse.org/org/documents/ed|-v10.php.
*/

package org.eclipse.paho.android.service.sample;

import android.content.Context;
import android.text.Html;
import android.text.Spanned;

import org.eclipse.paho.android.service.MqttAndroidClient;
import org.eclipse.paho.client.mqttv3.MqttConnectOptions;

import java.beans.PropertyChangeEvent;
import java.beans.PropertyChangelistener;
import java.text.SimpleDateFormat;

import java.util.ArrayList;

import java.util.Date;

/**

* Represents a {@link MqttAndroidClient} and the actions it has performed
*/

public class Connection {

[

* Basic Information about the client

*/

/** ClientHandle for this Connection Object™*/

private String clientHandle = null;

I** The clientld of the client associated with this <code>Connection</code> object **/

private String clientld = null;

/** The host that the {@link MqgttAndroidClient} represented by this <code>Connection</code>
is represented by **/

private String host = null;

/** The port on the server this client is connecting to **/

private int port = 0;

I** {@link ConnectionStatus} of the {@link MqttAndroidClient} represented by this
<code>Connection</code> object. Default value is {@link ConnectionStatus#NONE} **/

private ConnectionStatus status = ConnectionStatus.NONE;

I** The history of the {@link MqttAndroidClient} represented by this <code>Connection</code>
object **/

private ArrayList<String> history = null;

I** The {@link MqgttAndroidClient} instance this class represents**/
private MqgttAndroidClient client = null;

/** Collection of {@link PropertyChangelListener} **/
private ArrayList<PropertyChangeListener> listeners = new
ArrayList<PropertyChangeListener>();

I** The {@link Context} of the application this object is part of**/
private Context context = null;

I** The {@link MqgttConnectOptions} that were used to connect this client**/
private MqgttConnectOptions conOpt;

/** True if this connection is secured using SSL **/
private boolean sslConnection = false;

[** Persistence id, used by {@link Persistence} **/
private long persistenceld = -1;

[
* Connections status for a connection
*/
enum ConnectionStatus {

/** Client is Connecting **/
CONNECTING,
/** Client is Connected **/
CONNECTED,
/** Client is Disconnecting **/
DISCONNECTING,
/** Client is Disconnected **/
DISCONNECTED,
/** Client has encountered an Error **/
ERROR,
[** Status is unknown **/
NONE

}

[
* Creates a connection from persisted information in the database store, attempting
* to create a {@link MqttAndroidClient} and the client handle.

* @param clientld The id of the client
* @param host the server which the client is connecting to

* @param port the port on the server which the client will attempt to connect to
* @param context the application context
* @param sslConnection true if the connection is secured by SSL
* @return a new instance of <code>Connection</code>
*/
public static Connection createConnection(String clientld, String host,
int port, Context context, boolean sslConnection) {
String handle = null;
String uri = null;
if (sslConnection) {
uri = "ssl://" + host + ™" + port;
handle = uri + clientld;
}
else {
uri = "tcp://" + host + ":" + port;
handle = uri + clientld;
}
MqttAndroidClient client = new MqttAndroidClient(context, uri, clientld);
return new Connection(handle, clientld, host, port, context, client, ssIConnection);

[
* Creates a connection object with the server information and the client
* hand which is the reference used to pass the client around activities
* @param clientHandle The handle to this <code>Connection</code> object
* @param clientld The Id of the client
* @param host The server which the client is connecting to
* @param port The port on the server which the client will attempt to connect to
* @param context The application context
* @param client The MgttAndroidClient which communicates with the service for this
connection
* @param sslConnection true if the connection is secured by SSL
*/
public Connection(String clientHandle, String clientld, String host,
int port, Context context, MqttAndroidClient client, boolean sslConnection) {
/lgenerate the client handle from its hash code
this.clientHandle = clientHandle;
this.clientld = clientld;
this.host = host;
this.port = port;
this.context = context;
this.client = client;

this.sslConnection = ssIConnection;
history = new ArrayList<String>();
StringBuffer sb = new StringBuffer();
sb.append("Client: ");
sb.append(clientld);

sb.append(" created");
addAction(sb.toString());

}

/**

* Add an action to the history of the client
* @param action the history item to add
*/

public void addAction(String action) {

Object[] args = new String[1];
SimpleDateFormat sdf = new SimpleDateFormat(context.getString(R.string.dateFormat));
args[0] = sdf.format(new Date());

String timestamp = context.getString(R.string.timestamp, args);
history.add(action + timestamp);

notifyListeners(new PropertyChangeEvent(this, ActivityConstants.historyProperty, null, null));
}

/**
* Generate an array of Spanned items representing the history of this
* connection.

*

* @return an array of history entries
*/
public Spanned][] history() {

inti=0;
Spanned[] array = new Spanned[history.size()];

for (String s : history) {

if (s 1= null) {
array[i] = Html.fromHtmi(s);
i++;

}

}

return array;

[ex
* Gets the client handle for this connection
* @return client Handle for this connection
*/
public String handle() {

return clientHandle;

}

[ex
* Determines if the client is connected
* @return is the client connected
*/
public boolean isConnected() {
return status == ConnectionStatus. CONNECTED;

}

/**
* Changes the connection status of the client
* @param connectionStatus The connection status of this connection
*/
public void changeConnectionStatus(ConnectionStatus connectionStatus) {
status = connectionStatus;
notifyListeners((new PropertyChangeEvent(this, ActivityConstants.ConnectionStatusProperty,
null, null)));

}

/**
* A string representing the state of the client this connection
* object represents

*

*

* @return A string representing the state of the client
*/
@Override
public String toString() {
StringBuffer sb = new StringBuffer();
sb.append(clientld);
sb.append("\n ");

switch (status) {

case CONNECTED :
sb.append(context.getString(R.string.connectedto));
break;
case DISCONNECTED :
sb.append(context.getString(R.string.disconnected));
break;
case NONE :
sb.append(context.getString(R.string.no_status));
break;
case CONNECTING :
sb.append(context.getString(R.string.connecting));
break;
case DISCONNECTING :
sb.append(context.getString(R.string.disconnecting));
break;
case ERROR :
sb.append(context.getString(R.string.connectionError));
}
sb.append("");
sb.append(host);

return sb.toString();
}

/**
* Determines if a given handle refers to this client
* @param handle The handle to compare with this clients handle
* @return true if the handles match
*/
public boolean isHandle(String handle) {
return clientHandle.equals(handle);

}

[ex
* Compares two connection objects for equality
* this only takes account of the client handle
* @param o The object to compare to
* @return true if the client handles match
*/

@Override
public boolean equals(Object o) {

if (!(o instanceof Connection)) {
return false;

}

Connection ¢ = (Connection) o;

return clientHandle.equals(c.clientHandle);

[ex
* Get the client Id for the client this object represents

* @return the client id for the client this object represents
*/
public String getld() {

return clientld;

}

[
* Get the host name of the server that this connection object is associated with
* @return the host name of the server this connection object is associated with
*/
public String getHostName() {

return host;

}

/**
* Determines if the client is in a state of connecting or connected.
* @return if the client is connecting or connected
*/
public boolean isConnectedOrConnecting() {
return (status == ConnectionStatus. CONNECTED) || (status ==
ConnectionStatus. CONNECTING);

}

[ex
* Client is currently not in an error state

* @return true if the client is in not an error state
*/
public boolean noError() {

return status != ConnectionStatus.ERROR;

}

/**
* Gets the client which communicates with the android service.
* @return the client which communicates with the android service
*/
public MgttAndroidClient getClient() {
return client;

}

/**

* Add the connectOptions used to connect the client to the server

* @param connectOptions the connectOptions used to connect to the server
*/

public void addConnectionOptions(MgttConnectOptions connectOptions) {
conOpt = connectOptions;

/**

* Get the connectOptions used to connect this client to the server

* @return The connectOptions used to connect the client to the server
*/

public MgttConnectOptions getConnectionOptions()

{

return conOpt;

}

/**

* Register a {@link PropertyChangeListener} to this object

* @param listener the listener to register

*/

public void registerChangeL.istener(PropertyChangeListener listener)

{

listeners.add(listener);

}

/**

* Remove a registered {@link PropertyChangelL.istener}

* @param listener A reference to the listener to remove

*/

public void removeChangeListener(PropertyChangeListener listener)

{

if (listener != null) {

listeners.remove(listener);

}
}

/**

* Notify {@link PropertyChangeListener} objects that the object has been updated
* @param propertyChangeEvent

*/

private void notifyListeners(PropertyChangeEvent propertyChangeEvent)

{

for (PropertyChangelListener listener : listeners)

{
listener.propertyChange(propertyChangeEvent);
}
}

[ex
* Gets the port that this connection connects to.
* @return port that this connection connects to
*/
public int getPort() {

return port;

}

[ex
* Determines if the connection is secured using SSL, returning a C style integer value
* @return 1 if SSL secured 0 if plain text

*/
public int isSSL() {

return sslConnection ? 1 : 0;

}

/**

* Assign a persistence ID to this object

* @param id the persistence id to assign
*/

public void assignPersistenceld(long id) {
persistenceld = id;

}

/**
* Returns the persistence ID assigned to this object
* @return the persistence ID assigned to this object

*/
public long persistenceld() {
return persistenceld;

}
}

Connection Details

/***

* Copyright (c) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at

* http://www.eclipse.org/org/documents/ed|-v10.php.

*/

package org.eclipse.paho.android.service.sample;

import android.app.ActionBar;

import android.app.FragmentTransaction;

import android.content.Context;

import android.content.SharedPreferences;
import android.os.Bundle;

import android.support.v4.app.Fragment;

import android.support.v4.app.FragmentActivity;
import android.support.v4.app.FragmentManager;
import android.support.v4.app.FragmentPagerAdapter;
import android.support.v4.view.ViewPager;

import android.view.Menu;

import com.google.android.gms.maps.GoogleMap;

import com.google.android.gms.maps.MapView;

import com.google.android.gms.maps.model.LatLng;

import com.google.android.gms.maps.model.MarkerOptions;

import java.beans.PropertyChangeEvent;
import java.beans.PropertyChangelistener;
import java.util.ArrayList;

/**

* The connection details activity operates the fragments that make up the
* connection details screen.

