
3D: Stability and Regulation

This section discusses another aspect of active filters that was neglected in the preceding

section. The prior section implicitly assumed that all poles of the circuit’s voltage transfer

function had poles with negative real parts. When this is the case, then we know the natural

response (impulse response) of the circuit is the sum of exponentially decaying functions

that asymptotically go to zero as t goes to infinity. Such circuits are said to be input-output

stable. What this section does is consider a couple of situations where this input-output

stability is degraded or destroyed in an active filter. To correct this problem, we need to

introduce some sort of compensation to alter the frequency response of the op-amp.

Let us first consider the circuit shown in Fig. 1. This is a unit-gain inverting op-amp con-

figuration that is driving a large capacitive load. We assume that the op-amp’s transfer

function can be modeled by a single dominant pole so it takes the form

a(s) =
107

s+ 10
+

Ka

s+ ωa

The feedback resistors are R = 10 kohm and the load capacitor is 10 µF. We initially

assume we can neglect the output impedance of the op-amp and we let its input impedance

be infinite.
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FIGURE 1. Unity Gain Inverting Amplifier driving a large capacitive load

Since we assume that the op-amp’s output impedance was zero, we can use our earlier

analysis to verify that

Vo(s) =
−1

1 + 2a−1(s)
Vin(s)

=
−107/2

s+ (107/2 + 10)
Vin(s)
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So the circuit’s voltage transfer function

G(s) =
−107/2

s+ (107/2 + 10)

The pole has a negative real part and this is a low pass filter whose cutoff frequency ωc =

107/2 rad/sec. We can readily determine that the step response of this circuit should look

like

vo(t) = −
(
1− e−107/2t

)
u(t)

which would get within 5 percent of its final value in 3 time constants

3× 2

107
≈ 6 µsec

So this is an extremely fast response time.

Real life op-amps, however, due not have output impedances that are zero. As an example,

the commercially available OP37 op-am (analog devices) has an output impedance of 70

ohms with the same a(s) that was given above. Let us see how this impacts the step

response of our low pass filter.

The equivalent circuit model for our filter is shown in Fig. 1 where we added the output

impedance Ro between the dependent source and the load capacitor. We assume the same

parameters R, C, and a(s) as before. So the only thing that has changed is the addition of

the small output impedance.

Applying KCL at the V − node gives

Vo − V −

R
=
V − − Vi

R

Since the input and feedback resistors on the op-amp are the same, this equation can be

rewritten as

V −(s) =
1

2
Vo(s) +

1

2
Vi(s)(1)

We now apply KCL at the Vo node to get

V − − Vo
R

+
−a(s)V − − Vo

Ro

= sCVo(s)

and we rearrange this to place the V − and Vo terms on opposite sides of the equation

V −(s)

(
1

R
− a(s)

Ro

)
= Vo(s)

(
sC +

1

R
+

1

Ro

)
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We insert equation (1) into V −(s) to get(
1

2
Vo +

1

2
Vi

)(
1

R
− a(s)

Vo

)
= Vo

(
sC +

1

R
+

1

Ro

)
again collecting terms to separate Vo and Vi on opposite sides gives

Vo

(
sC +

1

R
+

1

Ro

−
(
1

2

)(
1

R
− a(s)

Ro

))
=

(
1

2

)(
1

R
− a(s)

Ro

)
Vi(s)

So the voltage transfer function becomes

G(s) =
Vo(s)

Vi(s)

=

(
1
2

) (
1
R
− a(s)

Ro

)
sC + 1

R
+ 1

Ro
−
(
1
2

) (
1
R
− a(s)

Ro

)
We substitute a(s) = Ka

s+ωa
= 107

s+10
to get

G(s) =
0.007s− 107

0.0014s2 + 2.021s+ 107

There is a right half plane zero, but of greater interest are the poles of the transfer function

p1,2 = −721± j84512

How does this compare to the case when Ro = 0? Fig. 2 shows the step response for

this filter when C = 10 µF(top)andwhenC = 10nF . In the top plot we see that the step

response is

1− e−712t cos(84512t+ φ)

for t ≥ 0 which is about 7000 times slower than the response we computed when Ro = 0.

In addition to this we see there is a high frequency oscillation of about 13.5 kHz. From

the top plot in Fig. 2 we see that with Ro = 70 ohms, the response is highly oscillatory

with essentially a 100 percent overshoot, whereas with Ro = 0 the output appears to jump

instantaneousy to its final value. There is clearly a huge difference between the two re-

sponses.

The reason for this difference is that the combination of the output impedance, Ro with the

load capacitor C produces a pole that is highly oscillatory. We can reduce this by using

a smaller load capacitor, but the bottom plot of Fig. 2 shows that even for a small cap of
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FIGURE 2. Step response of low pass active filter with Ro = 70 ohms for

C = 10 µF (top) and C = 10 nF (bottom

10 nF the response is still has a large overshoot of 50 percent which would not usually be

considered very good.

