Pipe Freeze Detection System

By: Thomas Maloney Ethan Williams Daniel DellaFave Jack Walsh

Problem Description

The primary problem we are attempting to solve is the issue of pipes freezing within the student dorms.

- This can damage the rooms themselves including furniture,
- It can also destroy student items within the room such as clothing and even electronics.

Root cause of this issue:

• The combination of cold weather and students leaving their windows open.

Proposed Solution

A temperature sensing system that can alert students through wireless communication. System has three functional components:

- Temperature Sensors
 - Attached to the pipes with adhesive mounting mechanism
 - Transmit measurement data to microcontroller through SPI or I2C
- Control Unit
 - Power Source
 - Battery pack that powers the temperature sensors, microcontroller, and wireless communication devices
 - Microcontroller
 - Collects data from temperature sensors and determines specific warnings / alerts that need to be sent.
 - Communicates with wireless communication devices through SPI or I2C
- Wireless Communication
 - Used to send either email or SMS alerts to students through a WIFI connection

Demonstrated Features

Temperature Sensing:

• Two sensors that send independent temperature measurements

Control Unit / Alert System

- Performs four operations
 - Moderate temperature threshold warning
 - Critical temperature threshold warning (repeated until resolved)
 - Maintenance alert
 - Low-battery alert

Available Technologies

- Printed board with 44 Pin PIC32MX1xx2xx
 - SPI and I2C communication
- Wifi chip such as ATWILC1000-IC
 - \circ located on board
- Temperature sensor such as AT30TS750A
 - located offboard

Buy Now Price, Any Volume		In Stock : 3740 Order now, up
1-24	\$2.88	to 1,338 can
25-99	\$2.66	ship on 22-
100+	\$2.37	Nov-2021

Available Technologies

44-PIN TQFP (TOP VIEW)^(1,2,3,5)

PIC32MX110F016D PIC32MX120F032D PIC32MX130F064D PIC32MX130F256D PIC32MX150F128D PIC32MX170F256D

SPI/SDIO to Wi-Fi Module

ATWILC1000 ☆

SPI/SDIO to Wi-Fi Module

Status: In Production. Alternate Products: atwilc3000, atwinc1500, atwinc3400, atwilc1000-ic

🚦 Download Data Sheet 📲 Documentation 📚 View Comparisons 🔻 Symbols

Engineering Content

- Eagle
 - Board Design
- MPLAB / Wireless Interface
 - Programming the microcontroller
 - Developing software to notify students
- CAD
 - Constructing mounting mechanism
- Soldering / Board Manufacturing
 - Putting the designed board together
 - Manually soldering mistakes in the design (if needed)

Conclusions

Next Steps:

- Conduct testing for viable methods to effectively measure the pipe's temperature and notify the student with an adequate amount of time to correct the issue.
- Designing the board
- Ordering the technology
- Assembling the system