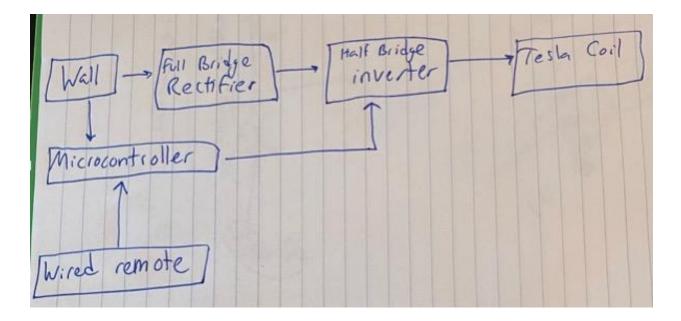
Leo Corelli Max Domenech Dennis Krivda


> Senior Design Review Meeting 0 - Musical Tesla Coils Tuesday, February 9, 2021 11:00 a.m.

Agenda (Leader- Leo):

Since we haven't been at school we don't have any progress updates from individuals for scheduled tasks or updates on action items from previous meetings

- Present high level design block diagram
- Address concern about wired remote as potential safety hazard from Prof. Schafer
- Present major subsystems and their requirements
- Present and discuss our plan to achieve our first design review on March 2
- Discuss our set of problems we are not sure how to solve at the moment
- Ask Prof. Schafer for any feedback

System Block Diagram:

Potential Safety Hazard:

Sidenote - addressing concern about wired remote to control the coils: We will use a breaker and the operator will wear electrically insulated rubber gloves. This should sufficiently protect the operator against any potentially dangerous current.

Need to actually isolate - opto isolation between half bridge inverter and microctonroller

Major Subsystems and Requirements:

- Wired Remote
 - Allow the user to choose a song
 - 5 buttons will correspond to 5 different songs programmed in our microcontroller
- Microcontroller (programming)
 - Read input from remote (selects song)
 - Output square wave that corresponds to frequency of note in song to control our switching circuitry (alternating operation of our IGBTs)
 IGBT driver chips to input to inverter
- Full Bridge Rectifier
 - Convert 120 V_{RMS} to 170 V_{DC}
 - Break above a certain current (TBD)
- Half Bridge Inverter
 - Receives input DC voltage from full bridge rectifier
 - Receives amplified input square wave from microcontroller (at frequency of note we want to play) and applies to gate of our IGBTs
 - Output a +170 V_{DC} or 0 V_{DC} signal to the primary coil
- Tesla Coil
 - Receive 170 V amplitude square wave from half bridge inverter into primary coil
 - Achieve sufficient voltage on surface of toroid (100,000s of Volts) through oscillations at resonant frequency
 - Output electric arcs at specified frequencies to generate selected melody
 - Safely discharge upon completion of operation
 - Portable

DRIVER FOR IGBTs (current)

Driver chips Prof. Chisum Hackaday Tesla coil wand Hardest one first

Plan to Achieve First Design Review:

- Done by <u>February 16</u>
 - Place proposal and high level design documents on the team website
 - Design full bridge rectifier in circuit simulation software
 - Describe how it works and why it's needed in our design
 - Calculate values (input/output voltage/current/power)
 - Done by February 23
 - Have wired remote selected, understood, and ordered
 - Design microcontroller board on KiCAD
- Done by March 2
 - Design half bridge inverter in circuit simulation software
 - Describe how it works and why it's needed in our design
 - Calculate values
 - Design Primary and secondary of Tesla Coil based on constraints of the subsystems
 - Calculate values

Set of problems that we are not sure how to solve:

- Solid state vs. spark gap Tesla coil arc size
- Where to test it? A month or two down the road

Where to test subsystems?

Getting Fitz basement room

One hand in pocket rule

List of actions to answer these uncertainties:

- Research main differences of outputs between solid state and spark gap Tesla coils for producing music
- Ask Prof. Schafer and perhaps other members of EE department where we should test given the high voltage and potential for interference with electronics of 205 lab