Let us take a closer look at how one might relate the poles of a transfer function to its

transient response. In particular, let us assume we can write the transfer function as

G(s) =
ω2
n

s2 + 2ξωns+ ω2
n

where ξ and ωn are two parameters. Note that our preceding transfer function’s denom-

inator polynomial can be put in this form. The parameters ξ and ωn are called the poles

damping ratio and natural frequency, respectively. These are useful parameters for they
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allow us to easily visualize the pole locations in the complex plane and how those pole

locations are related back to the natural response of the transfer function.

The poles of the preceding transfer function are obtained through the quadratic formula,

p1,2 =
1

2

(
−2ξωn ±

√
4ξ2ω2

n − 4ω2
n

)
= −ξωn ± ωn

√
ξ2 − 1

Note that the real part of p1,2 is always negative so such transfer functions are always stable.

But the overshoot and “oscillatory” nature of the response can vary greatly depending on

the damping ratio ξ.

In particular, if ξ > 1, then the poles are all real. There is a slow pole that we may write as

pslow = −ξωn + ωn
√
ξ2 − 1

and a fast pole

pfast = −xiωn − ωn
√
ξ2 − 1

The relative location of these poles is shown in Fig. 3. In general, we want a fast real pole

because this means we reach the steady state quickly and for a similar reason we find the

slow pole undesirable. In particular, the larger ξ is the slower the slow pole will be. When

ξ = 1, then both poles have the same value which represents the case of critical damping.

damping ratio > 1

fast pole

slow pole

damping ratio < 1

FIGURE 3. Pole Locations of second order system

When the damping ratio xi < 1, then the poles form a complex conjugate pair

p1,2 = −ξωn ± jωn
√

1− ξ2
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These poles still have negative real parts (so the system is I/O stable), but as ξ gets smaller

and smaller the poles get closer and closer to the imaginary axis. This means that we have

a step response of the form,

vo(t) = (1− e−ξωnt cos(ωn
√
1− ξ2t+ φ)u(t)

For small ξ, the exponent is very small, which implies a slow decay and the frequency of

oscillation is essential ωn. We can therefore have the case where there are many oscillations

before the exponential term dies out and this is what leads to the oscillatory response. In

particular, as long as 0.7 < ξ < 1, then we can expect the overshoot of the response to be

zero, with the best response (fastest rise time) occuring when ξ = 0.7. As ξ decreases we

see the response overshoot its final value by up to 100 percent. For our example, we saw

that 2ξωn ≈ 2 and ω2
n = 107, which implies

ξ =
1√
107

= 3.16× 10−4 � 1

Since this much smaller than one, we will see nearly a 100 percent overshoot which is

exactly what was shown in the responses in Fig. 2.

The response we obtained with using the ”real” op-amp to drive a large capacitive load was

very undesirable. In practice one would compensate the op-amp to reduce this oscillation.

There are many different ways of achieving such compensation, but one way to do this is

to introduce a capacitor in the feedback path as shown in Fig. ??. Essentially what this

capacitor does is introduce zeros that cancel the high-frequency pole introduced by the

nonzero output impedance Ro.

I’m now going to turn to another problem, in which we seek to regulate a voltage source’s

output. Regulation means that we keep the output at a desired set point. This might be

needed if we are using an unregulated source like a battery to drive a load that has very

stringent input voltage requirements. The battery’s voltage changes over time as its state-

of-charge decays. The load, however, may not be able to tolerate this variation and so

we introduce a op-amp circuit between the unregulated source (battery) and the load that

regulates the source’s voltage, Vin, to generate an output voltage Vout that is close to a

desired nominal voltage, Vnom. In other words, the device (called a voltage regulator)

ensures

|Vnom − Vout| ≈ 0
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(or at least is small). This performance of the voltage regulator is often characterized in

terms of its percent regulation

Percent Regulation = 100× Vout,max − Vout,min

Vnom

+
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+
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FIGURE 4. Voltage Regulator

A common circuit used for this voltage regulation job is shown in Fig. 4. To see how this

works, let us apply KVL from the input voltage Vin to ground through the transistor and the

RC load.

Vin = RIL + a(s)(Vout − Vnom)

Since the current going through the load is

IL =
Vout
R || 1

sC

=
RCs+ 1

R
Vout

we can readily see that increasing IL will increase Vout and decreasing IL will decrease

Vout. In particular, our KVL equation can be rewritten as

RIL = Vin − a(s)(Vout − Vnom)

which suggest that if

Vout − Vnom > 0, then IL will decrease and so Vout will decrease

In a similar way if

Vout − Vnom < 0, then IL will increase and so Vout will increase

The rest point of this occurs when Vout − Vnom = 0, which suggests that we are using the

difference between Vout and Vnom to correct the output voltage. In other words, we have a
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feedback system that uses our voltage error (Vout − Vnom) to correct the output voltage and

thereby keep it at its nominal value.