* <p>

* The fragments which this FragmentActivity uses are

*

* {@link HistoryFragment}

* {@link PublishFragment}

* {@link SubscribeFragment}

*

*/

@SuppressWarnings("ALL")

public class ConnectionDetails extends FragmentActivity implements ActionBar.TabListener {

[
*{@link SectionsPagerAdapter} that is used to get pages to display
*/

SectionsPagerAdapter sectionsPagerAdapter;

[

*{@link ViewPager} object allows pages to be flipped left and right

V:ewPager viewPager;

/** The currently selected tab **/
private int selected = 0;

[
* The handle to the {@link Connection} which holds the data for the client
* selected
xk
private String clientHandle = null;

/** This instance of <code>ConnectionDetails</code> **/

private final ConnectionDetails connectionDetails = this;

[ex
* The instance of {@link Connection} that the <code>clientHandle</code>
* represents
xx
private Connection connection = null;

/**
* The {@link ChangeListener} this object is using for the connection

* updates
**/
private ChangeListener changeListener = null;

MapView gMap;
GoogleMap map;

[* private OnMapReadyCallback onMapReadyCallback = null;
GoogleMap gMap;*/

/**

* @see android.support.v4.app.FragmentActivity#onCreate(android.os.Bundle)
*/

@Override

protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedlnstanceState);

clientHandle = getintent().getStringExtra("handle");

setContentView(R.layout.activity_connection_details);

I/l Create the adapter that will return a fragment for each of the pages

sectionsPagerAdapter = new SectionsPagerAdapter(
getSupportFragmentManager());

/I Set up the action bar for tab navigation
final ActionBar actionBar = getActionBar();
actionBar.setNavigationMode(ActionBar.NAVIGATION_MODE_TABS);

/[add the sectionsPagerAdapter
viewPager = (ViewPager) findViewByld(R.id.pager);
viewPager.setAdapter(sectionsPagerAdapter);

// add the OnClickListener
/* AdapterView.OnltemClickListener onltemClickListener = new
AdapterView.OnltemClickListener() {
@Override
public void onltemClick(AdapterView<?> parent, View view, int position, long id) {
String key = GetHistorylD(position);
if (ActivityConstants.Map ==1){
SetMarker(key);
}
}

B

viewPager
.setOnPageChangeListener(new ViewPager.SimpleOnPageChangeListener() {

@Override

public void onPageSelected(int position) {
Il select the tab that represents the current page
actionBar.setSelectedNavigationltem(position);

}
s

/I Create the tabs for the screen

for (inti = 0; i < sectionsPagerAdapter.getCount(); i++) {
ActionBar.Tab tab = actionBar.newTab();
tab.setText(sectionsPagerAdapter.getPageTitle(i));
tab.setTabListener(this);
actionBar.addTab(tab);

}

connection = Connections.getlnstance(this).getConnection(clientHandle);
changelListener = new ChangelListener();
connection.registerChangeListener(changelListener);

}

@Override

protected void onDestroy() {
connection.removeChangeListener(null);
super.onDestroy();

}

[
* @see android.app.Activity#onCreateOptionsMenu(android.view.Menu)
*/

@Override
public boolean onCreateOptionsMenu(Menu menu) {

int menulD;

Integer button = null;

boolean connected = Connections.getinstance(this)
.getConnection(clientHandle).isConnected();

/I Select the correct action bar menu to display based on the

/l connectionStatus and which tab is selected
if (connected) {

switch (selected) {

case 0 : // history view
menulD = R.menu.activity_connection_details;
break;

case 1 :// subscribe view
menulD = R.menu.activity_connection_details;
break;

case 2 : // publish view
menulD = R.menu.activity_publish;
button = R.id.publish;
break;

default :
menulD = R.menu.activity_connection_details;
break;

}
}

else {
switch (selected) {

case 0 : // history view
menulD = R.menu.activity_connection_details_disconnected,;
break;

case 1 :// subscribe view
menulD = R.menu.activity_subscribe_disconnected;
break;

case 2 : // publish view
menulD = R.menu.activity_publish_disconnected;
button = R.id.publish;
break;

default :
menulD = R.menu.activity_connection_details_disconnected,;
break;

}
}

/ inflate the menu selected

getMenulnflater().inflate(menulD, menu);

Listener listener = new Listener(this, clientHandle);

// add listeners

if (button != null) {
// add listeners
menu.findltem(button).setOnMenultemClickListener(listener);

if (IConnections.getinstance(this).getConnection(clientHandle)
.isConnected()) {
menu.findltem(button).setEnabled(false);

}
}

// add the listener to the disconnect or connect menu option
if (connected) {
menu.findltem(R.id.disconnect).setOnMenultemClickListener(listener);
}
else {
menu.findltem(R.id.connectMenuOption).setOnMenultemClickListener(
listener);

return true;

}

[e*
* @see android.app.ActionBar.TabListenerfonTabUnselected(android.app.ActionBar.Tab,
* android.app.FragmentTransaction)

*/
@Override
public void onTabUnselected(ActionBar.Tab tab,

FragmentTransaction fragmentTransaction) {
// Don't need to do anything when a tab is unselected

}

[
* @see android.app.ActionBar.TabListener#fonTabSelected(android.app.ActionBar.Tab,
* android.app.FragmentTransaction)

*/
@Override
public void onTabSelected(ActionBar.Tab tab,

FragmentTransaction fragmentTransaction) {

/I When the given tab is selected, switch to the corresponding page in

/I the ViewPager.

viewPager.setCurrentltem(tab.getPosition());

selected = tab.getPosition();

/l invalidate the options menu so it can be updated

invalidateOptionsMenu();

/ history fragment is at position zero so get this then refresh its

I view

((HistoryFragment) sectionsPagerAdapter.getltem(0)).refresh();

}

[
* @see android.app.ActionBar.TabListener#fonTabReselected(android.app.ActionBar.Tab,
* android.app.FragmentTransaction)

*/
@Override
public void onTabReselected(ActionBar.Tab tab,

FragmentTransaction fragmentTransaction) {
// Don't need to do anything when the tab is reselected

}

I*@Override

public void onMapReady(GoogleMap gMap) {
ActivityConstants.Map=1;

¥l

/**
* Provides the Activity with the pages to display for each tab

*/
public class SectionsPagerAdapter extends FragmentPagerAdapter {

I/l Stores the instances of the pages
private ArrayList<Fragment> fragments = null;

/**

* Only Constructor, requires a the activity's fragment managers
* @param fragmentManager
*/

public SectionsPagerAdapter(FragmentManager fragmentManager) {
super(fragmentManager);
fragments = new ArrayList<Fragment>();
Il create the history view, passes the client handle as an argument
// through a bundle
Fragment fragment = new HistoryFragment();
Bundle args = new Bundle();
args.putString("handle", getintent().getStringExtra("handle"));
fragment.setArguments(args);

// add all the fragments for the display to the fragments list
fragments.add(fragment);

fragments.add(new MapFrag());

fragments.add(new NotificationFragment());

}
/**

* @see android.support.v4.app.FragmentPagerAdapter#getitem(int)
*/
@~Override
public Fragment getltem(int position) {
return fragments.get(position);

}
/**

* @see android.support.v4.view.PagerAdapter#getCount()
*/
@~Override
public int getCount() {
return fragments.size();

}

/**

*

* @see FragmentPagerAdapter#getPageTitle(int)
*/
@Override
public CharSequence getPageTitle(int position) {
switch (position) {
case 0:
return getString(R.string.history).toUpperCase();
case 1:
return getString(R.string.title_maps_activity).toUpperCase();
case 2:
return getString(R.string.title_activity notification).toUpperCase();
}
I return null if there is no title matching the position
return null;

}

/**

* <code>ChangelListener</code> updates the Ul when the {@link Connection}
* object it is associated with updates

*/

private class ChangeListener implements PropertyChangeListener {

/**
* @see
java.beans.PropertyChangeListener#propertyChange(java.beans.PropertyChangeEvent)
*/
@Override
public void propertyChange(PropertyChangeEvent event) {
// connection object has change refresh the Ul

connectionDetails.runOnUiThread(new Runnable() {

@Override
public void run() {
connectionDetails.invalidateOptionsMenu();
((HistoryFragment) connectionDetails.sectionsPagerAdapter
.getltem(0)).refresh();

public void SetMarker (String key

String name = GetName(key);

Double[] Lating = GetGps(key);

final LatLng Item = new LatLng(Lating[0], Lating[1]);

gMap = (MapView) findViewByld(R.id.mapfrag);

map = gMap.getMap();

map.addMarker(new MarkerOptions().title(name).position(ltem));
}
public Double[] GetGps(String id){

SharedPreferences sharedPreferences = getSharedPreferences("objectlocation”,

Context.MODE_PRIVATE);
String Location = sharedPreferences.getString(id, null);

return processLocation(Location);

}

public String GetHistoryID (int position){
SharedPreferences sharedPreferences = getSharedPreferences("historydetails”,
Context. MODE_ENABLE_WRITE_AHEAD_LOGGING);
return sharedPreferences.getString(Integer.toString(position), null);

}

public Double[] processLocation (String location){
String[] Location = location.split(",");
Double[] LatLng = new Double[2];
LatLng[0] = MintoDec(Location[0]);
LatLng[1] = -MintoDec(Location[1]);
return LatLng;

}

public Double MintoDec(String location){
double a = Double.parseDouble(location);
double d = (int)a / 100;
a-=d*100;
return d +(a/60);

}

public String GetName(String id){

SharedPreferences sharedPreferences =getSharedPreferences("objectdetails",
Context. MODE_ENABLE_WRITE_AHEAD_LOGGING);
return sharedPreferences.getString(id,null);

}
}

Connections

/***

* Copyright (c) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at

*/
package org.eclipse.paho.android.service.sample;

http://www.eclipse.org/org/documents/edl-v10.php.

import android.content.Context;
import org.eclipse.paho.android.service.MqttAndroidClient;

import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**

* <code>Connections</code> is a singleton class which stores all the connection objects
* in one central place so they can be passed between activities using a client

* handle

*/

public class Connections {

/** Singleton instance of <code>Connections</code>**/
private static Connections instance = null;

/** List of {@link Connection} objects**/
private HashMap<String, Connection> connections = null;

I** {@link Persistence} object used to save, delete and restore connections**/
private Persistence persistence = null;

/**

* Create a Connections object

* @param context Applications context
*/

private Connections(Context context)

{

connections = new HashMap<String, Connection>();

/[attempt to restore state
persistence = new Persistence(context);
try {
List<Connection> | = persistence.restoreConnections(context);
for (Connectionc: 1) {
connections.put(c.handle(), c);

}
}

catch (PersistenceException €) {
e.printStackTrace();

}

[

* Returns an already initialised instance of <code>Connections</code>, if Connections has
yet to be created, it will

* create and return that instance

* @param context The applications context used to create the <code>Connections</code>
object if it is not already initialised

* @return Connections instance

*/

public synchronized static Connections getinstance(Context context)

{

if (instance == null) {
instance = new Connections(context);

}

return instance;

}

[e*
* Finds and returns a connection object that the given client handle points to
* @param handle The handle to the <code>Connection</code> to return
* @return a connection associated with the client handle, <code>null</code> if one is not
found
*/
public Connection getConnection(String handle)

{

return connections.get(handle);

}

[ex
* Adds a <code>Connection</code> object to the collection of connections associated with
this object
* @param connection connection to add
*/
public void addConnection(Connection connection)

{

connections.put(connection.handle(), connection);

try {
persistence.persistConnection(connection);

}

catch (PersistenceException e)
{
/lerror persisting well lets just swallow this
e.printStackTrace();
}
}

/**
* Create a fully initialised <code>MqttAndroidClient</code> for the parameters given
* @param context The Applications context
* @param serverURI The ServerURI to connect to
* @param clientld The clientld for this client
* @return new instance of MqgttAndroidClient
*/
public MgttAndroidClient createClient(Context context, String serverURI, String clientld)
{
MqttAndroidClient client = new MqttAndroidClient(context, serverURI, clientld);
return client;

}

/**

* Get all the connections associated with this <code>Connections</code> object.
* @return <code>Map</code> of connections

*/

public Map<String, Connection> getConnections()

{

return connections;

}

/**

* Removes a connection from the map of connections

* @param connection connection to be removed

*/

public void removeConnection(Connection connection) {
connections.remove(connection.handle());
persistence.deleteConnection(connection);

}

History Fragment

/***

* Copyright (c) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at

* http://www.eclipse.org/org/documents/ed|-v10.php.

