TuneBox

Final Documentation

Beau Bloomfield, Charles Filipiak, Austin Hickman, Jake Reilly

Page 1 of 39

Table of Contents

Title Page
Introduction
System Requirements
Project Description
o Theory of Operation
« System Block Diagram
o Subsystem 1 - Audio Signal Processing
o Subsystem 2 - Wifi Connectivity (point-to-point)
o Subsystem 3 - Mobile Application
« Subsystem 4 - Digital Effects
« Interfaces between subsystems
o ADC and DAC
o UART
o WiFi
User/Installation Manual
To-Market Design Changes
Conclusions

Appendices

16
19

24

28
29
29
30
31
31

32

Page 2 of 39

Introduction

The electric guitar is one of the most popular instruments in the world and has
been an iconic element of rock music for generations. This instrument is often
characterized by its ability to create numerous distinct sounds through the integration of
amplifiers and signal distortion. However, for new guitar players, this key element
comes at a price. Often what is required to manipulate the sound of an electric guitar is
either an expensive amplifier or a complicated series of pedals that allow the user to
switch between different effects using their feet. These pedals are usually designed
with a more advanced user in mind: containing a myriad of knobs and switches to finely
manipulate the tone. A new guitar player can spend hours toying with a typical pedal,
which offers at best a couple 7-segment LED’s for display. This is where the TuneBox

offers a solution.

Page 3 of 39

TuneBox_v1

Welcome, user! It's time to make some music!

EFFECTS

WOISEGATE ': ;-mr::r | TUNING
.
o n

RECORDING

EVIRE
PETIE grr et _@-Taen
L i § @ L
sttt . ' . ’ [T

CONNECT

| i Digilech N iEDigiech

Figure 1: Left is a typical guitar pedal interface
Right is the TuneBox interface

TuneBox replaces this foot pedal system with the familiar user interface of a
mobile application. In this interactive environment, clearly labeled effects can easily be
switched on and off with the touch of a button. This allows a beginning guitar player the
freedom to try different sounds without having to read a new instruction manual for each
device. Finally, integrating the product with an app allows for flexibility in continually
developing new effects modules to be added on after the initial deployment.

The TuneBox is an integrated microprocessor and amplifier device that digitally
records the output from an electric instrument. To do this, an input signal from a guitar is
run through a variety of different onboard amplifiers to prepare the signal for analog to
digital conversion. The analog waveform is then converted to digital bits, via an audio

codec, that can be interpreted by the microprocessor. The microprocessor receives the

data and performs two functions: digital effects and saving to memory.

Page 4 of 39

The microprocessor takes the digital signal, and via programmed functions,
applies audio effects to it. With WiFi functionality through the ESP-8266 and an
associated mobile application, the effects played through the TuneBox are selectable
and controllable via smartphone. After an effect is selected within the app, the
information is transmitted to the PIC32 which applies the digital effects before sending
the modified data back to the digital to analog converter. The DAC turns the 10-bit
values into a series of step functions that are smoothed using a demodulation circuit.
This signal is finally passed through a series of amplifiers, which allows the analog

waveform to be output to a speaker system.

The TuneBox also takes the inputted digital data and saves it to memory. Once
saved in flash memory, the TuneBox sends the 10-bit values through the ESP-8266 and
onto the Android device. Here, the bits are encoded with more information and saved
as a .WAV file. Finally, a sharing function can be used to send the .WAYV file to other

devices or servers.

System Requirements

e Receive an audio signal from 20 Hz to 2000 Hz at a voltage level ranging
between 100 mV and 1V

e Convert this signal into a digital bitstream via the audio codec so that the PIC32
microcontroller can apply audio effects

¢ Additionally, the microcontroller must be able to store a bitstream ~45 minutes

long at most, consisting of ~2 Gbits at most, into attached flash memory

Page 5 of 39

e Once this bitstream has been saved into memory, it must then be able to be
broadcasted to a WiFi client socket, in this case: a mobile application

e The mobile application must be able to send command signals via WiFi which the
microcontroller will respond to. These signals will determine which effects are
applied, whether the bitstream is sent to the phone, and will also communicate
information about the state of the microcontroller

e Once all the signal processing is complete, the microcontroller must also be able
to pass the digital signal through a digital-to-analog converter for playback

through a standard guitar amp

Project Description

Theory of Operation

The TuneBox is designed to provide an easy and intuitive method for the application of
guitar effects. The mobile app can be downloaded to a smartphone, and connected to
the hardware via a WiFi connection that is produced on board the TuneBox. The
TuneBox itself requires the user to connect a quarter inch male-to-male cable from the
guitar output to the TuneBox input, and another cable from the TuneBox output to a
speaker. Once the cable connections are made and the TuneBox is connected to the
mobile app, the user is able to select a desired effects in the app, and the applied effect

will be heard from the speaker.

