Operation Guide: CAN Communication + Kelly Controllers
Formula Hybrid Senior Design Team, 5/7/2020

Introduction: the benefits of using CAN communication

Without CAN With CAN

] O

E = E =
E = oo

Figure 1. CAN network topology minimizes wiring (National Instruments, 2019)

CAN Bus protocol enables many IO devices/ECUs called nodes within an
automotive vehicle or other system to communicate with each other with
minimal wiring required (see Fig. 1). Each node broadcasts a message to all other
nodes on the bus, similar to the operation of walkie-talkies at the simplest level.
Some nodes, such as the engine or brake controls, relay more critical information
than others, such as the air conditioning, and need priority if two nodes try to
send a message at the same time. The arbitration process will determine which
node can transmit its message first. All nodes can ignore messages that do not
apply to them with buffers and filtering set up in the microcontroller. Overall, the
low-cost, centralized processing, and robustness to electromagnetic interference
makes CAN protocol so appealing for car manufacturers.

Defining Terms and Acronyms
CAN - Controller Area Network
CAN 2.0 - most recent publication of CAN protocol from Bosch in 1991
CAN 2.0A - standard identifier (11 bits)
CAN 2.0B - extended identifier (29 bits)
CAN 1.0 FD - Flexible Data Rate from Bosch in 2012
Compatible with CAN 2.0, meaning that CAN 1.0 FD devices can be on the
same network as CAN 2.0 devices
SAE J1939 - higher level protocol developed for trucks
SAE]J1939 goes into more depth on the message formats, source addressing,
broadcasting control, and acknowledgement of signals
- necessary, relevant information from this protocol is specified in the
Kelly Controls CAN datasheet linked below

CAN Signal

CANH

Typical Bus Voltage (V)

4 § = Time, t
Recessive | Dominant | Recessive

Logic H Logic L Logic H

Figure 2. Differential CAN bus signal (Griffith, 2015)

Because CAN messages are differential signals, the CAN network topology
contains two wires. One wire is the high wire, the other wire is the low wire. For
a 5 V CAN system, the bus is in a recessive (idle) state at 2.5 V. A recessive bit is
equal to a logic 1. When a dominant bit is sent, the CAN high signal goesupto 5V
and the CAN low signal goes down to 0 V. Dominant bits are equal to logic 0. This
differential signal makes the bus more immune to errors from electromagnetic
interference (EMI).

Hardware Set-Up
FIGURE 1-2: MCP2562 WITH Vio PIN
WBAT
: 5V LDO
-
{ 1.8V LDO)
0.1 pF 0.1 pF
‘ — l df—
L N — | ok . AN
CAMTX | = Txo gy GANH|
PIC* 0o NRX Ier‘ & = 1200
MGU - {homs: g [
REX »=5TRY = | .
[ves CAML] .
- -

Figure 3. CAN network set-up with PIC32 and MCP2562

Microchip CAN hardware

The PIC32MX795F512H (the microcontroller on the main motherboard of the
Hybrid car and the microcontroller on many Senior Design demo boards) has two
CAN controllers integrated into its hardware. The PIC32MX695F512H does NOT.
Be careful when selecting demo boards to test with CAN to use the 795 version.

MCP2515/MCP2510 - CAN controller with SPI interface

Standalone CAN controller for interfacing with non-CAN enabled
microcontrollers. Converts CAN data to SPI data to communicate with
microcontroller. The MCP2515 board contains a transceiver on the PCB. We
have two of these devices and they are useful for testing the CAN bus with
the Arduino MEGA board.

MCP2561/MCP2562 - CAN transceiver

The transceiver interfaces with the CAN controller, essentially converting
the raw, differential signal into one with a logic-level signal with 1s and 0s.
Do not confuse the CANTX/TXD and CANRX/RXD with UART
communication. The CANTX connects to the TXD and CANRX connects to
the RxD which is different from UART where the Rx connects to the Tx and
vice-versa. The MCP2562 connected to one of the 795 SD kit boards will
form a CAN node.

Create a CAN node with the Arduino

Figure 4. Wiring diagram for Arduino CAN node

1. With the current buffer and filter set up of the code, using the Arduino CAN
node to debug CAN issues instead of the Kelly controllers is not
recommended. This tutorial should help you understand CAN protocol and
learn how to use the logic analyzer and/or the Keysight oscilloscope.

2. Materials needed: Arduino MEGA 2560, MCP 2515, 1202 resistor, jumper
wires

3. Configure the Arduino and the CAN controller module as shown in Fig. 4.

Code to Configure Arduino MEGA 2560 as a CAN Transmitter

#include <SPI.h>
#include <mcp_can.h>

const int spiCSPin = 53; // specify slave select pin for Arduino MEGA
int ledHIGH 1;
int ledLOW = 0;

MCP_CAN CAN(spiCSPin);

void setup()

{
Serial.begin(115200); // UART baud rate
while (CAN_OK != CAN.begin(CAN_250KBPS))
{
Serial.println("CAN BUS init Failed");
delay(100);
}
Serial.println("CAN BUS Shield Init OK!");
}

unsigned char stmp[8] = {1, 0, 1, @0, 1, 0, 1, 0},

void loop()

{
Serial.println("In loop");
CAN.sendMsgBuf(ox43, 1, 8, stmp);
delay(1000);

}

This code is adapted from:
https://www.electronicshub.org/arduino-mcp2515-can-bus-tutorial/

https://www.electronicshub.org/arduino-mcp2515-can-bus-tutorial/

4. Download MCP_CAN_lib library (linked in Software Downloads) and
program the Arduino with the code shown above. This program allows the
Arduino and CAN controller to send CAN messages.