*/

package org.eclipse.paho.android.service.sample;

import android.content.Context;

import android.content.SharedPreferences;
import android.os.Bundle;

import android.support.v4.app.ListFragment;
import android.text.Spanned;

import android.view.View;

import android.widget.ArrayAdapter;

import android.widget.ListView;

import com.google.android.gms.maps.CameraUpdate;

import com.google.android.gms.maps.CameraUpdateFactory;
import com.google.android.gms.maps.GoogleMap;

import com.google.android.gms.maps.MapView;

import com.google.android.gms.maps.model.LatLng;

import com.google.android.gms.maps.model.MarkerOptions;

/**
* This fragment displays the history information for a client

*/
public class HistoryFragment extends ListFragment {

/**

* Client handle to a {@link Connection} object
**/

String clientHandle = null;

/**

* {@link ArrayAdapter} to display the formatted text
**/

ArrayAdapter<Spanned> arrayAdapter = null;

GoogleMap map;
MapView gMap;

@Override
public void onViewCreated(View view, Bundle savedinstanceState) {
super.onViewCreated(view, savedInstanceState);

/* final ListView histlist = getListView();
histlist.setOnltemClickListener(new AdapterView.OnltemClickListener() {
@Override
public void onltemClick(AdapterView<?> parent, View view, int position, long id) {
String key = GetHistorylD(position);
GoogleMap gmap;
if (key != null) {
String name = GetName(key);
Double[] Lating = GetGps(key);
final LatLng ltem = new LatLng(Lating[0], Lating[1]);
gmap = ((SupportMapFragment)
getFragmentManager().findFragmentByld(R.id.map)).getMapAsync(OnMapReadyCallback());
Marker item = gmap.addMarker(new MarkerOptions().title(name).position(ltem));
}
}
;¥

}

[ex
* @see ListFragment#onCreate(Bundle)

*/

@Override

public void onCreate(Bundle savedinstanceState) {
super.onCreate(savedInstanceState);

/[Pull history information out of bundle

clientHandle = getArguments().getString("handle");
Connection connection = Connections.getinstance(getActivity()).getConnection(clientHandle);

Spanned]] history = connection.history();

lInitialise the arrayAdapter, view and add data
arrayAdapter = new ArrayAdapter<Spanned>(getActivity(), R.layout.list_view_text_view);

arrayAdapter.addAll(history);
setListAdapter(arrayAdapter);

}

@Override
public void onListltemClick(ListView I, View v, int position, long id) {
super.onListltemClick(l, v, position, id);
String message = |.getltemAtPosition(position).toString();
String[] relevant = message.split(" ");
String key = Rightld(relevant[1]);
SetMarker(key);
}

public String Rightld(String id{
Double[] trial = GetGps(GetName(id));
if (trial == null){

return id;
}
else{
return GetName(id);

}
}

/* * Code for getting location of scanned objects
* Kimbo-Made*/
public Double[] GetGps(String id){
SharedPreferences sharedPreferences =
getContext().getSharedPreferences("objectlocation”, Context. MODE_PRIVATE);
String Location = sharedPreferences.getString(id, null);
if(Location != null) {
return processLocation(Location);

}

else return null;

}

/* public String GetHistoryID (int position){
SharedPreferences sharedPreferences = getContext().getSharedPreferences("historydetails”,
Context. MODE_ENABLE_WRITE_AHEAD_LOGGING);
return sharedPreferences.getString(Integer.toString(position), null);
il

public Double[] processLocation (String location){
if(location!=null{
String[] Location = location.split(",");
Double[] LatLng = new Double[2];
LatLng[0] = MintoDec(Location[0]);
LatLng[1] = -MintoDec(Location[1]);
return LatLng;}
else return null;

}

public Double MintoDec(String location){
double a = Double.parseDouble(location);
double d = (int)a / 100;
a -=d*100;
return d +(a/60);

}

public String GetName(String id){

SharedPreferences sharedPreferences = getContext().getSharedPreferences("objectdetails",
Context. MODE_ENABLE_WRITE_AHEAD_LOGGING);
return sharedPreferences.getString(id,null);

}

public void SetMarker (String key
String name = GetName(key);
Double[] Lating = GetGps(key);
if(Lating!=null{
final LatLng Item = new LatLng(Lating[0], Lating[1]);
gMap = (MapView) getActivity().findViewByld(R.id.mapfrag);
map = gMap.getMap();
map.clear();

map.addMarker(new MarkerOptions().title(name).position(ltem));
I}
CameraUpdate cameraUpdate = CameraUpdateFactory.newLatLngZoom(ltem, 17);
map.animateCamera(cameraUpdate);}

/**
* Updates the data displayed to match the current history
*/
public void refresh() {
if (arrayAdapter != null) {
arrayAdapter.clear();

arrayAdapter.addAll(Connections.getinstance(getActivity()).getConnection(clientHandle).history(

);
arrayAdapter.notifyDataSetChanged();
}
}
}

Listener

/***

* Copyright (¢) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at

* http://www.eclipse.org/org/documents/edI-v10.php.

*/

package org.eclipse.paho.android.service.sample;

import android.content.Context;

import android.content.Intent;

import android.content.SharedPreferences;

import android.util.Log;

import android.view.Menultem;

import android.view.Menultem.OnMenultemClickListener;
import android.widget.EditText;

import android.widget.Toast;

import org.eclipse.paho.android.service.MqttAndroidClient;
import org.eclipse.paho.android.service.sample.ActionListener.Action;

import org.eclipse.paho.android.service.sample.Connection.ConnectionStatus;
import org.eclipse.paho.client.mqttv3.IMqttToken;

import org.eclipse.paho.client. mqttv3.MqttException;

import org.eclipse.paho.client.mqttv3.MqttSecurityException;

import java.io.lOException;

import java.io.InputStream;

import java.util.HashMap;

import java.util.Map.Entry;

import java.util.logging.LogManager;

/**

* Deals with actions performed in the {@link ClientConnections} activity
* and the {@link ConnectionDetails} activity and associated fragments
*/

public class Listener implements OnMenultemClickListener{

I** The handle to a {@link Connection} object which contains the {@link MqttAndroidClient}
associated with this object **/
private String clientHandle = null;

I** {@link ConnectionDetails} reference used to perform some actions**/
private ConnectionDetails connectionDetails = null;

I** {@link ClientConnections} reference used to perform some actions**/
private ClientConnections clientConnections = null;

I** {@link Context} used to load and format strings **/

private Context context = null;

/** Whether Paho is logging is enabled**/
static boolean logging = false;

[
* Constructs a listener object for use with {@link ConnectionDetails} activity and
* associated fragments.
* @param connectionDetails The instance of {@link ConnectionDetails}
* @param clientHandle The handle to the client that the actions are to be performed on
*/
public Listener(ConnectionDetails connectionDetails, String clientHandle)
{
this.connectionDetails = connectionDetails;
this.clientHandle = clientHandle;
context = connectionDetails;

/**
* Constructs a listener object for use with {@link ClientConnections} activity.
* @param clientConnections The instance of {@link ClientConnections}
*/
public Listener(ClientConnections clientConnections) {
this.clientConnections = clientConnections;
context = clientConnections;

}

/**

* Perform the needed action required based on the button that
* the user has clicked.

* @param item The menu item that was clicked

* @return If there is anymore processing to be done

*

*/

@Override
public boolean onMenultemClick(Menultem item) {

int id = item.getltemld();

switch (id)
{
case R.id.publish :
saveName();
saveld();
Notify.toast(context, "You renamed your item", Toast.LENGTH_LONG);
break;
case R.id.subscribe :
subscribe();
break;
case R.id.newConnection :
createAndConnect();
break;
case R.id.disconnect :
disconnect();
break;
case R.id.connectMenuOption :

reconnect();
/[subscribe();
break;

case R.id.startLogging :
enablePahoLogging();
break;

case R.id.endLogging :
disablePaholLogging();
break;

}

return false;

}

/**

* Reconnect the selected client
*/

private void reconnect() {

Connections.getinstance(context).getConnection(clientHandle).changeConnectionStatus(Conne
ctionStatus. CONNECTING);

Connection ¢ = Connections.getinstance(context).getConnection(clientHandle);
try {
IMqgttToken connect = c.getClient().connect(c.getConnectionOptions(), null, new
ActionListener(context, Action. CONNECT, clientHandle, null));
}
catch (MqttSecurityException e) {
Log.e(this.getClass().getCanonicalName(), "Failed to reconnect the client with the handle " +
clientHandle, e);
c.addAction("Client failed to connect");
}
catch (MqttException e) {
Log.e(this.getClass().getCanonicalName(), "Failed to reconnect the client with the handle " +
clientHandle, e);
c.addAction("Client failed to connect");

}
}

/**
* Disconnect the client

*/
private void disconnect() {

Connection ¢ = Connections.getinstance(context).getConnection(clientHandle);

/fif the client is not connected, process the disconnect
if (!c.isConnected()) {
return;

}

try {
c.getClient().disconnect(null, new ActionListener(context, Action.DISCONNECT,

clientHandle, null));
c.changeConnectionStatus(ConnectionStatus.DISCONNECTING);
}
catch (MqgttException e) {
Log.e(this.getClass().getCanonicalName(), "Failed to disconnect the client with the handle '
+ clientHandle, e);
c.addAction("Client failed to disconnect");

}

}

/**

* Subscribe to a topic that the user has specified

*/

private void subscribe()

{
String topic = "trakPak";//((EditText)

connectionDetails.findViewByld(R.id.topic)).getText().toString();

//((EditText) connectionDetails.findViewByld(R.id.topic)).getText().clear();

//IRadioGroup radio = (RadioGroup) connectionDetails.findViewByld(R.id.qosSubRadio);
/lint checked = radio.getCheckedRadioButtonld();
int qos = ActivityConstants.defaultQos;

/I switch (checked) {
/lcase R.id.qos0 :
/lqos = 1;
/Ibreak;
/[case R.id.qos1 :
/lllqos = 1;
/lbreak;

//lcase R.id.qos2 :
/lqos = 1;
/lbreak;

I}

try {
String[] topics = new String[1];
topics[0] = topic;
Connections.getlnstance(context).getConnection(clientHandle).getClient().subscribe(topic,
gos, null, new ActionListener(context, Action.SUBSCRIBE, clientHandle, topic));
}
catch (MqttSecurityException e) {
Log.e(this.getClass().getCanonicalName(), "Failed to subscribe to" + topic + " the client with
the handle " + clientHandle, e);
}
catch (MqttException e) {
Log.e(this.getClass().getCanonicalName(), "Failed to subscribe to" + topic + " the client with
the handle " + clientHandle, e);

}
}

private void saveName()
{
String key = ((EditText)
connectionDetails.findViewByld(R.id.NumberText)).getText().toString();
String name =
((EditText)connectionDetails.findViewByld(R.id.NameText)).getText().toString();
SharedPreferences ObjectDetails = context.getSharedPreferences("objectdetails",
Context. MODE_ENABLE_WRITE_AHEAD_LOGGING);
SharedPreferences.Editor editor = ObjectDetails.edit();
editor.putString(key,name);
editor.apply();

}

private void saveld()
{
String key = ((EditText)
connectionDetails.findViewByld(R.id.NumberText)).getText().toString();
String name =
((EditText)connectionDetails.findViewByld(R.id.NameText)).getText().toString();
SharedPreferences ObjectDetails = context.getSharedPreferences("objectdetails”,
Context. MODE_ENABLE_WRITE_AHEAD_LOGGING);
SharedPreferences.Editor editor = ObjectDetails.edit();

editor.putString(name,key);
editor.apply();
}
/**
* Publish the message the user has specified
*/
/* private void publish()
{
String topic = "InTopic";//((EditText) connectionDetails.findViewByld(R.id.lastWillTopic))
/.getText().toString();

((EditText) connectionDetails.findViewByld(R.id.lastWillTopic)).getText().clear();

String message = ((EditText) connectionDetails.findViewByld(R.id.lastWill)).getText()
.toString();

((EditText) connectionDetails.findViewByld(R.id.lastWill)).getText().clear();