Page 6 of 39

System Block Diagram

Digital Effects
Signal ‘
ADC/DAC _ . Point-to-point
(audio codec) Microcortrolier connection
Speaker ' Mobile App
Saving to
memory
Digital to Audio
format
Figure 2: System Block Diagram for the TuneBox
Subsystems

Audio Signal Processing

e Input: digital samples received from the audio codec
e Simultaneously read samples and write to memory chip
o SPI clock for flash: 10 MHz
e Extract stored waveform from memory
o Same timing requirements for sampling/recording
e Receive analog audio signal ranging from 100 mV to 1 V from electric

instrument

Page 7 of 39

Convert input analog signal to digital samples

Receive modified digital samples from the PIC 32

Convert digital samples to analog signal

Send analog signal to speaker system at a voltage not exceeding 1.0 V

Perform signal scaling and DC offset

Page 8 of 39

Memory

Storage is provided by a 1Gbit Spansion S70FL01GS flash memory chip. Each chip
includes two memory arrays, and features an SPI interface capable of transferring up to
50Mbps. Memory is available in pages of 512 bytes. Once the page buffer is full, a
write cycle is initiated, which typically lasts no longer than 2ms. The memory array is
unavailable during a write cycle, so the page buffer for the other array is filled while the
first is programming. The microcontroller switches between the two arrays in this
fashion, while a counter in the source code keeps track of pages written, which is
necessary to access memory during playback. During playback, the opposite process
is employed, in which the microcontroller alternates reading memory between arrays.
The source code for this operation is given in verifyMemory.X. With 16-bit resolution
and a sample rate of 44.1kHz, 1Gbit of memory can store over 23 minutes of music. At
a sampling rate of 10kHz (which is more than enough for high quality audio in our
application, representing an oversampling rate of >10x) more than 1.5 hours of music
could be stored. The memory module was implemented and successfully
demonstrated, but was not included in the final demonstration because of time

constraints.

Page 9 of 39

Signal Description

A system analysis of the audio front end, back end, and demodulation is included

below. The signals (as denoted in figures 7-10) are described by the relationships given

below, with the following assumptions:

X,(t) represents the input signal from the guitar.

T, represents the sampling period. During demonstration, an approximate
value of T, = 0.1ms was used.

u(t) is the unit step function.

t is a value between 0 and T, The ratio 7/Tis the duty cycle of the square
wave onto which samples are modulated. A value of r = 0.95 T, was used
for demonstration.

h,[n] represents the combination of all digital effects applied by the
microcontroller, which are discussed in greater detail in the Digital Effects
section.

The “*k” operator represents convolution in the t or n domain.

-Vpis provided by a LMC7660 voltage inverter and two 10uF electrolytic
capacitors.

All op-amps are JRC4580D, and operate between +/-3.3V.

Page 10 of 39

The following equations and figures 3-6 describe the complete signal pathway, from the
input jack to the output jack. All schematics below were generated using T| WEBENCH

and Digikey Scheme-It software.
xi(8) = 4x(1)
x(t) = 3V pp+3x,(0)
X[n] = xy(n Ty)
yolnl = xy[n] * hy[n]

50 = ol =k T ~u(t=k T, =)

Yo(0) = yi(0) * Iy (D)

y3(0) = y2(9)

o) = = (&) (75
Y y(jo) = Y 5(jo) Hy(jo)
Ys(jo) = Y ,(jo) Hy(jo)

“+o00
ys()= £ [¥ (jo) e do

Page 11 of 39

\EE Wdd
R4
U1 22k
Xo(t) \\ i uz
+ xi(t e
> ': :} R3 221 i xz{t)
/ [’ _ -
§R1 v\-’dd
22k i
R2 BELk
GND
PIC32 xo[ri] ADC
Input Ot ptt Input