5. When using the logic analyzer to detect the CAN signals, be careful with the
CAN rate. If 250,000 kbps does not work, try 125,000 kbps and 500,000 kbps.
We are not sure why 250,000 kbps does not work because that is the
correct bit rate, but it should work with one of these numbers.

6. When using the logic analyzer in general, make sure the voltage trigger
level is correct for your application.

7. Examples of output and hardware are shown in Fig. 6 and Fig. 7. Note the
LED and push button were removed later as they were unnecessary.

Saleae Logic 1.2.18 - [Connected] - [24 MHz Digital, 1 s]

+0.6 ms +0.7 ms +0.8 ms

T (0x01) 'O(0x00) "1 (0xDI) 'O (ON00) | 17 (Ox01) 07 (0xD0) | °1' (OxDI)

Figure 6. Logic analyzer output waveforms

Q, Search Protocols

Extended CAN Identifier: C (0x00000043)
Control Field: '8’ (0x8) bytes
Data Field Byte: '1' (0x01)
Data Field Byte: '0' (0x00)
Data Field Byte: '1' (0x01)
Data Field Byte: '0' (0x00)
Data Field Byte: '1' (0x01)
Data Field Byte: '0' (0x00)
Data Field Byte: '1' (0x01)
Data Field Byte: '0' (0x00)
CRC value: '26838' (0x68D6)

NAK
Extended CAN Identifier: C (0x00000043)

Figure 7. Logic analyzer data output Figure 8. Enlarged view of MCP2515

Figure 9. Arduino MEGA 2560 wired for CAN network testing

Testing CAN Protocol on Kelly Motor Controller

. Read all relevant datasheets

. To apply power to the controller (detached from the hybrid car), attach a
12 V DC power supply (GEMTECH in Hybrid Lab) to the Black GND (6) and
Pink PWR (7) pins on connector. Determine which connector of the 3
possibilities by matching the shape of the plastic housing on the connector
and the colors of the wires attached to the pins. Alternatively, the Low
Voltage System in the car can be activated by attaching the red and black
leads to a 12 V battery and flipping the ECU switch, LCD screen should turn
on. If controllers are properly attached to the car, this should provide the
12 V to the controllers.

~

Orange Black Thite

REV-SW GND F¥D
(14) (6) (12)
Red Yellowish Blue
12¥ 12V Brake ECO
(11) (25) (22)

Greenish Pink | Brownish

CAN_H PR CAN_L
(33) (7 (34)

DIJ7091Y-2.3-11

Figure 10. Wiring of Kelly Motor Controllers

For quick verification that a signal is being transmitted the Saelae Logic

Analyzer will decode CAN messages. For more extensive debugging, the

Keysight Infiniti Vision scope located in the Senior Design lab is preferred.

We used this tutorial to set up CAN on the oscilloscope:
https://www.youtube.com/watch?v=dcs2QvJRsoA

Choose the CAN_H or CAN_L to model. Although they both add to the

differential signal, when examining raw data only one is necessary.

We used the analog inputs on the Keysight scope, not the digital ones.

A photo reference of what we saw is included in Fig. 11.

To analyze the data, we compared the ID and the DATA fields to the Kelly

CAN Protocol Description. Note that in the third data entry, the 0x1E

signifies that this is one of the motor controllers and not the generator

controller. It was experimentally determined by the first formula hybrid

team that the generator controller will always have 0x41 in this position.

Figure 11. Keysight InfinitiVision oscilloscope analyzing CAN signal from Kelly Controllers

https://www.youtube.com/watch?v=dcs2QvJRsoA

Using the Kelly Controls Software Application

Kelly includes an application called KMC User App.exe. This allows the user to
view CAN data without implementing the CAN hardware and theoretically allows
the modification of the device source address. However, changing the “] CAN
Address” field did not impact the Message ID or source address. The application is
fairly unreliable and usually gives error messages upon start. Although the
software is unpredictable, it could be used as a last resort debugging tool. A
screenshot of the software is shown in Fig. 12.