//RadioGroup radio = (RadioGroup) connectionDetails.findViewByld(R.id.qosRadio);
/lint checked = radio.getCheckedRadioButtonld();
int qos = ActivityConstants.defaultQos;

/Iswitch (checked) {
/lcase R.id.qos0 :
/l qos = 1;

Il break;

/l case R.id.qos1 :
Il qos = 1;

/| break;

/I case R.id.qos2 :
/I qos =1;

Il break;

I}

boolean retained = ((CheckBox) connectionDetails.findViewByld(R.id.retained))
.isChecked();

String[] args = new String[2];
args[0] = message,;
args[1] = topic+";qos:"+qos+";retained:"+retained;

try {
Connections.getinstance(context).getConnection(clientHandle).getClient()

.publish(topic, message.getBytes(), qos, retained, null, new ActionListener(context,
Action.PUBLISH, clientHandle, args));
}
catch (MqttSecurityException e) {
Log.e(this.getClass().getCanonicalName(), "Failed to publish a messged from the client with
the handle " + clientHandle, e);
}
catch (MqttException e) {
Log.e(this.getClass().getCanonicalName(), "Failed to publish a messged from the client with
the handle " + clientHandle, e);

}
i

/**

* Create a new client and connect
*/

private void createAndConnect()

{

Intent createConnection;

/[start a new activity to gather information for a new connection

createConnection = new Intent();

createConnection.setClassName(
clientConnections.getApplicationContext(),
"org.eclipse.paho.android.service.sample.NewConnection");

clientConnections.startActivityForResult(createConnection,
ActivityConstants.connect);

}

/**

* Enables logging in the Paho MQTT client
*/

private void enablePahoLogging() {

try {
InputStream logPropStream =

context.getResources().openRawResource(R.raw.jsr47android);
LogManager.getLogManager().readConfiguration(logPropStream);
logging = true;

HashMap<String, Connection> connections =
(HashMap<String,Connection>)Connections.getinstance(context).getConnections();
if(!connections.isEmpty(){
Entry<String, Connection> entry = connections.entrySet().iterator().next();
Connection connection = (Connection)entry.getValue();
connection.getClient().setTraceEnabled(true);
/lchange menu state.
clientConnections.invalidateOptionsMenu();

/[Connections.getinstance(context).getConnection(clientHandle).getClient().setTraceEnabled(tr
ue);
}else{
Log.i("SampleListener","No connection to enable log in service");
}

}
catch (IOException e) {

Log.e("MqttAndroidClient",
"Error reading logging parameters", e);

}

/**

* Disables logging in the Paho MQTT client
*/

private void disablePaholLogging() {
LogManager.getLogManager().reset();
logging = false;

HashMap<String, Connection> connections =
(HashMap<String,Connection>)Connections.getInstance(context).getConnections();
if(lconnections.isEmpty(){
Entry<String, Connection> entry = connections.entrySet().iterator().next();
Connection connection = (Connection)entry.getValue();
connection.getClient().setTraceEnabled(false);
//change menu state.
clientConnections.invalidateOptionsMenu();
else{
Log.i("SampleListener","No connection to disable log in service");

}

clientConnections.invalidateOptionsMenu();

}

Map Frag
package org.eclipse.paho.android.service.sample;

import android.os.Bundle;

import android.view.LayoutInflater;
import android.view.View;

import android.view.ViewGroup;

import com.google.android.gms.maps.CameraUpdate;

import com.google.android.gms.maps.CameraUpdateFactory;
import com.google.android.gms.maps.GoogleMap;

import com.google.android.gms.maps.MapView;

import com.google.android.gms.maps.Mapsinitializer;

import com.google.android.gms.maps.model.LatLng;

/**

* Created by Michael on 4/27/2016.

*/

public class MapFrag extends android.support.v4.app.Fragment {
MapView mapView;
GoogleMap map;

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container, Bundle
savedInstanceState) {
View v = inflater.inflate(R.layout.map_frag, container, false);

Il Gets the MapView from the XML layout and creates it
mapView = (MapView) v.findViewByld(R.id.mapfrag);
mapView.onCreate(savedInstanceState);

Il Gets to GoogleMap from the MapView and does initialization stuff

map = mapView.getMap();

/Imap.getUiSettings().setMyLocationButtonEnabled(false);
//map.setMyLocationEnabled(true);

//map.addMarker(new MarkerOptions().position(new LatLng(41.702622,-86.238967)));

/I Needs to call Mapsinitializer before doing any CameraUpdateFactory calls
Mapsinitializer.initialize(this.getActivity());

/I Updates the location and zoom of the MapView

CameraUpdate cameraUpdate = CameraUpdateFactory.newLatLngZoom(new
LatLng(41.702622,-86.238967), 17);

map.animateCamera(cameraUpdate);

return v;

}

@Override

public void onResume()
mapView.onResume();
super.onResume();

}

@Override

public void onDestroy() {
super.onDestroy();
mapView.onDestroy();

}

@Override

public void onLowMemory() {
super.onLowMemory();
mapView.onLowMemory();

}
}

Mqtt Callback Handler

/***

* Copyright (¢) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at

* http://www.eclipse.org/org/documents/edI-v10.php.

*/

package org.eclipse.paho.android.service.sample;

import android.app.Activity;

import android.content.Context;

import android.content.Intent;

import android.content.SharedPreferences;
import android.content.SharedPreferences.Editor;
import android.widget.EditText;

import android.widget. TextView;

import android.widget.Toast;

import org.eclipse.paho.android.service.sample.Connection.ConnectionStatus;
import org.eclipse.paho.client.mqttv3.IMqttDeliveryToken;

import org.eclipse.paho.client.mqttv3.MqttCallback;

import org.eclipse.paho.client.mqttv3.MqttMessage;

import java.nio.charset.StandardCharsets;

/**

* Handles call backs from the MQTT Client

*/

public class MqttCallbackHandler extends Activity implements MqttCallback {

I {@link Context} for the application used to format and import external strings**/
private Context context;

/** Client handle to reference the connection that this handler is attached to**/
private String clientHandle;

[
* Creates an <code>MgqttCallbackHandler</code> object
* @param context The application's context
* @param clientHandle The handle to a {@link Connection} object
*/
public MqttCallbackHandler(Context context, String clientHandle)
{
this.context = context;
this.clientHandle = clientHandle;

}

public void saveGps(String key, String value) {
SharedPreferences ObjectLocation =
context.getSharedPreferences("objectlocation",context. MODE_PRIVATE);
Editor editor = ObjectLocation.edit();
editor.putString(key, value);

editor.apply();
}

[** Code for obtaining scanned objects name
* Kimbo-Made
*/

/** Code for renaming scanned objects
* Kimbo-Made
*/

public String GetName(String id){

SharedPreferences sharedPreferences =
context.getSharedPreferences("objectdetails",Context. MODE_ENABLE_WRITE_AHEAD_LOG
GING);

return sharedPreferences.getString(id, null);

}

/** Code for parsing the payload
* Kimbo-Made
*/

public String[] Transcribe(String string)
{
return string.split(",");

}

public String TimeShift(String time){
double t = Double.parseDouble(time);
int h = (int)t/10000;
int m = (int)t/100 -h*100;
h = h-4;
if(h==-1){
h =23;
}
else if(h==-2)
h=22;
}
else if(h==-3)
h =21,

}

else if(h==-4){
h = 20;
}
return h +":" + m;
}
[

* @see org.eclipse.paho.client. mqttv3.MgttCallback#connectionLost(java.lang.Throwable)

*/

@Override

public void connectionLost(Throwable cause) {

1l cause.printStackTrace();
if (cause != null) {

Connection ¢ = Connections.getinstance(context).getConnection(clientHandle);
c.addAction("Connection Lost");
c.changeConnectionStatus(ConnectionStatus.DISCONNECTED);

//format string to use a notification text
Object[] args = new Object[2];

args[0] = c.getld();

args[1] = c.getHostName();

String message = context.getString(R.string.connection_lost, args);

//build intent

Intent intent = new Intent();

intent.setClassName(context,
"org.eclipse.paho.android.service.sample.ConnectionDetails");

intent.putExtra("handle", clientHandle);

/Inotify the user
Notify.notifcation(context, message, intent, R.string.notifyTitle_connectionLost);

}
}

/**

* @see org.eclipse.paho.client.mqttv3.MqttCallback#messageArrived(java.lang.String,
org.eclipse.paho.client.mqttv3.MqttMessage)

*/

public void setNumText (String name) {

EditText editText = (EditText) findViewByld(R.id.NumberText);
editText.setText(name, TextView.BufferType.EDITABLE);

}

@Override
public void messageArrived(String topic, MgttMessage message) throws Exception {

//Get connection object associated with this object
Connection ¢ = Connections.getinstance(context).getConnection(clientHandle);

/Iparse payload string

String str = new String(message.getPayload(), StandardCharsets.UTF_8);
String[] parse = Transcribe(str);

String name = parse[0];

String Time = TimeShift(parse[2]);

String gps = parse[3] + "," + parse[5];
saveGps(name, gps);

/lcreate arguments to format message arrived notifcation string
String[] args = new String[3];

if (GetName(name)!=null{
args[0] = GetName(name);}

else{
args[0] = name;
//setNumText(name);

Notify.toast(context,"Please name your item", Toast.LENGTH_LONG);
}

args[1] = Time;

/[get the string from strings.xml and format
String messageString = context.getString(R.string.messageRecieved, (Object[]) args);

/lcreate intent to start activity

Intent intent = new Intent();

intent.setClassName(context, "org.eclipse.paho.android.service.sample.ConnectionDetails");
intent.putExtra("handle", clientHandle);

/[format string args
Object[] notifyArgs = new String[4];

notifyArgs[0] = c.getld();

if (GetName(name)==null{
notifyArgs[1] = name;}

else{
notifyArgs[1] = GetName(name);}

notifyArgs[2] = Time;
notifyArgs[3] = topic;

/Inotify the user
int messagelD = Notify.GetMessagelD();

/[saveld(Integer.toString(messagelD),name);

Notify.notifcation(context, context.getString(R.string.notification, notifyArgs), intent,
R.string.notifyTitle);

/lupdate client history
c.addAction(messageString);

}

[e*

* @see
org.eclipse.paho.client.mqttv3.MqttCallback#deliveryComplete(org.eclipse.paho.client.mqttv3.IM
qttDeliveryToken)

*/

@Override

public void deliveryComplete(IMqttDeliveryToken token) {

// Do nothing

}

}

Mqtt Trace Callback

/***

* Copyright (c) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.

*

* The Eclipse Public License is available at

*

http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at
* http://www.eclipse.org/org/documents/ed|-v10.php.
*/

package org.eclipse.paho.android.service.sample;

import android.util.Log;
import org.eclipse.paho.android.service.MqttTraceHandler;
public class MqttTraceCallback implements MqttTraceHandler {

public void traceDebug(java.lang.String arg0, java.lang.String arg1) {
Log.i(arg0, arg1);
I3

public void traceError(java.lang.String arg0, java.lang.String arg1) {
Log.e(arg0, arg1);
I3

public void traceException(java.lang.String arg0, java.lang.String arg1,
java.lang.Exception arg2) {
Log.e(arg0, arg1, arg2);

New Connection

/***

* Copyright (c) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at

* http://www.eclipse.org/org/documents/ed|-v10.php.

