# USAGE # python ball_tracking.py --video ball_tracking_example.mp4 # python ball_tracking.py # import the necessary packages from collections import deque from imutils.video import VideoStream from picamera.array import PiRGBArray from picamera import PiCamera from threading import Thread import numpy as np import argparse import cv2 import imutils import time class PiVideoStream: def __init__(self, resolution=(320, 240), framerate=32): # initialize the camera and stream self.camera = PiCamera() self.camera.resolution = resolution self.camera.framerate = framerate self.rawCapture = PiRGBArray(self.camera, size=resolution) self.stream = self.camera.capture_continuous(self.rawCapture, format="bgr", use_video_port=True) # initialize the frame and the variable used to indicate # if the thread should be stopped self.frame = None self.stopped = False def start(self): # start the thread to read frames from the video stream Thread(target=self.update, args=()).start() return self def update(self): # keep looping infinitely until the thread is stopped for f in self.stream: # grab the frame from the stream and clear the stream in # preparation for the next frame self.frame = f.array self.rawCapture.truncate(0) # if the thread indicator variable is set, stop the thread # and resource camera resources if self.stopped: self.stream.close() self.rawCapture.close() self.camera.close() return def read(self): # return the frame most recently read return self.frame def stop(self): # indicate that the thread should be stopped self.stopped = True # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-v", "--video", help="path to the (optional) video file") ap.add_argument("-b", "--buffer", type=int, default=64, help="max buffer size") args = vars(ap.parse_args()) # define the lower and upper boundaries of the "green" # ball in the HSV color space, then initialize the # list of tracked points greenLower = (29, 86, 6) greenUpper = (64, 255, 255) pts = deque(maxlen=args["buffer"]) vs = PiVideoStream().start() # allow the camera or video file to warm up time.sleep(2.0) ############### Calibration ##################### # For calibration of distance calculation KNOWN_DISTANCE = 12.0 KNOWN_WIDTH = 1.5 image = cv2.imread("ball_calibration.jpg") def distance_to_camera(knownWidth, focalLength, perWidth): # compute and return the distance from the maker to the camera return (knownWidth * focalLength) / perWidth # resize the frame, blur it, and convert it to the HSV # color space image = imutils.resize(image, width=600) blurred = cv2.GaussianBlur(image, (11, 11), 0) hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV) # construct a mask for the color "green", then perform # a series of dilations and erosions to remove any small # blobs left in the mask mask = cv2.inRange(hsv, greenLower, greenUpper) mask = cv2.erode(mask, None, iterations=2) mask = cv2.dilate(mask, None, iterations=2) # find contours in the mask and initialize the current # (x, y) center of the ball cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) center = None # find the largest contour in the mask, then use # it to compute the minimum enclosing circle and # centroid c = max(cnts, key=cv2.contourArea) ((x, y), radius) = cv2.minEnclosingCircle(c) M = cv2.moments(c) center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])) # draw the circle and centroid on the frame, # then update the list of tracked points cv2.circle(image, (int(x), int(y)), int(radius), (0, 255, 255), 2) cv2.circle(image, center, 5, (0, 0, 255), -1) # show the frame to our screen cv2.imshow("Image", image) focalLength = (radius * KNOWN_DISTANCE) / KNOWN_WIDTH ################################################### # keep looping while True: # grab the current frame frame = vs.read() # handle the frame from VideoCapture or VideoStream frame = frame[1] if args.get("video", False) else frame # if we are viewing a video and we did not grab a frame, # then we have reached the end of the video if frame is None: break # resize the frame, blur it, and convert it to the HSV # color space frame = imutils.resize(frame, width=600) blurred = cv2.GaussianBlur(frame, (11, 11), 0) hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV) # construct a mask for the color "green", then perform # a series of dilations and erosions to remove any small # blobs left in the mask mask = cv2.inRange(hsv, greenLower, greenUpper) mask = cv2.erode(mask, None, iterations=2) mask = cv2.dilate(mask, None, iterations=2) # find contours in the mask and initialize the current # (x, y) center of the ball cnts = cv2.findContours(mask.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) center = None # only proceed if at least one contour was found if len(cnts) > 0: # find the largest contour in the mask, then use # it to compute the minimum enclosing circle and # centroid c = max(cnts, key=cv2.contourArea) ((x, y), radius) = cv2.minEnclosingCircle(c) M = cv2.moments(c) center = (int(M["m10"] / M["m00"]), int(M["m01"] / M["m00"])) # only proceed if the radius meets a minimum size if radius > 10: # draw the circle and centroid on the frame, # then update the list of tracked points cv2.circle(frame, (int(x), int(y)), int(radius), (0, 255, 255), 2) cv2.circle(frame, center, 5, (0, 0, 255), -1) # update the points queue pts.appendleft(center) # loop over the set of tracked points for i in range(1, len(pts)): # if either of the tracked points are None, ignore # them if pts[i - 1] is None or pts[i] is None: continue # otherwise, compute the thickness of the line and # draw the connecting lines thickness = int(np.sqrt(args["buffer"] / float(i + 1)) * 2.5) cv2.line(frame, pts[i - 1], pts[i], (0, 0, 255), thickness) # Update distance inches = distance_to_camera(KNOWN_WIDTH, focalLength, radius) cv2.putText(frame, "%.2fft" % (inches / 12), (frame.shape[1] - 200, frame.shape[0] - 20), cv2.FONT_HERSHEY_SIMPLEX, 2.0, (0, 255, 0), 3) # show the frame to our screen cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF # if the 'q' key is pressed, stop the loop if key == ord("q"): break # stop the camera video stream vs.stop() # close all windows cv2.destroyAllWindows()