|Mudu|e Name KLS14401 | 1ps pead High

|U5Er Name qwth TPS Fwid MAP i it
\Serial Number 11160001 1pg Rev MAP 20 B
@ -Pedel
||Snftware Version 01110001 grake Type | 2 D : (: o |
|Controller Volt 144 Brake Dead Low | 20 o r i |
lLuw Valt 18 Brake Dead High 80 S '
l 1 [] Three Gears Switch ‘
|Over Volt 150 | Max Output Fre 1000 E :
|‘Hall Galvanometer 800 Max Speed 4000 [;]FUD:S = [
|PhaseCurr Max AD 409 Max Fwd Speed % 100 | e G2 ‘I
|‘Current Percent 80 | Max Rev Speed % 100 e ||
| Battry Limit 50 MidSpeed Forw Speed | 50 | QLI |
{dentification Angle | &5 | MidSpeed Rev Speed | 30 | Gl I
|
1|TFS Low Err 10 LowSpeed Forw W 50 E]Antf—S!Fp Il |
‘TPS High Err 20 Lowspeed Rev Speed | 30 Clchanpeises » |
|TP§ Type £ | ‘Th(ee Speed | 0 | ReadZero | ||
|TP‘S Dead Low 20 PWM frequency | ‘

Vehicle © Motor Read

Contral | COM Write

ial converter - Google Dacs

=

Figure 12. KMC User Application

Software Tips
(from Kelly Controls Support Team, the software was still pretty buggy no matter which
OS we used after running going through these tips)
e Download the latest version of software from the website (linked above).

e Download the USB driver for the USB port in your computer. Update the USB
driver if you are using Windows 10. [These update with regular Windows
Updates]

e Do not install the user program in Local Disk (:C) or where anti-virus software
could interfere. Close all the antivirus software before operating the user
program.

Do NOT connect the controller to the computer when the motors are running!
You MUST turn the power supply on to use the software (and to read CAN
messages).

e Please note only KDS/KDHD controllers need a Kelly SCI converter to support the
application. Kelly SCI converter is useless for other controllers from Kelly.

e Itis better to use Win XP or 2000 for the user program. Win7 or 8 may not be
compatible with the GUI.

e Try to reset the power supply after applying settings

How to run the program in Windows XP SP3 compatibility mode:

e Right click on the User Program

e Properties > Compatibility > Windows XP Service Pack 3

e Reset power supply and open application in Administration mode.

Testing with the Kitboards in the Senior Design Lab

33V 5V
33V T lﬁ
ZF ™ Vio Vdd CAN_H - KLS8080I
CAN_H
Vdd RYD
CANTRX (58) CANZRX (29) MCP2562 120 ohms
CANTTX(59) CAN2TX (21) CANL
1 STBY =
PIC32MX795F512H | Ves CANLE~KLSE080]
Vss =

I =

33V

Figure 13. CAN node with SD demo boards and CAN transceiver

Using the CAN modules in the PIC32MX795F512H with MPLAB
After the CAN transceiver processes the CAN message, the CAN module must
decide whether to accept the message or ignore it. In the module, there is the
capability to have 32 acceptance filters and 4 masks. Initially, the receive message
acceptance buffer (RMAB) stores the messages that the module will filter. When
filtering the message, the mask determines which bits of the message the filter
will pay attention to and which bits the filter will ignore. Then, the filters will

compare the selected bits with preset values. For example, Message 1 and
Message 2 of the controller have different message IDs, 0x0x0CF11EO05 for
Message 1 and 0XxOCF11FO05 for Message 2. There is one mask and two filters to
differentiate between the messages. The mask bits are all set to 1 to indicate that
no bit of the message ID should be ignored. The filter bits encode the values of the
message ID: 0b110011110000 for the standard identifier (SID) and
0b010001111000000101 for the extended identifier (EID) for Message 1. After
filtering, the messages are stored in the CAN Message FIFOs which store a
maximum of 1024 messages per module. Fig. 15 shows how the accepted
messages move to the system bus where the CPU of the microprocessor stores
them into the FIFOs in the RAM of the microcontroller.

IDENTIFIER 11BITS D IDENTIFIER EXTENSION 18BITS

mwm‘xmm
T

I
D PF PDU SPECIFIC(PS) SOURCE ADDRESS(SA)*
E

PRIORITY | R | DP PDU FORMAT(PF)

321 |11 [8]7]60544]
28 [27[26 (25 24 |23 | 2221|2019 |18 171

3| 42-18\7W6|5\4‘3-2-1
15[4/13]12[nfwofofs

=N

Figure 14. Message ID Format for Kelly controllers

Components of a CAN Message:

SOF - Start of Frame, dominant (0) bit

Arbitration and Control Fields - Determine priority of message and the address
of the source, shown in Fig.

Data - 8 bytes of data

CRC - Cyclic Redundancy Check, 16-bit field that helps to find errors

ACK - recessive (1) sent by the transmitter and acknowledged with dominant (0)
sent by receiver regardless of message acceptance

EOF - End of Frame, 7 recessive bits

Each message buffer has 4 bytes of data. Fig. 16 shows how the set-up of the
message buffers would work in this application. Pay particular attention to the
settings in the right side of the photo. TXEN denotes that it is a receive or transmit
buffer, DONLY denotes whether the full message is stored or just the data bytes,
and FSIZE denotes the number of words in a buffer. (note FSIZE = 3 denotes 4
words). Fig. 17 shows how the message ID and the data from each CAN message

Figure 34-2:

PIC32 CAN Module Block Diagram

4 Bulfer Size

Message

2 or 4 Words

CaTX
& * 32 Filters
4 Masks
CxRX CPU
CAN Module
S D
System Bus
£ Device RAM
E ' “’.‘.e.s..s.‘.‘.ﬂ.e.rl.i.‘.'.'le.r-?.“ (& essag_eriluﬂ&' 31‘5 Messane Buffer 31 | —
e e UL
® | I
o]
& i i i
g ! == |
= I L | TR
o Message Buffer 1 Message Buffer 1| Message Buffer 1
4 | [Message Buffer 0 Message Buffer 0| Message Buffer 0
s FIFOO FIFO1 FIFO31
CAN Message FIFO (up to 32 FIFOs)

Figure 15. CAN Controller Module Block Diagram

fits into the message buffers.