*/

package org.eclipse.paho.android.service.sample;

import android.app.Activity;

import android.content.Intent;

import android.os.Bundle;

import android.support.v4.app.NavUltils;

import android.view.Menu;

import android.view.Menultem;

import android.view.Menultem.OnMenultemClickListener;
import android.widget.ArrayAdapter;

import android.widget.EditText;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;

import java.io.FileReader;
import java.io.FileWriter;
import java.io.lOException;
import java.util.ArrayList;

/**

* Handles collection of user information to create a new MQTT Client
*/
public class NewConnection extends Activity {
I** {@link Bundle} which holds data from activities launched from this activity **/
private Bundle result = null;

[
* @see android.app.Activity#onCreate(android.os.Bundle)
*/

@Override
protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_new_connection);

ArrayAdapter<String> adapter = new ArrayAdapter<String>(this,
android.R.layout.simple_list_item_1);

adapter.addAll(readHosts());

/IAutoCompleteTextView textView = (AutoCompleteTextView) findViewByld(R.id.serverURI);

/ltextView.setAdapter(adapter);

/Nload auto compete options

}

[ex
* @see android.app.Activity#onCreateOptionsMenu(android.view.Menu)
*/

@Override
public boolean onCreateOptionsMenu(Menu menu) {
getMenulnflater().inflate(R.menu.activity_new_connection, menu);
OnMenultemClickListener listener = new Listener(this);
menu.findltem(R.id.connectAction).setOnMenultemClickListener(listener);
menu.findltem(R.id.advanced).setOnMenultemClickListener(listener);

return true;

}

[
* @see android.app.Activity#onOptionsltemSelected(android.view.Menultem)
*/

@Override
public boolean onOptionsltemSelected(Menultem item) {
switch (item.getltemld()) {

case android.R.id.home :
NavUtils.navigateUpFromSameTask(this);
return true;

}

return super.onOptionsltemSelected(item);

}

/**
* @see android.app.Activity#onActivityResult(int, int, android.content.Intent)
*/
@Override
protected void onActivityResult(int requestCode, int resultCode,
Intent intent) {

if (resultCode == RESULT_CANCELED) {
return;

}

result = intent.getExtras();

/**
* Handles action bar actions

*/
private class Listener implements OnMenultemClickListener {

/lused for starting activities
private NewConnection newConnection = null;

public Listener(NewConnection newConnection)

{

this.newConnection = newConnection;

}

[ox
* @see
android.view.Menultem.OnMenultemClickListener#onMenultemClick(android.view.Menultem)
*/
@Override
public boolean onMenultemClick(Menultem item) {

{

/I this will only connect need to package up and sent back
int id = item.getltemlId();
Intent dataBundle = new Intent();

switch (id) {
case R.id.connectAction :
Ilextract client information
String server = (ActivityConstants.server); //((AutoCompleteTextView)
findViewByld(R.id.serverURI))
/I .getText().toString();
String port = ActivityConstants.port;//((EditText) findViewByld(R.id.port))
/.getText().toString();
String clientld = ((EditText) findViewByld(R.id.clientld))
.getText().toString();

I* if (server.equals(ActivityConstants.empty) || port.equals(ActivityConstants.empty) ||
clientld.equals(ActivityConstants.empty))
{
String notificationText = newConnection.getString(R.string.missingOptions);
Notify.toast(newConnection, notificationText, Toast. LENGTH_LONG);

return false;
¥/

boolean cleanSession = true;//((CheckBox)
findViewByld(R.id.cleanSessionCheckBox)).isChecked();

Ilpersist server

lIpersistServerURI(server);

//put data into a bundle to be passed back to ClientConnections
dataBundle.putExtra(ActivityConstants.server, server);
dataBundle.putExtra(ActivityConstants.port, port);
dataBundle.putExtra(ActivityConstants.clientld, clientld);
dataBundle.putExtra(ActivityConstants.action, ActivityConstants.connect);
dataBundle.putExtra(ActivityConstants.cleanSession, cleanSession);

if (result == null) {
/I create a new bundle and put default advanced options into a bundle
result = new Bundle();

result.putString(ActivityConstants.message,
ActivityConstants.empty);
result.putString(ActivityConstants.topic, ActivityConstants.empty);
result.putint(ActivityConstants.qos, ActivityConstants.defaultQos);
result.putBoolean(ActivityConstants.retained,
ActivityConstants.defaultRetained);

result.putString(ActivityConstants.username,
ActivityConstants.empty);

result.putString(ActivityConstants.password,
ActivityConstants.empty);

result.putint(ActivityConstants.timeout,
ActivityConstants.defaultTimeOut);

result.putint(ActivityConstants.keepalive,
ActivityConstants.defaultkKeepAlive);

result.putBoolean(ActivityConstants.ssl,
ActivityConstants.defaultSsl);

}

/fadd result bundle to the data being returned to ClientConnections
dataBundle.putExtras(result);

setResult(RESULT_OK, dataBundle);

newConnection.finish();
break;
case R.id.advanced :

//start the advanced options activity

dataBundle.setClassName(newConnection,
"org.eclipse.paho.android.service.sample.Advanced");

newConnection.startActivityForResult(dataBundle,
ActivityConstants.advancedConnect);

break;

}

return false;

}

[ex
* Add a server URI to the persisted file
* @param serverURI the uri to store
*/
private void persistServerURI(String serverURI) {
File fileDir = newConnection.getFilesDir();
File presited = new File(fileDir, "hosts.txt");
BufferedWriter bfw = null;
try {
bfw = new BufferedWriter(new FileWriter(presited));
bfw.write(serverURI);
bfw.newLine();
}
catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
finally {
try {
if (bfw 1= null) {
bfw.close();
}
}

catch (IOException e) {
// TODO Auto-generated catch block

e.printStackTrace();

}
}
}

}

[e*
* Read persisted hosts
* @return The hosts contained in the persisted file
*/
private String[] readHosts() {
File fileDir = getFilesDir();
File persisted = new File(fileDir, "hosts.txt");
if (!persisted.exists()) {
return new String[0];
}
ArrayList<String> hosts = new ArrayList<String>();
BufferedReader br = null;
try {
br = new BufferedReader(new FileReader(persisted));
String line = null;
line = br.readLine();
while (line != null) {
hosts.add(line);
line = br.readLine();

}

}
catch (IOException e) {

e.printStackTrace();

}
finally {
try {
if (br != null) {
br.close();
}
}

catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
}

return hosts.toArray(new String[hosts.size()]);

Notification
package org.eclipse.paho.android.service.sample;

/**

* Created by Michael on 4/9/2016.
*/

import android.app.Activity;
import android.os.Bundle;
import android.widget.EditText;

public class notification extends Activity {

EditText nameText;
EditText numText;

@~Override

protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedlnstanceState);
setContentView(R.layout.notification);
nameText = (EditText) findViewByld(R.id.NameText);
numText = (EditText) findViewByld(R.id.NumberText);

}

/*public void setNumText (String name){
EditText editText = (EditText) findViewByld(R.id.NumberText);
editText.setText(name, TextView.BufferType.EDITABLE);

¥yl

Notification Fragment

/***

* Copyright (c) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.

*

* The Eclipse Public License is available at

*

http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at
* http://www.eclipse.org/org/documents/ed|-v10.php.
*/

package org.eclipse.paho.android.service.sample;

import android.os.Bundle;

import android.support.v4.app.Fragment;
import android.view.LayoutInflater;
import android.view.View;

import android.view.ViewGroup;

/**

* Fragment for the publish message pane.
*/
public class NotificationFragment extends Fragment {

/**

* @see Fragment#onCreateView(LayoutInflater, ViewGroup, Bundle)

*/

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedinstanceState) {

return Layoutinflater.from(getActivity()).inflate(R.layout.notification, null);

}

Notify

/***

* Copyright (c) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at

* http://www.eclipse.org/org/documents/edl-v10.php.

*/

package org.eclipse.paho.android.service.sample;

import android.app.Notification;

import android.app.NotificationManager;

import android.app.Pendingintent;

import android.content.Context;

import android.content.Intent;

import android.support.v4.app.NotificationCompat.Builder;
import android.widget.Toast;

import java.util. Calendar;

/**

* Provides static methods for creating and showing notifications to the user.
*/
public class Notify {

/** Message ID Counter **/
private static int MessagelD = 0;

[e*
* Displays a notification in the notification area of the Ul

* @param context Context from which to create the notification

* @param messageString The string to display to the user as a message

* @param intent The intent which will start the activity when the user clicks the notification

* @param notificationTitle The resource reference to the notification title

*/

static void notifcation(Context context, String messageString, Intent intent, int notificationTitle) {

//Get the notification manage which we will use to display the notification

String ns = Context.NOTIFICATION_SERVICE;

NotificationManager mNotificationManager = (NotificationManager)
context.getSystemService(ns);

Calendar.getinstance().getTime().toString();

long when = System.currentTimeMillis();

/Iget the notification title from the application's strings.xml file
CharSequence contentTitle = context.getString(notificationTitle);

/lthe message that will be displayed as the ticker

String ticker = contentTitle + " " + messageString;

//build the pending intent that will start the appropriate activity

Pendingintent pendingintent = Pendinglntent.getActivity(context,
ActivityConstants.showHistory, intent, 0);

//build the notification

Builder notificationCompat = new Builder(context);

notificationCompat.setAutoCancel(true)
.setContentTitle(contentTitle)
.setContentIntent(pendinglntent)
.setContentText(messageString)
.setTicker(ticker)
.setWhen(when)
.setSmalllcon(R.drawable.ic_launcher);

Notification notification = notificationCompat.build();
/[display the notification
mNotificationManager.notify(MessagelD, notification);
MessagelD++;

[e*
* Display a toast notification to the user

* @param context Context from which to create a notification

* @param text The text the toast should display

* @param duration The amount of time for the toast to appear to the user
*/
static void toast(Context context, CharSequence text, int duration) {

Toast toast = Toast.makeText(context, text, duration);

toast.show();
}

static int GetMessagelD() {

return MessagelD;

}

Open File Dialog

/***

* Copyright (¢) 1999, 2014 IBM Corp.

*

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at

* http://www.eclipse.org/org/documents/ed|-v10.php.