Figure 3: Audio front-end system

PIC32

yaln] -

Output p

yit)

Demodulator

it Output

ya(t)

p

Hi(jw)

ya(t)

R1 2.75k

L J

Butterworth

p

input H3(W) output —nu3y ¥5(t)

Figure 4: Audio back-end system

Page 12 of 39

TN4148

yi{t) — 3 ya(t)

Figure 5: AM demodulator. See the section on H,(je) for a more detailed description of

its behavior.

yslt)

Figure 6: A fourth-order low-pass Butterworth filter which forms H,(jw). See below for

a more detailed description of its behavior.

Page 13 of 39

The first back-end hardware filter H,(je) forms an AM demodulator. This has the effect
of stripping the peak values off the square wave generated by the DAC, allowing for
reconstruction of the signal from samples in y,[n]. The demodulated output y,(t)
requires additional smoothing, which is provided by H,(je). While an analytic
expression for H,(je) cannot be easily calculated, it has a low-pass effect, and an

example of y,(f) and y,(t) is shown in figure 7 below.

ya(t)
1

Figure 7: An example of a waveform passing through H,(jo).

The behavior of H,was chosen for two reasons. First, H,(0) = 0which removes any DC
offset from y,(r). Second, H,(f)=+forallf>20Hzand £ H,(f)= —180 forall f>20

Hz. This ensures a constant gain and phase for all audible frequencies. See figures 8

and 9 below for a complete description of filter behavior.

Page 14 of 39

| Hztjmrp |, Nomalized

=100 L

-110 |

Phasa of Hzr_jw) in degreas

160 b

170 |

=190

06 -

02

102

-B0

102

107! 10° 10! 10° 10? 10
Frequency (Hz)

Figure 8: Magnitude of H,(jo)

80 [

10?

102

107! 10? 10! 10° 10? 10
Fregquency (Hz)

Figure 9: Phase of H,(jow)

Page 15 of 39

H,(jw) is a fourth-order, low-pass Butterworth filter, with a cutoff frequency of
4kHz. This filter serves to remove noise and nonlinearities, as well as smoothing
the result of H,(jew). The Butterworth response was chosen in order to ensure
an even frequency response for all audible components. H,(jo) was designed

using Texas Instruments WEBENCH tools. See figure 10 below.

-20

-40

-80

-100

Gain (dB)

=120
-140
160
-180 \
-200

0.001Hz 0.100Hz 10.000Hz 1.000KHz 100.000KHz

Freguency

Figure 10: Frequency response of H,(jo).

Page 16 of 39

WiFi Connectivity

Android Application

WiFi

ESP8266

UART

Figure 11: loT Process Flow

PIC32

The ESP8266 establishes connectivity between the PIC32 controller and the mobile

device. In order to do so, an asynchronous serial connection was established to the

PIC device. This connection ran at a baud rate of 9600 Hz, sending 8 bits of data per

transfer, with one stop bit and no parity bit. The primary UART of the ESP device was

used to send information in order to allow for simple flash debugging. This required the

devices to be disconnected for initial programming, but worked reliably after the initial

setup. UART1 of the PIC32 controller was configured in the same manner to transmit

and receive information.

Page 17 of 39

Figure 12: ESP connected to the PIC32 UART

In order to establish a connection with the mobile app that would not rely on the home
WiFi network, the ESP8266 hosted it's own software enabled access point that allows a
phone to connect directly to it. Once a connection with the phone was established, the
ESP would wait to receive HTTP requests from the app. These requests would be in
the form ip.address/info where info was information corresponding to the desired effect.
Finally, this data would be converted to a single byte integer that was sent to the PIC via
the UART connection. The code for the state machine that accomplished this task can
be found in Appendix 1.

In order to test the connections, a variety of different methods were used. First,

testing the WiFi access point was done by downloading code to the ESP Dev Thing and

Page 18 of 39

searching for a WiFi signal with the proper name using a mobile phone. Then, the
connection between the app buttons and the calling of the HTTP “GET” was tested by
downloading versions of the app to an Android smartphone, connecting it to the ESP
network, and using the buttons to print to the serial monitor connected to the Dev Thing.
The logic analyzer was then connected to the Tx and Rx pins on the ESP board to test if
the proper signal was being sent through the UART. Finally, the UART data was used
to turn on LED’s on the PIC32. Additionally, the logic analyzer would look at the output

of the Tx buffer of the PIC, which was set to output the data it had just received.