CAN
MODULE1

CAN
MODULE 2

8 MESSAGE BUFFERS/FIFO

MESSAGE BUFFER 7 [4 words]

MESSAGE BUFFER 6 [& words]

MESSAGE BUFFER 5 [& words]

MESSAGE BUFFER 7 [4 words]
MESSAGE BUFFER 6 4 words] <
MESSAGE BUFFER 5 [4 words]

MESSAGE BUFFER 4 [4 words]

MESSAGE BUFFER 4 [4 words

MESSAGE BUFFER 3 [& words]

MESSAGE BUFFER 3[4 words]

>

MESSAGE BUFFER 2[4 words]

MESSAGE BUFFER 2[4 words] |

MESSAGE BUFFER 1[4 words|

MESSAGE BUFFER 1[4 words]

MESSAGE BUFFER 0 [& words|

MESSAGE BUFFER 0 [4 words]

<>

CAN: RECEIVEFIFO 0

32 words allocated

CANT:RECEIVEFIFO1

MESSAGE BUFFER 7 [4 words]

MESSAGE BUFFER 7 [4 words]

MESSAGE BUFFER 6 [4 words]

MESSAGE BUFFER 6 [4 words]

MESSAGE BUFFER 5 [words]

MESSAGE BUFFER 5 [& words]

EXAMPLE OF ONE MESSAGE BUFFER

0x00001050 MBO

FIFO3 0x00001060 MB1
(Full Receive

i i 0x00001070 MB2

0x00001080 MB3

MESSAGE BUFFER 4 [4 words]
MESSAGE BUFFER 3 [4 words]
MESSAGE BUFFER 2 [4 words|

MESSAGE BUFFER 1[4 words]

MESSAGE BUFFER 4 [& words]
MESSAGE BUFFER 3 [words|
MESSAGE BUFFER 2[4 words]

MESSAGE BUFFER 1[4 words

MESSAGE BUFFER 0 [4 words]

MESSAGE BUFFER 0 [4 words|

CAN2: RECEIVEFIFO 0

CAN 2: RECEIVEFIFO1

© C1FIFOONC3.TXEN = 0
C1FIFOCON3.DONLY =0
C1FIFOCON3.FSIZE = 3

Figure 16. Individual Message Buffers: Structure and Sample Settings

CAN FULL MESSAGE BUFFER DATA STRUCTURE

Table 34-5: Receive Message Format as Stored in RAM - CICON.CANCAP =1,
CFIFOCON.DONLY =0

Name Bit Bit Bit Bit Bit Bit Bit Bit
31/2315/7 | 30/22/14/6 | 29/21/13/5 | 28/20/12/4 | 27/19/11/3 | 26/18/10/2 | 25/17/9/1 | 24/16/8/0
i CMSGSID 31:24 CMSGTS<15:8> @ read in as zero
rxcmsgsm 23:16 CMSGTS<7:0>
15:8 FILHIT<4:0> SID<10:8> @ FILH'T = fllter #
7:0 SID<7:0>
cmsGeD |3124] — [— [sRR [DE | EID<17:14>
rxcmsgeid 23..16 : EID<13:6>
15:8 EID<5:0> RTR RB1
7o =" ="]"—"7 reo | DLC<3:0>
CMSGDATAD [31:24 Receive Buffer Data Byte 3
23:16 Receive Buffer Data Byte 2
rxcdeatau 15:8 Receive Buffer Data Byte 1
7:0 Receive Buffer Data Byte 0
CMSGDATA1 [31:24 Receive Buffer Data Byte 7
23:16 Receive Buffer Data Byte 6
rxcmsdatal 15:8 Receive Buffer Data Byte 5
7:0 Receive Buffer Data Byte 4

Figure 17. Contents of the receive buffer with variable names from this project

CAN Functions

Note: a lot of this code is very similar to the examples provided in the Microchip
CAN reference sheet

The CAN messages are sampled once every 4 ms with the Timer 3 interrupt
service routine.

initCAN2

Within the CAN configuration registers, there are different operation

modes that the module has. The module itself can be turned on and off. The

most prevalent operation modes are: configuration mode and normal

operation mode. To detect if the module is processing messages, there is a

CANBUSY bit. This function also configures the baud rate of the CAN.
set_Baud - The goal of this function is to program the module to
operate the bus at 250 kbps. Since the Kelly Controllers define this bit
rate and it will not adjust with new system requirements,
modification of this function is unnecessary.