*/

package org.eclipse.paho.android.service.sample;

import android.app.Activity;

import android.app.AlertDialog;
import android.app.Dialog;

import android.content.Context;
import android.os.Bundle;

import android.view.View;

import android.widget.AdapterView;
import android.widget.AdapterView.OnltemClickListener;
import android.widget.ListView;
import android.widget.SimpleAdapter;
import android.widget.Toast;

import java.io.File;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Locale;
import java.util.Map;

[
* Add SSL key file selector
* @author foxxiang
*/
public class OpenFileDialog {
public static String tag = "OpenFileDialog";
static final public String sRoot = "/";
static final public String sParent ="..";
static final public String sFolder =".";
static final public String sEmpty ="";
static final private String sOnErrorMsg = "No rights to access!";

Jox
* Create a File Selector Dialog windows
* @param id Dialog Id
* @param context Context that the application is running in
* @param title The tile of File Selector Window
* @param callback A callback Bundle interface for data transport
* @param suffix The file name suffix. E.g. .bks , .pem
* @param images The resource id for file icon
* @return The Dialog Window
*/
public static Dialog createDialog(int id, Context context, String title, CallbackBundle
callback, String suffix, Map<String, Integer> images){
AlertDialog.Builder builder = new AlertDialog.Builder(context);
builder.setView(new FileSelectView(context, id, callback, suffix, images));
Dialog dialog = builder.create();
//dialog.requestWindowFeature(Window.FEATURE_NO_TITLE);
dialog.setTitle(title);
return dialog;

}

/** The FileSelect View with OnltemClick Listener*/
static class FileSelectView extends ListView implements OnltemClickListener{

private CallbackBundle callback = null;
private String path = sRoot;

private List<Map<String, Object>> list = null;
private int dialogid = 0;

private String suffix = null;
private Map<String, Integer> imagemap = null;

Jox
* Create the File Selector Dialog Window View

* @param id Dialog Id

* @param context Context that the application is running in

* @param title The tile of File Selector Window

* @param callback A callback Bundle interface for data transport
* @param suffix The file name suffix. E.g. .bks , .pem

* @param images The resource id for file icon

*/

public FileSelectView(Context context, int dialogid, CallbackBundle callback,

String suffix, Map<String, Integer> images) {

super(context);

this.imagemap = images;

this.suffix = suffix==null?"":suffix.toLowerCase(Locale.getDefault());

this.callback = callback;

this.dialogid = dialogid;

this.setOnltemClickListener(this);

refreshFileList();

}
[
* Query the suffix of file which want to filter
* @param filename
* @return
*/
private String getSuffix(String filename){
int dix = filename.lastindexOf('.");

if(dix<0){
return "";
}
else{
return filename.substring(dix+1);
}
}
Jox
* Get The Image resource ID
* @param s
* @return
*/

private int getimageld(String s){

if(imagemap == null){
return O;

}

else if(imagemap.containsKey(s))
return imagemap.get(s);

}

else if(imagemap.containsKey(sEmpty)){
return imagemap.get(sEmpty);

}

else {
return O;

}

}

/**

* Refresh the file list in Window
* @return

*/

private int refreshFileList()

{

File[] files = null;
try{
files = new File(path).listFiles();
}
catch(Exception e){
files = null;
}
if(files==null){
Toast.makeText(getContext(),

sOnErrorMsg,Toast.LENGTH_SHORT).show();

Object>>();

Object>>();

return -1;
}
if(list 1= null{
list.clear();
}
else{
list = new ArrayList<Map<String, Object>>(files.length);
}

ArrayList<Map<String, Object>> Ifolders = new ArrayList<Map<String,

ArrayList<Map<String, Object>> Ifiles = new ArrayList<Map<String,

if('this.path.equals(sRoot)){
Map<String, Object> map = new HashMap<String, Object>();
map.put("name"”, sRoot);
map.put("path”, sRoot);
map.put("img", getimageld(sRoot));
list.add(map);

map = new HashMap<String, Object>();
map.put("name", sParent);
map.put("path”, path);

map.put("img", getimageld(sParent));
list.add(map);

}

for(File file: files)
{
if(file.isDirectory() && file.listFiles()!=null){
Map<String, Object> map = new HashMap<String,
Object>();
map.put("name", file.getName());
map.put("path”, file.getPath());
map.put("img", getimageld(sFolder));

Ifolders.add(map);
}
else if(file.isFile()X

String sf =

getSuffix(file.getName()).toLowerCase(Locale.getDefault());
if(suffix == null || suffix.length()==0 || (sf.length()>0 &&

suffix.indexOf("."+sf+";")>=0)){

Map<String, Object> map = new HashMap<String,
Object>();

map.put("name", file.getName());

map.put("path”, file.getPath());

map.put("img", getimageld(sf));

Ifiles.add(map);

}

list.addAll(Ifolders);
list.addAll(Ifiles);

SimpleAdapter adapter = new SimpleAdapter(getContext(), list,
R.layout.filedialogitem, new String[l{"img", "name", "path"}, new int[[{R.id.filedialogitem_img,
R.id.filedialogitem_name, R.id.filedialogitem_path});

this.setAdapter(adapter);

return files.length;

}
/**

* OnltemClick action

*

* @see ListView#onltemClick(AdapterView<?> parent, View v, int position, long

*/
@SuppressWarnings("deprecation")
@Override
public void onltemClick(AdapterView<?> parent, View v, int position, long id) {
String pt = (String) list.get(position).get("path");
String fn = (String) list.get(position).get("name");
if(fn.equals(sRoot) || fn.equals(sParent)}{
File fl = new File(pt);
String ppt = fl.getParent();

if(ppt = null){
path = ppt;
}
else{
path = sRoot;
}
}
else{
File fl = new File(pt);
if(flisFile()){
((Activity)getContext()).dismissDialog(this.dialogid);
Bundle bundle = new Bundle();
bundle.putString("path", pt);
bundle.putString("name”, fn);
this.callback.callback(bundle);
return;
}
else if(fl.isDirectory(){
path = pt;
}
}

this.refreshFileList();

Persistence

/***

* Copyright (c) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.

*

* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at
* http://www.eclipse.org/org/documents/ed|-v10.php.
*/

package org.eclipse.paho.android.service.sample;

import android.content.ContentValues;

import android.content.Context;

import android.database.Cursor;

import android.database.sqlite.SQLiteDatabase;
import android.database.sqlite.SQLiteOpenHelper;
import android.provider.BaseColumns;

import org.eclipse.paho.client.mqttv3.MqttConnectOptions;
import org.eclipse.paho.client. mqttv3.MqgttMessage;

import java.util.ArrayList;
import java.util.List;

/**

* <code>Persistence</code> deals with interacting with the database to persist
* {@link Connection} objects so created clients survive, the destruction of the

* singleton {@link Connections} object.

*/

public class Persistence extends SQLiteOpenHelper implements BaseColumns {

/** The version of the database **/
public static final int DATABASE_VERSION = 1;

/** The name of the database file **/

public static final String DATABASE_NAME = "connections.db";
/** The name of the connections table **/

public static final String TABLE_CONNECTIONS = "connections";

/** Table column for host **/

public static final String COLUMN_HOST = "host";

/** Table column for client id **/

public static final String COLUMN_client_ID = "clientID";
/** Table column for port **/

public static final String COLUMN_port = "port";

[** Table column for ssl enabled**/
public static final String COLUMN _ss| = "ssl";

/lconnection options

[** Table column for client's timeout**/

public static final String COLUMN_TIME_OUT = "timeout";

/** Table column for client's keepalive **/

public static final String COLUMN_KEEP_ALIVE = "keepalive";
[** Table column for the client's username™*/

public static final String COLUMN_USER_NAME = "username";
/** Table column for the client's password**/

public static final String COLUMN_PASSWORD = "password";
[** Table column for clean session **/

public static final String COLUMN_CLEAN_SESSION = "cleanSession";
[** Table column for **/

Nast will

/** Table column for last will topic **/

public static final String COLUMN_TOPIC = "topic";

/** Table column for the last will message payload **/

public static final String COLUMN_MESSAGE = "message";
/** Table column for the last will message qos **/

public static final String COLUMN_QOS = "qos";

/** Table column for the retained state of the message **/
public static final String COLUMN_RETAINED = "retained";

/Isql lite data types

[** Text type for SQLite**/

private static final String TEXT_TYPE =" TEXT",
/** Int type for SQLite**/

private static final String INT_TYPE =" INTEGER";
/**Comma separator **/

private static final String COMMA_SEP =",";

[** Create tables query **/
private static final String SQL_CREATE_ENTRIES =

"CREATE TABLE " + TABLE_ CONNECTIONS +" (" +
_ID + " INTEGER PRIMARY KEY," +
COLUMN_HOST + TEXT_TYPE + COMMA_SEP +
COLUMN_client_ID + TEXT_TYPE + COMMA_SEP +
COLUMN_port + INT_TYPE + COMMA_SEP +
COLUMN_ssl + INT_TYPE + COMMA_SEP +

COLUMN_TIME_OUT + INT_TYPE + COMMA_SEP +
COLUMN_KEEP_ALIVE + INT_TYPE + COMMA_SEP +
COLUMN_USER_NAME + TEXT_TYPE + COMMA_SEP +
COLUMN_PASSWORD + TEXT_TYPE + COMMA_SEP +
COLUMN_CLEAN_SESSION + INT_TYPE + COMMA_SEP +
COLUMN_TOPIC + TEXT_TYPE + COMMA_SEP +
COLUMN_MESSAGE + TEXT_TYPE + COMMA_SEP +
COLUMN_QOS + INT_TYPE + COMMA_SEP +
COLUMN_RETAINED + " INTEGER):";

/** Delete tables entry **/
private static final String SQL_DELETE_ENTRIES =
"DROP TABLE IF EXISTS " + TABLE_CONNECTIONS;

/**
* Creates the persistence object passing it a context
* @param context Context that the application is running in
*/
public Persistence(Context context) {
super(context, DATABASE_NAME, null, DATABASE_VERSION);

}

/* (non-Javadoc)
* @see
android.database.sqlite.SQLiteOpenHelper#onCreate(android.database.sqlite. SQLiteDatabase)
*/
@Override
public void onCreate(SQLiteDatabase db) {
db.execSQL(SQL_CREATE_ENTRIES);

}

/* (non-Javadoc)

* @see
android.database.sqlite.SQLiteOpenHelper#onUpgrade(android.database.sqlite.SQLiteDatabas
e, int, int)

*/

@Override

public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

db.execSQL(SQL_DELETE_ENTRIES);

}

/*

* (non-Javadoc)

* @see
android.database.sqlite.SQLiteOpenHelper#fonDowngrade(android.database.sqlite. SQLiteDatab
ase, int, int)

*/

@Override

public void onDowngrade(SQLiteDatabase db, int oldVersion, int newVersion) {

onUpgrade(db, oldVersion, newVersion);

}

/**

* Persist a Connection to the database

* @param connection the connection to persist

* @throws PersistenceException If storing the data fails

*/

public void persistConnection(Connection connection) throws PersistenceException {

MqttConnectOptions conOpts = connection.getConnectionOptions();
MqttMessage lastWill = conOpts.getWillMessage();
SQLiteDatabase db = getWritableDatabase();

ContentValues values = new ContentValues();

/lput the column values object

values.put(COLUMN_HOST, connection.getHostName());
values.put(COLUMN_port, connection.getPort());
values.put(COLUMN_client_ID, connection.getld());
values.put(COLUMN_ssl, connection.isSSL());

values.put(COLUMN_KEEP_ALIVE, conOpts.getKeepAlivelnterval());
values.put(COLUMN_TIME_OUT, conOpts.getConnectionTimeout());
values.put(COLUMN_USER_NAME, conOpts.getUserName());
values.put(COLUMN_TOPIC, conOpts.getWillDestination());

/luses "condition ? trueValue: falseValue" for in line converting of values

char[] password = conOpts.getPassword();

values.put(COLUMN_CLEAN_SESSION, conOpts.isCleanSession() ? 1 : 0); //convert
boolean to int and then put in values

values.put(COLUMN_PASSWORD, password != null ? String.valueOf(password) : null);
/lconvert char[] to String

values.put(COLUMN_MESSAGE, lastWill = null ? new String(lastWill.getPayload()) : null); //
convert byte[] to string

values.put(COLUMN_QOS, lastWill = null ? lastWill.getQos() : 0);

if (lastWill == null) {
values.put(COLUMN_RETAINED, 0);
}
else {
values.put(COLUMN_RETAINED, lastWill.isRetained() ? 1 : 0); //convert from boolean to int

}

/linsert the values into the tables, returns the ID for the row
long newRowld = db.insert(TABLE_CONNECTIONS, null, values);

db.close(); //close the db then deal with the result of the query

if (newRowld == -1) {
throw new PersistenceException("Failed to persist connection: " + connection.handle());
}
else { //Successfully persisted assigning persistecnelD
connection.assignPersistenceld(newRowld);

}
}

[e*
* Recreates connection objects based upon information stored in the database
* @param context Context for creating {@link Connection} objects
* @return list of connections that have been restored
* @throws PersistenceException if restoring connections fails, this is thrown
*/
public List<Connection> restoreConnections(Context context) throws PersistenceException
{