Page 19 of 39

Mobile Application

In its final form, the mobile application was used to interface with the PIC32,
enabling the user to select his or her desired audio effect. The app consisted primarily
of four separate screens composed using .xml code with Java code serving as the
‘engine” behind the scenes. Upon launch of the app, the user is presented with the

following screen:

* TuneBox_v1

e, user! It's time to make some music!

EFFECTS

TUNING

RECORDING

CONNECT

Figure 13: Mobile application home screen

Page 20 of 39

The Java running each of these buttons is patterned after the following code snippet:

1ge

nActivity.

tActivity (effectsIntent)

ach button instance first had to be declared and linked to its corresponding .xml item,
as depicted in the first line of the code. Then, a new click-listener had to be instantiated.
Within this listener, the button’s intended action 9s laid out. In the case above, the
buttons do two things. First, they launch a small message at the bottom of the screen
(called a “toast”) which tells the user what the app is about to do, as in lines five and six.
Next, the buttons make use of an intent structure to call up the next app page and
launch the next app activity, depending on which button is pressed.

The code shown above is used to send the app from the initial screen into the

effects-selection screen, shown here:

Page 21 of 39

EffectsActivity

Select your desired effect!

OVERDRIVE

CLIPPING

REVERB

OCTAVE

Figure 14: Effects selection screen
Each of the four buttons above represent the effects we implemented in C within the
microcontroller. During the Senior Design demonstration day, we used the overdrive
effect to demonstrate app functionality. After linking the buttons to their corresponding

xml elements as before, the following code lends functionality to the overdrive button:

overdrivebutton.

Page 22 of 39

Again, a click-listener is set to execute once the button is clicked. As before, we used a
toast message to confirm to the user that the button was doing as it should. Within the
effects-selection section, however, code was written to communicate via WiFi with the

ESP device, in this case via an executable function called DownloadTask (). That

function’s code is shown here:

onPostExecute (String result) {

Within the DownloadTask () class is another asynchronous background function called
downloadContent which is used to actually call the ESP device by IP address.

Because this function is asynchronous and reliant on the outside environment, it had to
be coded in a robust manner, with error catching capabilities written in. The actual code

for downloadContent is as follows:

Page 23 of 39

URL url = URL (myurl)

RL

conn.get

conn.getInputStream()

Essentially, the above code takes in a user-specified IP address in string form and
issues an HTTP GET command to that IP address (line 12). Normally, this style of
command is used to check that a solid connection has been instantiated. We used GET
commands to different ports on the ESP’s IP address to call for different responses from
the ESP device. Again, robust code was necessary to ensure that the app wouldn’t
crash if proper communication wasn’t established. More information about the interface
between the mobile app and the ESP-8266 is given later.

Testing of the mobile application was performed first through the built-in emulator
within Android Studio. Once all major bugs were worked out, most of which occurred
because of non-robust code (subsequently improved), the app was loaded onto a
physical Android phone and tested for hardware stability and proper Ul flow. With all
necessary code modifications made, the app was then connected to the ESP device via

its built-in WiFi transceiver. See the section on interfaces for more information.

Page 24 of 39

Bitstream to Audio Format

We were able to convert digital samples to .WAV file by adding the appropriate digital

headers to the pure bitstream. These headers are used to describe the file type and set

up the appropriate sample rate and bit speed for playback. In order to do this in for

Android devices, we audio libraries typically included with Java could not be used and

instead the bytes had to be manually set up using the proper format.

byte[]
byte[]
byte[]
byte[]
byte[]
byte[]
byte[]
byte[]
byte[]
byte[]
byte[]
byte[]
byte[]
byte[]

riff_tag = {82, 73, 7@, 78}; //RIFF Tag in ASCII bytes
wave_tag = {87, 65, 86, 69}; S/WAVE tag in ASCII bytes
fmt_tog = {1@2, 189, 116, 32}; //fmt tag in ASCII bytes

audio_format = {1, @} ; //represents a 1 in 2 byte 1ittle endian

num_channels = {1, @}; ffrepresents a 1 in 2 byte little endian

sample_rate = {8,32,8,08}; //represents 8192 in little endian
byte_rate = {8,64,0,8}; /frepresents 44108%2 in little endian

block_align = {@82,00}; A4 represents 2 1n little endian

bits_per_sample = {16,8}; ffrepresents 16 in little endian

dota_tog = {188, 97, 116, 97}; 7/ daota tog in ASCII bytes

data = bFile;

data_length = {@, @, @, @ };

riff_length = {0,8,0,8};