initFilter - Stores the Kelly Message ID so that the module can
determine whether to accept or ignore a message. Selects FIFO0 and
FIFO1 for storage. Requires the module to be in configuration mode
for this.

initFIFO
The module must be in configuration mode for changes in FIFO set up. The
KVA_to_PA function is defined by microchip and its operation is not
detailed by the manual other than that it initializes the FIFO at the address
given by the CanFifoMessageBuffers. The initFIFO function specifies the
characteristics of the message buffer as seen in Fig. 16.

readFIFO
Process:

1. Flag enabled if FIFOO is not empty
2. Turn the module on.
3. Flag checked to see if the FIFO is empty
4. If the FIFOO is not empty, process the message
5. Increase the address increment pointer by 16 to indicate that the
has been processed by setting the UINC bit.
6. Repeat until FIFOO is empty
7. Repeat with Message 2 in FIFO1

ProcessMessagel
Data from the CAN message is transferred from the FIFO into variables:
EID and D1-D8. The code checks to see if the data in the message is the
proper length (8 bytes) in the buffer to ensure that the full message was
stored. This extracts the rpm of the motors, the motor current, the battery
voltage, and the two error bytes. It stores the message into the
messageWord structure.

ProcessMessage2

Methods from ProcessMessage2 are repeated. This extracts the throttle
level, the temperatures of the controllers and the motor, the controller status, and
the switch status.

whichKelly
Differentiates between the CAN messages from the generator controller

and the motor controllers. msg_array[5] will always be 0x41 for the
generator controller and 0x1E for the motor controllers.

decodeErrors
This function looks at the error message seen from ProcessMessagel and
compares the set bits to the Kelly Controls CAN protocol data sheet to see
which errors correspond to which bits. If there are error messages, it stores
them in the Error_messages array

Relevant CAN code from the 2018-2019 Formula Hybrid team
(excluding the timer interrupt functions):

typedef struct

{
unsigned SID:11;
unsigned FILHIT:5;
unsigned CMSGTS:16;
}rxcmsgsid;

typedef struct
{
unsigned DLC:4;
unsigned RBO:1;
unsigned :3; // reserved bits
unsigned RB1:1;
unsigned RTR:1;
unsigned EID:18;
unsigned IDE:1;
unsigned SRR:1;
unsigned :2; // reserved bits
}rxcmsgeid;

typedef struct

unsigned Byte©:8;
unsigned Bytel:8;
unsigned Byte2:8;
unsigned Byte3:8;
}rxcmsgdatag;
/* Create a C-MSG-DATA1 data type. */
typedef struct

{
unsigned Byte4:8;
unsigned Byte5:8;
unsigned Byte6:8;
unsigned Byte7:8;
}rxcmsgdatal;

/* This 1s the main data structure. */
typedef union uCANRxMessageBuffer {

struct
{
rxcmsgsid CMSGSID;
rxcmsgeid CMSGEID;
rxcmsgdata® CMSGDATA®;
rxcmsgdata® CMSGDATAL;
¥

int messageWord[4];
}CANRxMessageBuffer;

volatile int EID = 0;
volatile float rpm = 0;
volatile float rpm_last = 0;
volatile float rpm_new = 0;
volatile float avg _rpm = 0;
volatile float speed
volatile float power = 0;
volatile float motor_current = 0;
volatile float mot_G = O;
volatile float mot_last = 9;
volatile float mot_new = 9;
volatile int bat_voltage
volatile int error_lsb
volatile int error_msb ;
volatile int contr_temp = 9;
volatile int contr_temp G = 9;
volatile int contr_temp LR = 0;
volatile int motor_temp = 0;
volatile int mot_temp G = 0;
volatile int mot_temp_ LR = ©;

1]
()
“e

0;

.
)

1}
S O I

volatile int contr_status = 0
volatile int switch_status =
volatile float throttle = 0;

J
J

volatile char* msg_array[8];

void dotheCAN(void){
initCAN2();
initFIFO();
Read_FIFO();

void initCAN2(void){

/* Turn CAN off to Reset it */
C2CONbits.REQOP = 4; /* Place the CAN module in Configuration mode. */
while(C2CONbits.OPMOD != 4);

C2CONCLR = 0Ox00008000; /* Switch the CAN module off by clearing the ON
bit */
while(C2CONbits.CANBUSY == 1);

/* Switch the CAN module back ON and switch it to Configuration mode. Wait till
the switch is complete */

C2CONbits.ON = 1;

C2CONbits.REQOP = 4;

while(C2CONbits.OPMOD != 4);

/* Configure the CAN Module Clock */
set_Baud();

/* Set CAN2_RX pin as input */
AD1PCFG = 0x00004100; /* Disable Analog Mode */
TRISBbits.TRISB14 = 1;

/* Put it back in normal mode */
C2CONbits.REQOP = 0;
while(C2CONbits.OPMOD != 0);

/* Configure filters and mask */
initFilter();

void set_Baud(void){

/* Example 34-17: Configuring the CAN Module to Obtain a Specific Bit Rate */

/* This code example shows how to configure the CAN module to obtain a */

/* specific bit rate implementing the configuration shown in Example 34-16. */
/* Fsys = System Clock Frequency = 86MHz; */