/lcolumns to return

String[] connectionColumns = {
COLUMN_HOST,
COLUMN_port,
COLUMN_client_ID,
COLUMN_ssl,
COLUMN_KEEP_ALIVE,
COLUMN_CLEAN_SESSION,
COLUMN_TIME_OUT,
COLUMN_USER_NAME,
COLUMN_PASSWORD,
COLUMN_TOPIC,
COLUMN_MESSAGE,
COLUMN_RETAINED,

COLUMN_QOS,
D

|

/lhow to sort the data being returned
String sort = COLUMN_HOST;

SQLiteDatabase db = getReadableDatabase();

Cursor ¢ = db.query(TABLE_CONNECTIONS, connectionColumns, null, null, null, null, sort);
ArrayList<Connection> list = new ArrayList<Connection>(c.getCount());
Connection connection = null;
for (inti =0;i < c.getCount(); i++) {

if (!c.moveToNext()) { //move to the next item throw persistence exception, if it fails

throw new PersistenceException("Failed restoring connection - count: " + c.getCount() +
"loop iteration: " + i);

}

/Iget data from cursor

Long id = c.getLong(c.getColumnindexOrThrow(_ID));

//basic client information

String host = c.getString(c.getColumnindexOrThrow(COLUMN_HOST));

String clientID = c.getString(c.getColumnindexOrThrow(COLUMN_client_ID));

int port = c.getint(c.getColumnindexOrThrow(COLUMN _port));

/lconnect options strings

String username = c.getString(c.getColumnindexOrThrow(COLUMN_USER_NAME));
String password = c.getString(c.getColumnindexOrThrow(COLUMN_PASSWORD));
String topic = c.getString(c.getColumnindexOrThrow(COLUMN_TOPIC));

String message = c.getString(c.getColumnindexOrThrow(COLUMN_MESSAGE));

//connect options integers

int gos = c.getint(c.getColumnindexOrThrow(COLUMN_QOS));

int keepAlive = c.getint(c.getColumnindexOrThrow(COLUMN_KEEP_ALIVE));
int timeout = c.getInt(c.getColumnindexOrThrow(COLUMN_TIME_OUT));

/Iget all values that need converting and convert integers to booleans in line using "condition
? trueValue : falseValue"

boolean cleanSession = c.getInt(c.getColumnindexOrThrow(COLUMN_CLEAN_SESSION))
==1 ? true : false;

boolean retained = c.getint(c.getColumnindexOrThrow(COLUMN_RETAINED)) == 1 ? true :
false;

boolean ssl = c.getint(c.getColumnindexOrThrow(COLUMN_ssl)) == 1 ? true : false;

//rebuild objects starting with the connect options
MgttConnectOptions opts = new MqttConnectOptions();
opts.setCleanSession(cleanSession);
opts.setKeepAlivelnterval(keepAlive);
opts.setConnectionTimeout(timeout);

opts.setPassword(password != null ? password.toCharArray() : null);
opts.setUserName(username);

if (topic != null) {
opts.setWill(topic, message.getBytes(), qos, retained);

}

//now create the connection object

connection = Connection.createConnection(clientlD, host, port, context, ssl);
connection.addConnectionOptions(opts);
connection.assignPersistenceld(id);

/Istore it in the list

list.add(connection);

}

/Iclose the cursor now we are finished with it
c.close();

db.close();

return list;

}

/**

* Deletes a connection from the database

* @param connection The connection to delete from the database
*/

public void deleteConnection(Connection connection) {
SQLiteDatabase db = getWritableDatabase();

db.delete(TABLE_CONNECTIONS, _ID + "=?", new
String[[{String.valueOf(connection.persistenceld())});

db.close();

//don't care if it failed, means it's not in the db therefore no need to delete

Persistence Exception

/***

* Copyright (c) 1999, 2014 IBM Corp.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the Eclipse Public License v1.0

* and Eclipse Distribution License v1.0 which accompany this distribution.
* The Eclipse Public License is available at

* http://www.eclipse.org/legal/epl-v10.html

* and the Eclipse Distribution License is available at

* http://www.eclipse.org/org/documents/ed|-v10.php.

*/

package org.eclipse.paho.android.service.sample;

/**

* Persistence Exception, defines an error with persisting a {@link Connection}

* fails. Example operations are {@link Persistence#persistConnection(Connection)} and {@link
Persistence#restoreConnections(android.content.Context)};

* these operations throw this exception to indicate unexpected results occurred when
performing actions on the database.

*/

public class PersistenceException extends Exception {

/**

* Creates a persistence exception with the given error message
* @param message The error message to display

*/

public PersistenceException(String message) {
super(message);

}

[** Serialisation ID**/
private static final long serialVersionUID = 5326458803268855071L;

LAYOUT FILES:

Activity_Advanced

<|--
Licensed Materials - Property of IBM

5747-SM3
(C) Copyright IBM Corp. 1999, 2012 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with

IBM Corp.

-->

<RelativeLayout xmIns:android="http://schemas.android.com/apk/res/android"
xmins:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<LinearLayout
android:id="@+id/usernameGroup"
android:layout_width="match_parent"
android:layout_height="wrap_content" >

<TextView
android:id="@+id/textView1"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/uname"
android:layout_marginRight="15dip"/>

<EditText

android:id="@+id/uname"
android:layout_width="0dip"
android:layout_height="wrap_content"
android:ems="10"
android:layout_weight="0.22"
android:hint="@string/unameHint"
android:inputType="text"
>
</EditText>
</LinearLayout>

<LinearLayout
android:id="@+id/passwordGroup"
android:layout_width="wrap_content"

android:layout_height="wrap_content"
android:layout_below="@id/usernameGroup"
android:layout_marginTop="25dp" >

<TextView
android:id="@+id/textView2"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/pass"
android:layout_marginRight="25dip" />

<EditText
android:id="@-+id/password"
android:layout_width="0dip"
android:layout_height="wrap_content"
android:ems="10"
android:layout_weight="0.22"
android:hint="@string/passwordHint"
android:inputType="textPassword" />
</LinearLayout>

<LinearLayout
android:id="@-+id/sslGroup"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@id/passwordGroup"
android:layout_marginTop="25dp" >

<TextView
android:id="@+id/textView3"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/ssl"
android:layout_marginRight="60dip" />

<CheckBox
android:id="@-+id/ssICheckBox"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/empty" />

<EditText
android:id="@-+id/ssIKeyLocaltion"

android:layout_width="0dp"
android:layout_height="wrap_content"
android:layout_weight="1"
android:ems="10"
android:enabled="false"
android:hint="@string/ssIKeyLocaltion"
android:inputType="text" >

</EditText>

<Button
android:id="@-+id/ssIKeyBut"
style="?android:attr/buttonStyleSmall"
android:clickable="false"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/select" />

</LinearLayout>

<LinearLayout
android:id="@+id/timeoutGroup"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@id/ss|Group"
android:layout_marginTop="25dp" >

<TextView
android:id="@+id/textView4"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/timeout"
android:layout_marginRight="35dip" />

<EditText
android:id="@+id/timeout"
android:layout_width="0dip"
android:layout_height="wrap_content"
android:ems="10"
android:layout_weight="0.22"
android:hint="@string/timeoutHint"
android:inputType="number" />
</LinearLayout>

<LinearLayout
android:id="@-+id/keepaliveGroup"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:layout_below="@id/timeoutGroup"
android:layout_marginTop="25dp" >

<TextView
android:id="@+id/textView5"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="@string/keepalive"
android:singleLine="false"
android:layout_marginRight="25dip"/>

<EditText
android:id="@-+id/keepalive"
android:layout_width="0dip"
android:layout_height="wrap_content"
android:ems="10"
android:layout_weight="0.22"
android:hint="@string/keepaliveHint"
android:inputType="number" />
</LinearLayout>

</RelativeLayout>

Activity_Connection_Details
<l--

Licensed Materials - Property of IBM
5747-SM3
(C) Copyright IBM Corp. 1999, 2012 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with

IBM Corp.

-->

<android.support.v4.view.ViewPager

xmlins:android="http://schemas.android.com/apk/res/android"
xmins:tools="http://schemas.android.com/tools"

android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent"
tools:context=".ConnectionDetails" />

Activity_New_Connection
<|--

Licensed Materials - Property of IBM
5747-SM3
(C) Copyright IBM Corp. 1999, 2012 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with

IBM Corp.

-->

<RelativeLayout xmIns:android="http://schemas.android.com/apk/res/android"
xmins:tools="http://schemas.android.com/tools"
android:layout_width="match_parent"
android:layout_height="match_parent" >

<EditText
android:id="@+id/clientld"
android:layout_width="250dip"
android:layout_height="wrap_content"
android:ems="10"
android:inputType="text"
android:layout_below="@+id/clientiIDTextView"
android:layout_centerHorizontal="true"
android:layout_marginTop="81dp" />

<TextView
android:id="@-+id/clientIDTextView"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_marginEnd="10dip"
android:text="@string/clientID"
android:layout_alignParentTop="true"
android:layout_centerHorizontal="true"
android:layout_marginTop="109dp" />

</RelativeLayout>

Client_Connections
<?xml version="1.0" encoding="utf-8"?>
<l--

Licensed Materials - Property of IBM
5747-SM3
(C) Copyright IBM Corp. 1999, 2012 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with

IBM Corp.

-->

<ListView xmins:android="http://schemas.android.com/apk/res/android"
xmins:tools="http://schemas.android.com/tools"
android:id="@+id/list"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:clickable="true"
tools:context=".ClientConnections" >

</ListView>

Connection_Text_View
<?xml version="1.0" encoding="utf-8"?>
<|--

Licensed Materials - Property of IBM
5747-SM3
(C) Copyright IBM Corp. 1999, 2012 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with

IBM Corp.

-—->

<TextView
xmins:android="http://schemas.android.com/apk/res/android"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:focusable="false"
android:padding="10dp"

android:drawableRight="@drawable/arrow"
/>

File Dialog Item
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmIns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/vw1"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:background="#000000"
android:orientation="horizontal"
android:padding="4dp" >

<ImageView
android:id="@-+id/filedialogitem_img"
android:layout_width="32dp"
android:layout_height="32dp"
android:layout_margin="4dp"/>

<LinearLayout
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:orientation="vertical" >

<TextView
android:id="@-+id/filedialogitem_name"
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:textColor="#FFFFFF"
android:textSize="18sp"
android:textStyle="bold" />

<TextView
android:id="@-+id/filedialogitem_path"
android:layout_width="fill_parent"

android:layout_height="wrap_content"
android:paddingLeft="10dp"
android:textColor="#FFFFFF"
android:textSize="14sp" />

</LinearLayout>
</LinearLayout>

List_View_Text_View
<?xml version="1.0" encoding="utf-8"?>
<--

Licensed Materials - Property of IBM
5747-SM3
(C) Copyright IBM Corp. 1999, 2012 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or

disclosure restricted by GSA ADP Schedule Contract with

IBM Corp.