Figure 15: Assigning the .\WAV header

Page 25 of 39

Digital Effects

e The digital effects live on-board the PIC32, and are applied depending on
the user’s selection in the mobile app

e The effects are written in C and are called as functions within the main
program

o Each effect receives an input of digital samples of the analog waveform

o Apply four effects (chosen by user): Clipping, Octave Shift, Reverb, and
Overdrive

e Outputs a modified waveform to be sent from the PIC32 to the Audio
Codec or the mobile app.

e Digital effects are represented by h,[n] in the audio processing section.

h,[n] is time-invariant but not necessarily linear.

Clipping:

The clipping function is designed to provide a “grunge” sound to the guitar. To do this,
the function begins by taking each digital bit received by the PIC32 as an input, and
storing them in a static array within the function. The array is then checked for a
maximum. The static array is periodically overwritten to account for fluctuation in input
amplitude (i.e. the change in how hard the guitar is being strummed). After a maximum
is calculated, the output values can be restricted to a fraction of the maximum. For

example, the code in Figure X clips the output at 0.8 of the determined maximum. This

Page 26 of 39

means that any input value that is 80% of the maximum or greater will be replaced with

the value 0.8 of the max value. Figure 16 shows the final version of the Clipping C code.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
35
56
57

B int Clipping(short input) {

static int array[SIZE];

static int 1=0;

int j;

static short maximum = 8;

short output;

array[i] = input;

i++;

if{i==SIZE) {
i=8; }

for (j = @; j==i; j++) {

if(array[j] > maximum) {
maximum = array[j]l;
¥
¥

if{input == .8%maximum) {
output = .8«maximum;

b

else if(input <= -.8¢maximum) {
putput = —.8+maximum;

iy

else {
output = input;

¥

return output;

Figure 16: Clipping C code

The clipping function is illustrated in Figure 17, in which a sine wave is clipped to 55% of

its peak value.

Page 27 of 39

08
06
0.4 f £
02 7 §
", X f
o 10 20 30 a0 50
02 1
04 1 E {
06

0.8 -

Figure 17: Clipped Sine Wave
Octave:
The octave effect adds harmonics to the waveform, giving the audio a greater range of
frequencies. The function is given each digital bit as an input short. The inputs are
stored in a static array. The function then attempts to find the frequency of the audio
from the stored bits. Once a frequency is determined, sine waves of double and half of
the frequency are added to the output. The octave effect is illustrated, given an input

sine wave, in Figure 18.

3
g
g

350

Figure 18: Octave Effect for Sine Wave Input

Page 28 of 39

Reverb:

The reverberation effect can be described as an echo. The function takes each digital
sample as an input short. The bits are all stored in a static array which is periodically
overwritten. The values stored from two seconds prior dampened and added to the
current input value. This value is returned by the function. An example of this effect can
be seen in Figure 19. The effect is also capable of adding additional “echoes” to the

output waveform. Two echoes are illustrated in Figure 19.

15

: ﬂ

U

Figure 19: Reverb Effect for Input Sine Wave

Overdrive:
The output waveform of overdrive function is similar to the clipping function, but differs
in how the waveform is modified. Rather than clipping the waveform at a percentage of

the maximum, the overdrive function establishes the cutoff point at the maximum, and

Page 29 of 39

then amplifies the signal so that signal is “clipped” at the maximum. An illustration of this

effect can be seen in Figure 20.

Figure 20: Overdrive Effect for Input Sine Wave

Interfaces

Analog-to-Digital Conversion (ADC) and Digital-to-Analog Conversion (DAC):

The ADC interfaces between the conditioned guitar signal and the software on the
PIC32. The guitar signal, once modified by the front end analog system, is fed into pin
B4 on the PIC32 and processed by the on-board ADC. The digital bits are then fed to

the main program, which applies effects chosen by the user.