/* Fbaud = CAN bit rate = 250000; */

/* N = Time Quanta (Tq) per bit = 16; */

/* Prop Segment = 1 Tq */

/* Phase Seg 1 = 7 Tq */

/* Phase Seg 2 = 7 Tq */

/* Sync Jump Width = 2 Tq */

/* Ensure the CAN module 1is in configuration mode.*/

C2CONbits.REQOP = 4;
while(C2CONbits.OPMOD != 4);

C2CFGbits.SEG2PHTS = 1; /* Phase seg 2 1is freely programmable */
C2CFGbits.SEG2PH = 6; /* Phase seg 2 is 7 Tq.*/

C2CFGbits.SEG1PH = 6; /* Phase seg 1 is 7 Tq.*/

C2CFGbits.PRSEG = ©; /* Propagation seg 2 is 1 Tq. */

C2CFGbits.SAM = 09; /* Sample bit 1 time. */

C2CFGbits.SIW = 2; /* Sync jump width is 2 Tq */

C2CFGbits.BRP = 9; /* BRP is (Fsys/(2*Ftq))-1 = (86e6/(2*4e6))-1 = 9 */

void initFIFO(){
/* Allocate a total of 32 words */
unsigned int CanFifoMessageBuffers[32];

/* Request CAN to switch to configuration mode and wait until it has switched */
C2CONbits.REQOP = 4;
while(C2CONbits.OPMOD != 4);

/* Initialize C2FIFOBA register with physical address of CAN message Buffer */
C2FIFOBA = KVA_TO_PA(CanFifoMessageBuffers);

/* Configure FIF0O. This will be a receive FIFO for 4 full messages */
C2FIFOCON@bits.TXEN = 0; /* Clear the TXEN bit */
C2FIFOCON®@bits.DONLY = ©; /* full message */

C2FIFOCON®@bits.FSIZE = 3; /* size 1s 4 message buffers (MBO to MB3) */

/* Configure FIFO1. This will be a receive FIFO for 4 full messages */
C2FIFOCON1bits.TXEN = 0; /* Clear the TXEN bit */
C2FIFOCON1bits.DONLY = ©; /* full message */

C2FIFOCON1bits.FSIZE = 3; /* size is 4 message buffers (MBO to MB3) */

/* The CAN module can now be placed into normal mode 1if no further
* configuration is required. */
C2CONbits.REQOP = 0;
while(C2CONbits.OPMOD != 0);

void Read_FIFO(void){

C2FIFOINTObits.RXNEMPTYIE = 1;
/* From Example 34-4: Reading Received Messages from the FIFO */
/* FIFOO size is 8 messages and each message 1s 4 words long. */
unsigned int * currentMessageBuffer; /* Points to message buffer to be read */
while(C2CONbits.ON == 1){
/* MESSAGE 1 */
/* Keep reading until the FIF0© is empty. */
while(C2FIFOINTObits.RXNEMPTYIF == 1){
/* Get the address of the message buffer to read from the C2FIFOUA®O
* register. Convert this physical address to virtual address. */
currentMessageBuffer = PA_TO_KVA1(C2FIFOUA®);
ProcessMessagel(currentMessageBuffer);
/* Set the UINC bit to tell the CAN module that
* a message has been read. */
C2FIFOCON®@bits.UINC = 1;

/* MESSAGE 2 */
/* Keep reading until the FIFO1 is empty. */
while(C2FIFOINT1bits.RXNEMPTYIF == 1){
/* Get the address of the message buffer to read from the C2FIFOUA®O
* register. Convert this physical address to virtual address. */
currentMessageBuffer = PA_TO_KVA1(C2FIFOUA1);
ProcessMessage2(currentMessageBuffer);
/* Set the UINC bit to tell the CAN module that
* a message has been read. */
C2FIFOCON1bits.UINC = 1;

void ProcessMessagel(int currentMessageBuffer){
CANRxMessageBuffer *buffer;

/* When a message have been received and read, the individual fields of */
/* the received message can be queried as such. */

buffer = (CANRxMessageBuffer *) (PA_TO_KVA1(C2FIFOUAQ));

if(buffer->CMSGEID.DLC == 8){

/* If the length of the received message is 8 then process the message. */
unsigned int * bufferToRead;
/* Check 1if there 1is a message available to read. */
if(C2FIFOINTObits.RXNEMPTYIF == 1){
/* Get the address of the buffer to read */
bufferToRead = PA_TO_KVA1(C2FIFOUA®);

EID = buffer->CMSGEID.EID;

int D1 = buffer->CMSGDATAO.ByteO;
int D2 = buffer->CMSGDATA®.Bytel;
float D3 = buffer->CMSGDATAO.Byte2;
float D4 = buffer->CMSGDATA®.Byte3;

int D5 buffer->CMSGDATAL.Byte0;
int D6 buffer->CMSGDATA1.Bytel;
int D7 = buffer->CMSGDATAl.Byte2;
int D8 = buffer->CMSGDATAl.Byte3;

rpm = (D2*256)+D1;

motor_current = ((D4*256)+D3)/10;
bat_voltage = ((D6*256)+D5)/10;
error_lsb = D7;

error_msb = D8;

// Store Full message 1 //

msg_array[@] = buffer->messageWord[0];
msg_array[1l] = buffer->messageWord[1];
msg_array[2] = buffer->messageWord[2];
msg_array[3] = buffer->messageWord[3];

/* Update the message buffer pointer. */
C2FIFOCON®bits.UINC = 1;

/* Turn CAN off */
C2CONbits.REQOP = 4; /* Place the CAN module 1in Configuration mode.