-->

<TextView
xmlins:android="http://schemas.android.com/apk/res/android"
android:layout_width="272dp"
android:layout_height="fill_parent"
android:focusable="false"
android:padding="10dp"

/>

Map_Frag
<?xml version="1.0" encoding="utf-8"?>
<com.google.android.gms.maps.MapView
xmlins:android="http://schemas.android.com/apk/res/android"
xmins:map="http://schemas.android.com/apk/res-auto"
android:layout_width="match_parent"
android:layout_height="match_parent"
android:id="@+id/mapfrag"
android:name="com.google.android.gms.maps.MapFragment"
map:mapType="normal"
/>

<|--

xmins:tools="http://schemas.android.com/tools"-->
<l-- map:cameraTargetLat="41.7056"
map:cameraTargetLng="-86.2353"
map:cameraZoom="16"-->

Notification
<?xml version="1.0" encoding="utf-8"?>

<RelativeLayout xmlIns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical" android:layout_width="match_parent"
android:layout_height="match_parent"
android:background="#fea11e"
>

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearanceMedium"
android:text="@string/RFIDname"
android:id="@+id/RFID"
android:layout_marginTop="105dp"
android:layout_alignParentTop="true"
android:layout_alignParentLeft="true"
android:layout_alignParentStart="true"
android:layout_marginLeft="42dp"
android:layout_marginStart="42dp"
android:textColor="#ffffff" />

<TextView
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textAppearance="?android:attr/textAppearanceMedium"
android:text="@string/ltemname"
android:id="@+id/Name"
android:layout_marginTop="46dp"
android:layout_below="@+id/RFID"
android:layout_alignLeft="@+id/RFID"
android:layout_alignStart="@+id/RFID"
android:password="false"
android:textColor="#ffffff" />

<EditText

android:layout_width="175dp"
android:layout_height="wrap_content"
android:id="@+id/NumberText"
android:layout_alignBottom="@+id/RFID"
android:layout_toEndOf="@+id/Name"

/>

<EditText
android:layout_width="175dp"
android:layout_height="wrap_content"
android:id="@+id/NameText"
android:layout_alignBottom="@+id/Name"
android:layout_toRightOf="@+id/Name"
android:layout_toEndOf="@+id/Name"
android:onClick="onClick" />
</RelativeLayout>

MENU FILES:

Activity_Advanced
<l--

Licensed Materials - Property of IBM
5747-SM3
(C) Copyright IBM Corp. 1999, 2012 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

-—->

<menu xmins:android="http://schemas.android.com/apk/res/android">

<item
android:id="@-+id/ok"
android:title="@string/save"
android:showAsAction="always" />

<item
android:id="@+id/setLastWill"
android:title="@string/willMessage"
android:titteCondensed="@string/willMessageShort"
android:showAsAction="always" />

</menu>

Activity_Client_Connections_Contextual
<?xml version="1.0" encoding="utf-8"?>
<menu xmins:android="http://schemas.android.com/apk/res/android" >
<item android:id="@-+id/delete"

android:title="@string/delete"
>

</item>

</menu>

Activity_Connection_Details
<l--

Licensed Materials - Property of IBM
5747-SM3
(C) Copyright IBM Corp. 1999, 2012 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

-->
<menu xmins:android="http://schemas.android.com/apk/res/android">
<item android:id="@-+id/disconnect" android:title="@string/Disconnect"

android:showAsAction="ifRoom"></item>
</menu>

Activity_Connection_Details_Disconnected

<|--
Licensed Materials - Property of IBM

5747-SM3
(C) Copyright IBM Corp. 1999, 2012 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with

IBM Corp.

-->

<menu xmins:android="http://schemas.android.com/apk/res/android">

<item android:id="@-+id/connectMenuOption" android:title="@string/connect"
android:showAsAction="ifRoom"></item>

</menu>

Activity_Connections
<l--

Licensed Materials - Property of IBM
5747-SM3
(C) Copyright IBM Corp. 1999, 2012 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

-—->

<menu xmins:android="http://schemas.android.com/apk/res/android">

<item android:id="@+id/newConnection" android:enabled="true"
android:titteCondensed="@string/newConnectionShort"
android:title="@string/newConnection"
android:showAsAction="always" >

</item>

<item android:id="@-+id/startLogging" android:enabled="true"
android:title="@string/startLogging"
android:showAsAction="never">

</item>
</menu>

Activity_New_Connection
<|--
Licensed Materials - Property of IBM
5747-SM3

(C) Copyright IBM Corp. 1999, 2012 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with

IBM Corp.
-->

<menu xmins:android="http://schemas.android.com/apk/res/android">

<item android:id="@-+id/connectAction"
android:showAsAction="always"
android:title="@string/connect" />
<item
android:id="@+id/advanced"
android:title="@string/advanced"
android:showAsAction="ifRoom"
android:titteCondensed="@string/advancedShort"/>
</menu>

Activity _publish
<l--

Licensed Materials - Property of IBM
5747-SM3
(C) Copyright IBM Corp. 1999, 2012 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

-->

<menu xmins:android="http://schemas.android.com/apk/res/android">

<item
android:id="@-+id/publish"
android:showAsAction="ifRoom"
android:title="@string/publish" />
<item android:id="@+id/disconnect" android:title="@string/Disconnect"
android:showAsAction="ifRoom"></item>
</menu>

STRINGS FILE:
Strings

<|--
Licensed Materials - Property of IBM

5747-SM3
(C) Copyright IBM Corp. 1999, 2012 All Rights Reserved.

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

-—>
<resources>

<string name="app_name">TrakPack</string>
<string name="menu_settings">Settings</string>
<string name="server">Server</string>

<string name="port">Port</string>

<string name="connect">Connect</string>

<string name="newConnection">New Connection</string>
<string name="newConnectionShort">+</string>

<string name="title_activity_new_connection">New Connection</string>
<string name="clientID">Please Enter Your Name</string>
<string name="connectedto">Connected to </string>

<string name="Disconnect">Disconnect</string>

<string name="subscribe">Subscribe</string>

<string name="publish">Rename</string>

<string name="title_activity_subscribe">Subscribe</string>

<string name="disconnected">Disconnected from</string>

<string name="topic">Topic</string>

<string name="history">History</string>

<string name="title_activity _history">History</string>

<string name="subscribed">Subscribed to </string>

<string name="token">org.eclipse.paho.android.service.sample.ClientConnections</string>
<string name="no_status">Unknown connection status to</string>

<string name="connecting">Connecting to</string>

<string name="disconnecting">Disconnecting from</string>

<string name="connectionError">An error occurred connecting to</string>

<string name="title_activity_publish">Publish</string>
<string name="message">Message</string>

<string name="qos0">0</string>

<string name="qos1">1</string>

<string name="qos2">2</string>

<string name="empty"></string>

<string name="qos">Q0OS</string>

<string name="retained">Retained</string>

<string name="cleanSession">Clean Session</string>
<string name="advanced">Advanced Options</string>
<string name="advancedShort">Advanced</string>
<string name="title_activity_advanced">Advanced</string>
<string name="uname">User Name</string>

<string name="pass">Password</string>

<string name="ss|">SSL</string>

<string name="timeout">Time Out</string>

<string name="keepalive">Keep Alive \nTimeout</string>

<string name="title_activity last_will">Last Will Message</string>

<string name="setLastWill">Set Last Will Message</string>

<string name="willMessage">Set Last Will Message</string>

<string name="willMessageShort">Last Will</string>

<string name="notifyTitle">ltem Scanned</string>

<string name="notifyTitle_connectionLost">MQTT Client Has Lost Connection</string>

<string name="save">Save</string>
<string name="title_activity _connection_details">Connection Details</string>
<string name="startLogging">Enable Logging</string>
<string name="endLogging">Disable Logging</string>
<string name="missingOptions">ClientID, server address or Port number is missing.
Please correct or press back arrow cancel.</string>

<string name='dateFormat'>dd/MM/yy \'at\' HH:mm:ss</string>

<string name="unkown_error">Unknown Error</string>

<string name="delete">Delete Connection</string>

<string name="disconnectClient">Disconnect Client?</string>

<string name="deleteDialog">The selected client is currently connected or connecting,
deleting this connection will cause it to be disconnected.</string>

<string name="continueBtn">Continue</string>

<string name="cancelBtn">Cancel</string>

<l-- Strings that need formatting -->

<string name="messageRecieved">Your %1$s was scanned at %2$s. </string> <!--
Received message %1$s
 <small>Topic: %2%s </small> -->

<string name="timestamp">&It;br/> <small> %1$s </small></string>

<string name="notification">%1%$s scanned a %2$s at %3%s.</string>

<string name="toast_pub_success">Published message: %1$s to topic: %2$s</string>

<string name="toast_sub_success">Subscribed to %1$s</string>

<string name="toast_disconnected">Disconnected</string>

<string name="toast_pub_failed">Failed to publish message: %1$s to topic: %2$s</string>

<string name="toast_sub_failed">Failed to subscribe to %1$s</string>

<string name="connection_lost">%1$s has lost connection to %2%$s</string>

<string name="failure_disconnect">Disconnect failed.&It;br/> <small>Reason:
Y%s</small> </string>

<string name="failure_connect">Client failed to connect.
 <small>Reason:
Y%s</small></string>

<string name="client_connected">Client connected successfully</string>

<!I-- Hints -->

<string name="serverURIHint">example.example.com</string>
<string name="portHint">1883</string>

<string name="contentDescriptionSSL">Enable SSL</string>
<string name="contentDescriptionCleanSession">Clean Session</string>
<string name="topicHint">hello</string>

<string name="messageHint">Hello World</string>

<string name="unameHint">user</string>

<string name="passwordHint">password</string>

<string name="timeoutHint">60</string>

<string name="keepaliveHint">200</string>

<string name="ssl|KeyL ocaltion">file://</string>

<string name="select">select</string>

<string name="title_activity notification">Object Naming</string>
<string name="title_maps_activity">Map</string>

<l-- Trakpak Strings -->

<string name="RFIDname">|D Number</string>

<string name="Itemname">0Object Name</string>

<string name="google app_id">AlzaSyDaFtfvSf2Kez4ycJgMkc03P0yO503vflo</string>

<string name="google_maps_key" templateMergeStrategy="preserve"
translatable="false">AlzaSyDaFtfvSf2Kez4ycJgMkc03P0yO503vflo</string>

</resources>

8.3 Data Sheets

PIC Datasheet - This datasheet details the operation of the microcontroller.

Gtop GPS - These two datasheets contain the specifications used in our GPS unit.

https://sakailogin.nd.edu/access/content/group/2d46bfa1-d0f2-4e96-bd9a-19addd93f074/PIC32%20Spec%20and%20Reference/pic32mx795.pdf
https://www.arduino.cc/documents/datasheets/E000026_gpsShieldv1_PA6B-Datasheet-A07.pdf

https://cdn-shop.adafruit.com/datasheets/GlobalTop-FGPMMOPAG6H-Datasheet-VOA.pd
f

Average Diode Forward Current - This was the information we used to account for our
LED’s.

ESP8266 - This is the datasheet for our WiFi component.
ID-12LA Datasheet - This is the datasheet for our RFID scanner.
5000 mAh LiPo - This is the datasheet for our power source.
MCP73831 - This is the datasheet for the recharging component.

TPS61201 - This is the datasheet for the DC-DC boost converter.

https://cdn-shop.adafruit.com/datasheets/GlobalTop-FGPMMOPA6H-Datasheet-V0A.pdf
https://cdn-shop.adafruit.com/datasheets/GlobalTop-FGPMMOPA6H-Datasheet-V0A.pdf
https://cdn-shop.adafruit.com/datasheets/GlobalTop-FGPMMOPA6H-Datasheet-V0A.pdf
https://learn.sparkfun.com/tutorials/diodes
https://www.adafruit.com/images/product-files/2471/0A-ESP8266__Datasheet__EN_v4.3.pdf
http://cdn.sparkfun.com/datasheets/Sensors/ID/ID-2LA,%20ID-12LA,%20ID-20LA2013-4-10.pdf
http://www.alibaba.com/product-detail/high-quality-factory-price-5000mah-li_60208916077.html
http://www.alibaba.com/product-detail/high-quality-factory-price-5000mah-li_60208916077.html
http://www.microchip.com/wwwproducts/en/en024903
http://www.ti.com/product/TPS61201