Unlike the ADC module, the DAC exists as an IC that is independent of the PIC32. The
IC chosen to perform DAC is the MCP4921. The digital samples, after being processed

by the PIC32, are sent as serial data to pin 4 (SDI) of the MCP4921. The data is then

Page 30 of 39

converted to voltage values and output on pin 8 (VoutA). The output is a series of

square waves which are then demodulated by the analog circuitry.

UART:

The UART connection is established through the connection of the Tx Pin of the ESP
and the U1RX pin of the PIC32 as well as the Rx pin U1TX pin of the two boards. The
connection runs at 9600 Hz and sends an 8 bit signal with no parity. On the PIC, the
UART connection is established by dividing the peripheral bus clock, initializing the
UART, waiting for the receive buffer flag to go off, reading the receive buffer, and writing
to the transmit buffer. The ESP code simply calls the function serial.init(9600) and then
uses serial.print() to write integer values to the Rx buffer.

WiFi:

The WiFi connection is established on the Arduino using the ESP8266Wifi.h library. It
allows the calling of Wifi.mode(WIFI_AP) that directs the ESP to host it's own WiFi
server. After initializing the connection and giving a host name and password, the
program waits until a client connects to its IP address. Then, it reads the corresponding
GET string and sends that information to the UART. Before terminating, the server

flushes the client information and waits for a new GET function to be called.

Page 31 of 39

User/Installation Manual

Currently, installing the TuneBox application requires connecting the phone via USB to
the computer containing the original software and selecting Debug>Phone_Name in
Android Studio. The benefit of using Android for this project is that becoming a
developer and making the app available for download on the Play Store is much simpler

than for iOS.

To set up the TuneBox, first attach the INPUT end of the device to the output of an
electric guitar via a 74” Male to Male Audio Cable. Next, attach the OUTPUT of the
device to the input of a standard amplifier-speaker system for electric guitars using the
same type of chord connection. Powering on the device as well as the guitar amp will

allow for noticeable audio to begin to be heard through the amplifier.

To set up the application on an Android device with the app TuneBox_v1 installed, go
to: Settings>Wi-Fi and make sure WiFi is turned on. Next, if the TuneBox is already
powered up, the Android phone is able to discover a network with the name “TuneBox”
and the password “password”. After entering this information, open the app itself and
select “EFFECTS”. The different available sounds will be displayed and you will be able
to select between them. The user can visually acknowledge that the app is sending
information through the ESP to the PIC device because an LED corresponding to the

effect will be illuminated.

Page 32 of 39

To-Market Design Changes

In order to be able to bring our device to market, there are a number of improvements
that would be required. First, the PCB board would need to be corrected to account for
our change in parts. Using a designated Audio Codec to accomplish ADC and DAC
would still be beneficial as well. We would also need to edit the code for other effects in
order to allow for switching between different sounds. This would also most likely
require a faster processor to be used in the design. Finally, because SoundCloud
doesn’t allow most mobile apps to upload sound files, we had ignored the saving and
uploading of audio data. To make this a more commercially viable product, determining

a host site where we can save audio files would be necessary.

Conclusions

From the start, our project was very ambitious. Even after removing the various
extraneous features which we initially envisioned, the project remained complicated. We
are proud of how it turned out. Despite the setbacks along the way which ultimately led
to the use of development boards for the final demonstration, the project’s core
functionality was not compromised. During the design process, we gained valuable
insight into how different forms of electrical and computer engineering can be brought
together to create a unique product. If we were to repeat the process, we would think
about how to more efficiently achieve our end goals while ensuring that we were using

the best parts for the job. Our overall conclusion is that a good design is one which

Page 33 of 39

properly manipulates the small factors and details while maintaining respect for the

overall goal throughout the process.