*/
while(C2CONbits.OPMOD != 4);
C2CONbits.ON = 0;
while(C2CONbits.ON != 0);
}
}
}

void ProcessMessage2(int currentMessageBuffer){
CANRxMessageBuffer *buffer;

/* When a message have been received and read, the individual fields of */

/* the received message can be queried as such. */
buffer = (CANRxMessageBuffer *) (PA_TO_KVA1(C2FIFOUA1));

*/

if(buffer->CMSGEID.DLC == 8){

/* If the length
unsigned int

of the received message is 8 then process the message. */
* bufferToRead;

/* Check 1if there 1is a message available to read. */
if(C2FIFOINT1bits.RXNEMPTYIF == 1){
/* Get the address of the buffer to read */
bufferToRead = PA_TO_KVA1(C2FIFOUA1);

EID = buffer->CMSGEID.EID;

float D1
int D2 =
int D3 =
int D4 =

int D5 =
int D6 =
int D7 =
int D8 =

throttle

= buffer->CMSGDATAO.Byte0;
buffer->CMSGDATA®O.Bytel;
buffer->CMSGDATAO.Byte2;
buffer->CMSGDATA®@.Byte3;

buffer->CMSGDATAL.Byte0;
buffer->CMSGDATA1.Bytel;
buffer->CMSGDATAl.Byte2;
buffer->CMSGDATAl.Byte3;

= (D1/255)*100;

contr_temp = D2 - 40;
motor_temp = D3 - 30;
contr_status = D5;
switch_status = D6;

// Store

Full message 2 //

msg_array[4] = buffer->messageWord[0];
msg_array[5] = buffer->messageWord[1];
msg_array[6] = buffer->messageWord[2];
msg_array[7] = buffer->messageWord[3];

/* Update the message buffer pointer. */
C2FIFOCON1bits.UINC = 1;

/* Turn CAN off */
C2CONbits.REQOP = 4; /* Place the CAN module 1in Configuration mode.

while(C2CONbits.OPMOD != 4);
C2CONbits.ON = @;
while(C2CONbits.ON != 0);

void initFilter(void){

/* Filter 0 is set up to accept messages with Kelly controller EID.
* Accepted messages will be stored in FIFOO. Mask © 1is
* used to implement the filter address range. */

/* Check that it's in 1in configuration mode */

C2CONbits.ON = 1;
while(C2CONbits.ON != 1);

C2CONbits.REQOP = 4;
while(C2CONbits.OPMOD != 4);

/* Kelly Message 1 Filter */

C2FLTCON®Obits.FSELO = 0x0000;
C2FLTCON®Obits.MSELO = 0x00;
C2RXFObits.SID = 0b110011110000;

C2RXFObits.EID = 0b010001111000000101;

C2RXFObits.EXID = 1;
identifier addresses */
C2RXMObits.SID = 1;
C2RXMObits.EID = 6b111111111111111111;
C2RXM@bits .MIDE = 1;

C2FLTCONObits.FLTEN® = 1;

/* Message 2 Filter */

C2FLTCONObits.FSEL1 = 0x0001;
C2FLTCON®bits.MSEL1 = 0x00;
C2RXF1bits.SID = 0b10011110000;

C2RXF1lbits.EID

0b010001111100000101 ;

C2RXF1bits.EXID = 1;
identifier addresses */

C2INTbits.IVRIE = 1;

C2FLTCONObits.FLTEN1 = 1;

int last_Kelly_msg = 0;

/*
/*

/*

Store messages in FIFO© */
Use Mask 0 */

Kelly SID ©xoCFo*/

/* Kelly message 1 EID ©x11E05*/

/*
/*
/*
/*

/*

/*
/*

/*
/*

/*

/*

Match only messages with extended
Allow only Kelly's SID bits */
Allow only ©x11Ee5 EID bits */
Match only EID message types. */

Enable the filter */

Store messages in FIFO1 */
Use Mask © (already configured) */

Kelly SID oxoCFo*/
Kelly message 2 EID ©x11Fo5*/

Match only messages with extended

Enable the filter */

void whichKelly(void){

if (msg_array[5] == 0x41){
// message from G Kelly
mot_G = motor_current;
contr_temp_G = contr_temp;
mot_temp_G = motor_temp;

}

else if(msg_array[6] == Ox1E){
// message from one of the motor Kellys
mot_last = mot_new;
mot_new = motor_current;

rpm_last = rpm_new;
rpm_new = rpm;

contr_temp_LR = contr_temp;
mot_temp_LR = motor_temp;