With this in mind, let us see what the transfer functions are from Vin and Vnom to the voltage

error Vout − Vnom. From the KVL equation we see that

Vin = (RCs+ 1)Vout(s) + a(s)(Vout − Vnom)

We rewrite the KVL equation as

Vin
RC + 1

= Vout +
a(s)

RCs+ 1
(Vout − Vnom)

and for convenience let G(s) = 1
RCs+1

= 1
10−1s+1

so that

Vout(1 + a(s)G(s)) = VinG(s) + a(s)G(s)Vnom

Dividing both sides by 1 + a(s)G(s) gives,

Vout(s) =
G(s)

1 + a(s)G(s)
Vin(s) +

a(s)

1 + a(s)G(s)
Vnom(s)

This explicitly shows us what the transfer functions are for Vin to Vout and Vnom to Vout.

We want the transfer function from Vin to Vout − Vin. Simply subtracting Vnom from above

gives

Vout − Vnom =
G(s)

1 + a(s)G(s)
Vin(s) +

a(s)G(s)

1 + a(s)G(s)
Vnom − Vnom

=
G(s)

1 + a(s)G(s)
Vin(s)−

1

1 + a(s)G(s)
Vnom(s)

and so we see that the transfer function from the unregulated input Vin to the voltage error

Vout − Vnom is G
1+aG

.

We now assume that

a(s) =
5× 104

(s+ 1)(10−4s+ 1)
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This has a dominant pole at 1 rad/sec and a high frequency pole at 104 rad/sec associated

with a nonzero output impedance. For the values we chose, we see

G(s)

1 + a(s)G(s)
=

1
0.1s+1

1 + 5×104

(s+1)(10−4s+1)
1

0.1s+1

=
(s+ 1)(10−4s+ 1)

(s+ 1)(10−4s+ 1)(10−1s+ 1) + 5× 104

= 10
s2 + 10001s+ 10000

s3 + 10010s2 + 110010s+ 5.0001× 109

This has zeros at −1000 and −1 rad/sec. It has a pole at −1.005 × 104 rad/sec and a

complex conjugate pair of poles at

(0.0019± j0.07075)× 104

Note that the real part of this pole pair is positive. This means that the natural response of

the output grows in an exponential manner and so this circuit is unstable.

+

_

FIGURE 5. Feedback Loop for VR

Let us take a closer look to see what is going on. I’m going to rewrite this transfer function
G

1+aG
as a signal flow diagram shown in Fig. 5. One can readily verify that the transfer

function for this block diagram is identical to that for our Voltage Regulator. In particular,

this diagram shows,

Vout − Vnom = G(s) (Vin − a(s)(Vout − Vnom))

We rearrange to get

(1 + a(s)G(s))(Vout − Vnom) = G(s)Vin

which clearly shows that

Vout(s)− Vin(s)
Vin(s)

=
G(s)

1 + a(s)G(s)
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Now consider a harmonic in Vin of frequency ω. Note that at the summing functions, it is

combined with the ω harmonic of Vout − Vin. Note that if this harmonic of Vout − Vin is

shifted in phase by 180 degrees, then it re-inforces the harnonic of Vin. This would then be

amplified by a(s)G(s) if |a(s)G(jω)| > 1, which would cascade in an increasing way to

cause instability. The preceding discussion suggests that for stable operation we require all

harmonics of the input that are amplified by the loop, but be re-injected with a phase less

than 180◦. We can check to see if this happens for our our loop function

a(s)G(s) =
5× 104

(s+ 1)(10−4s+ 1)(10−1s+ 1)

by looking at its Bode plot in Fig. 6. This plot shows that there is a range of frequencies

around 700 rad/sec, where the gain is positive (greater than 0 dB) and yet the phase is less

than −180◦. This is enough to suggest instablity which is indeed what happens in this

circuit.
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FIGURE 6. Bode Plot of aG

The plot, however, also immediately suggests a way to compensate for this. Namely, if one

were to lower the gain a(s)G(s) by a factor of 10, then all frequencies that amplify would

have phase shift of more than −180◦ and this would suggest stability. Indeed this is also

the case, since it would give

G

1 + aG
=

(s+ 1)(10−4s+ 1)

(s+ 1)(10−4s+ 1)(10−1s+ 1) + 5× 103
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which would have poles at −1.0005 × 104 and (−0.0003 ± 0.0224j) × 104. Since all

poles have negative real parts, we’d expect this voltage regulator to be “stable”. This still

is probably not a very good regulator because the poles are lightly damped. In practice one

would also add some additional phase lead into the feedback loop.