Page 34 of 39

Appendices

Appendix 1: ESP8266 State Machine Code

#include <ESP8266WiFi.h>

171777177771 7777777777
// WiFi Definitions //
111777777771 7777777777

const char WiFiAPPSK[] = "password";

1117777777777 77777777
// Pin Definitions //
/1777777777777 7777777

const int LED PIN = 5; // Thing's onboard, green LED
WiFiServer server (80);

void setupWiFi () {
WiFi.mode (WIFI_AP);

const char AP NameChar[] = "tuneBox";
WiFi.softAP (AP NameChar, WiFiAPPSK);
}
void initHardware () {
Serial.begin(9600);
pinMode(LED_PIN, OUTPUT) ;
digitalWrite(LED_PIN, HIGH) ;
// Don't need to set ANALOG PIN as input,
// that's all it can be.
}
void setup () {
initHardware () ;
setupWiFi () ;
server.begin();

}

void loop () {
// Check if a client has connected
WiFiClient client = server.available():;
if (!'client) {
return;

}

// Read the first line of the request
String req = client.readString();
byte reqgInt = (byte) reql5];

//

if (reqg != 0){
digitalWrite (LED PIN, HIGH);
Serial.print (reqgInt - 48); //converts ascii representation to actual int wvalue
//Serial.println ("We got the message");

}

else{
//Serial.println ("We didn't get the message");

}
client.flush{();

Page 35 of 39

Appendix 2, Part A: Board Design

..

SEENE o TuneBox

I N EE Senior Deslgn SP16

TP
| -
==y

b SLEEVE . == Sl T et :
: L =y v i FL SOWNET == (LS 0 e == LMC7B60 ¢
p L]
L]
—
m™

2 + . = i

+ E _' , | of s i . : [

I UL Les € ’; L € b O
g i i 5

o g
t > 9 .
W BAUA0P
E’G .

SWITCH-PB

(o]

iy

'-‘F

o)
A
I

Page 36 of 39

Appendix 2, Part B: Schematic Design |

>
f
5
] [T Ve Tl
b s Y I i T g T i R Vi i Y M
LUywwosnNnuwwLuwLngooooo
EREREESSEREES S EEE XY
b A Y e | o~ O [Tl s R
ooog 0w w oo
e =L Looo O o
TCoaT oo [ERg
mm
:Eb RES/AM17/RPES/PMDS g &0 S0SCO/TICK/RPCI4/REL4 %;@lﬂ_
2 REB/ANIS 0 SOSCIRPCIZRCIS 2 1
—m———o| reEvAnss INTORPDORDD 2 0
—pK2 H peAmecasScKz/ANTd RPD11/RO1L 1
—H RG7/SDA4/RPG7AN13 SCL1/5CK4/RPDI0/RDL0 3‘3‘ 10 —
D2 O peomecassCLa/aNL2 SDAL/RFDORDD L
=i pavEr scLs/mPrsmFs P2 gD0s
—g YOO SDAS/RPF4/RF4 %ﬁDB—
IR & mom vas o =
Fo i £ &
1| RG3RPGI/ANLL + voo |2
= | Resmres/aas USBID/RF2 ?L
4 12 Reaana orpez L2
=1 Rearees/ana D-/RG3 ?533—
REZ/RPAZ/ANZ ves 22
1PGCT ig RE1/RPEL /AN FGECT . YUSE gg pISBRY
0/PEDL RBO/RP20/ANDPGEDT oo g veus PLBUS
NIRRT _I:Q
[
%E\; m o E o % g o
[
Tz =zEIP psiigg
L SLoel =y EELE =g
o oo m= [00 m @ x » (o]
ig HEEZ 22%8%gg &
CTromEoc 5% IO 9 T oy
OO A A0 0 A== =™
am>rraaoaifl Oaoaaoaidu
[e =50]] A e Lr]llD gy o] =)) s Y
Rl Banll Rl Uu¥] Ent | RuVARRVE] Ea¥] D) Eut) Eu] URNE Faol Dasl My
A
s
25d 4
o Ty
[L) O |
) =
GO
o)
oOoO—WW————
=

Page 37 of 39

Appendix 2, Part C: Schematic Design |l

WD
LD1147D
oow E ™y
| GMNEF &
o - 5
7
RATTY
&) s 1o
Lz =
nE
re ["'4
WDD =
feiis}
o WD
F1 HELo
3 T &
£ [=1 -
= ===
iLf £V eV
) =
0
= WOC ol
| B
A
oS
'3
e
EHD
FTZEIRL
cio et
= =
Ci6
==
é%D [o)

Page 38 of 39

Appendix 2, Part D: Schematic Design Il

Appendix 3: Complete Software Listings

e Please see the relevant section of our website for complete code listings

Appendix 4: Datasheets

e Please see the relevant section of our website for datasheets used in the project

Page 39 of 39