}
}
void computeDynamics(void){
whichKelly();
avg_rpm = (rpm_last + rpm_new)/2;
speed = avg_rpm/16.4; // speed in mph with wheel radius of 10.25 inches

if(BRAKE > BRAKE_OUT_MIN){
power = mot_last + mot_new - mot_G;

}
else{

power = -mot_last-mot_new-mot_G;
}

void decodeErrors(void) {

uintlé_t error_msg = (error_msb << 8) | (error_lsb & oxff);
int i=0;
int comparison = 0b0000000O1;
char *Error_messages[] = {"ID Angle",
"Over Voltage",
"Low Voltage",

J

"Stall",

"Internal Volts Fault",
"Controller temp",

"H Pedal",

un
)

"Reset",
"Throttle Fault",
"Angle sensor",

B

3
"Motor Temp",
"Hall Galvanometer"};

char* messages = " ";
new_CAN_Error_MSG = 0O;
CAN_COUNT=0;
for(i=0;i<16; i++){
if((error_msg & comparison) > 0){
errorPointer[CAN_COUNT] = Error_messages[i];
CAN_COUNT++;
new_CAN_Error_MSG = 1;
}

comparison = comparison << 1;

Relevant Datasheets and Software Downloads

Kelly Controllers (motors: KLS 14401-8080I, generator: KLS 14401-80801IPS)
https://kellycontroller.com/wp-content/uploads/kls-8080i-ips/KL.S8080I-IPS-Opto-is
olated-Sinusoidal-BLDC-V1.10.pdf

Kelly Controller Specific CAN Protocol Description
https://kellycontroller.com/wp-content/uploads/kls-8080i-ips/Sinusoidal-Wave-Con
troller-KLS-D-80801-8080IPS-Broadcast-CAN-Protocol.pdf

Kelly Controller Software Download

https://www.kellycontroller.com/support/ (we used PC version KMC User
App.exe)

FAQ (generally useful)

https://www.kellycontroller.com/faqs/

PIC32MX795F512H Datasheet
http://ww1.microchip.com/downloads/en/DeviceDoc/PIC32MX5XX6XX7XX Family
)Datasheet DS60001156K.pdf

Standalone CAN Controller with SPI (MCP2515)

https://kellycontroller.com/wp-content/uploads/kls-8080i-ips/KLS8080I-IPS-Opto-isolated-Sinusoidal-BLDC-V1.10.pdf
https://kellycontroller.com/wp-content/uploads/kls-8080i-ips/KLS8080I-IPS-Opto-isolated-Sinusoidal-BLDC-V1.10.pdf
https://kellycontroller.com/wp-content/uploads/kls-8080i-ips/Sinusoidal-Wave-Controller-KLS-D-8080I-8080IPS-Broadcast-CAN-Protocol.pdf
https://kellycontroller.com/wp-content/uploads/kls-8080i-ips/Sinusoidal-Wave-Controller-KLS-D-8080I-8080IPS-Broadcast-CAN-Protocol.pdf
https://www.kellycontroller.com/support/
https://www.kellycontroller.com/faqs/
http://ww1.microchip.com/downloads/en/DeviceDoc/PIC32MX5XX6XX7XX_Family)Datasheet_DS60001156K.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/PIC32MX5XX6XX7XX_Family)Datasheet_DS60001156K.pdf

http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-C
ontroller-with-SPI1-20001801].pdf

High Speed CAN Transceiver (MCP2562)
https://www.mouser.com/datasheet/2/268/20005167C-1512552.pdf

2018-2019 Formula Hybrid Senior Design Team Documentation
http://seniordesign.ee.nd.edu/2019/Design%20Teams/ecar/index_code.html#
Arduino CAN library

https://github.com/coryjfowler/MCP_CAN lib

Arduino CAN tutorial used:
https://www.electronicshub.org/arduino-mcp2515-can-bus-tutorial/

CAN overview pictures from:
https://www.ni.com/en-us/innovations/white-papers/06/controller-area-network--
can--overview.html

https://e2e.ti.com/blogs /b/industrial strength/archive/2015/06/04/what-do-can-bu
s-signals-look-like

Code formatting:
Used Code Blocks add on in Google docs for code formatting
https://gsuite.google.com/marketplace/app/code_blocks/100740430168

http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/MCP2515-Stand-Alone-CAN-Controller-with-SPI-20001801J.pdf
https://www.mouser.com/datasheet/2/268/20005167C-1512552.pdf
http://seniordesign.ee.nd.edu/2019/Design%20Teams/ecar/index_code.html#
https://github.com/coryjfowler/MCP_CAN_lib
https://www.electronicshub.org/arduino-mcp2515-can-bus-tutorial/
https://www.ni.com/en-us/innovations/white-papers/06/controller-area-network--can--overview.html
https://www.ni.com/en-us/innovations/white-papers/06/controller-area-network--can--overview.html
https://e2e.ti.com/blogs_/b/industrial_strength/archive/2015/06/04/what-do-can-bus-signals-look-like
https://e2e.ti.com/blogs_/b/industrial_strength/archive/2015/06/04/what-do-can-bus-signals-look-like
https://gsuite.google.com/marketplace/app/code_blocks/100740430168

