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 1  Introduction 

 Common guitar pedals (built with analog components) are generally very 

 expensive - usually upwards of $60 - and only offer one audio effect per pedal. 

 The cost of having a diverse variety of options to alter guitar tone quickly adds 

 up with the more effects desired. Furthermore, these pedals are all activated 

 with their own buttons by foot. In a situation where many effects are required, a 

 large amount of pedals on a board can become clumsy and difficult to navigate 

 around. 

 Our solution to these inconveniences is the creation of a “pedal” that 

 effectively emulates common guitar effects digitally. With our design, many 

 effects can be uploaded to just one “pedal" with a single interface. Not only does 

 this save money, but also space. Easy storage and transportation make the use 

 of our product a very user-friendly experience along with its control interface 

 being Wi-Fi connection to a cell phone or any internet accessible device. 

 Additionally, a suction cup clamp which holds the user’s phone to the front of the 

 guitar allows the player to have control of the effects lineup at their fingertips as 

 well as giving mobility to the effects board. 

 Achieving the desired functionality of our digital guitar effects system 

 required the use of the ESP32 WROOM 32-E microcontroller along with the 

 WM8960 audio codec to provide the necessary ADC/DAC conversion of the 

 audio signal and the digital signal processing that was needed to apply the 

 effects that are typically provided by physical guitar pedals. The I2S 
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 communication protocol was used to transmit the audio data captured from the 

 input between the ADC and the DAC. Utilizing the I2S communication protocol 

 provided the ability to manipulate the audio data using various methods to 

 achieve effects such as distortion, tremolo, fuzz, and an 8-bit effect. The board 

 was developed for a 5V power supply using a USB-C connector and a 3.3V 

 voltage regulator to supply voltage to the microcontroller and the audio codec. A 

 website interface was developed with sliders that could change the respective 

 intensity factors for each of the effects through Wi-Fi communication with the 

 ESP-32 microcontroller. 

 The design met the expectations that were established for the project. The 

 digital effects were successfully developed and controlled using the digital 

 sliders on the website interface. If connected to the corresponding Wi-Fi 

 network, users are able to connect to the website on their phone and control the 

 digital effects with the sliders on their phone as they play the guitar. There was 

 little to no latency when changing between different effects, and effects like 

 tremolo and distortion could be utilized simultaneously as the user played. 

 Some aspects of the project that could be improved is the latency with the 

 audio signal at the output. It was noticed that at times when the user played, 

 there was delay in the time that the audio signal was processed and was heard 

 at the output. This presented itself as one of the central issues of the project 

 because the audio that was being played by the user and the audio at the output 

 was asynchronous. This issue could be resolved by optimizing the size of the 

 audio buffer to reduce the amount of processing time needed by the 
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 microcontroller. The project would have also benefited from the use of a volume 

 slider which could provide the user with more control over the amplitude of the 

 audio signal at the output instead of having to adjust it directly on the amplifier. 

 2  System Requirements 

 The ESP32-WROOM-32E microcontroller was chosen due to it 

 possessing the necessary processing capabilities for digital signal processing of 

 the audio samples. It was also chosen because of the Wi-Fi communication 

 capabilities it provides for the website interface. 

 The circuit board that was designed needed to receive 5V via USB-C and 

 then through a voltage regulator provide 3.3V to the microcontroller and the 

 audio codec. The circuit board also needed to include the necessary pull-up 

 resistors for the I2C communication between the microcontroller and the audio 

 codec. Online libraries developed for the ESP32 and the audio codec were 

 utilized to enable the ADC/DAC for the left and right audio channels, and 

 establish the I2S communication between the ADC and DAC where an audio 

 buffer was utilized to transmit the signal. 

 The circuit board that was designed for this project required a 3-D printed 

 housing which contained space for the board itself and for the two ¼” stereo 

 audio jacks that were used for the audio input coming from the guitar and the 

 audio output going to the amplifier. The circuit board housing must also have a 
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 designated space for the USB-C connector that supplies 5V from the wall outlet 

 to the board. 

 A website interface was required to control the digital effects as the user 

 played the guitar. The website interface was developed using ESP32 libraries for 

 the web server and HTML was utilized to create the web page of the interface. 

 HTML was also used to create the sliders which were used to control the digital 

 effects. 

 A mount was placed on the body of the guitar to provide functionality for 

 remote controlling of the digital effects using a cell phone. The cell phone 

 connects to the corresponding Wi-Fi network that is associated with the web 

 server which can then be utilized to control the effects remotely. 

 3  Detailed Project Description 

 3.1 System theory of operation 

 Our solution utilizes the digital signal processing capabilities of the ESP32 

 to emulate various guitar pedal effects, specifically distortion, fuzz, tremolo, and 

 our experimental effect to recreate the sounds heard in 8-bit video games. We 

 route the guitar signal first through a WM8960 codec chip, which includes an 

 analog-to-digital converter as well as a digital-to-analog converter. On the input 

 side, it makes use of the former. After quantization and digitization, the digital 

 signal is passed through the ESP32 chip using I2S communication and the digital 
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 audio signal is modified to achieve the desired effect. After the altered signal is 

 processed, it is written back to the codec and converted back to an analog signal 

 using the digital-to-analog converter.  The resulting audio signal will be passed 

 through a quarter inch TS guitar cable to a standard guitar amplifier that will 

 output the new signal in real time (but with a small, limited amount of latency due 

 to processing time). Our way of eliminating analog pedal circuits and using a 

 single small processing board in a compact housing and developing an interface 

 that can be used to adjust certain parameters such as gain and volume makes 

 the device more convenient for the user. 

 3.2 System Block diagram 
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 3.3 Detailed Design/Operation of Pedal Effect System 

 Our board choice is the SparkFun IoT Redboard that runs an Espressif 

 ESP32-WROOM-32E. One reason for choosing this model is because of its wifi 

 capabilities. Developing a website interface with sliders was a requirement for the 

 project, and choosing a microcontroller capable of Wi-Fi communication was 

 necessary. Another reason was because this board was designed for audio 

 signal processing. The IoT Redboard is able to do a variety of tasks including 

 CPU and on chip memory, bluetooth capabilities, I2C communication, Qwiic 

 connection to our codec breakout board and MP3 decoding. This system 

 provided more features than we knew we would need for our project. If we 

 needed to adapt to a new approach, then this development board would have 

 allowed us to do that. 

 The ESP32-WROOM-32E is a powerful chip that is perfect for our project. 

 This offers dual-core processing that is able to run from 80 to 240 MHz, allowing 
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 for real-time audio processing. The chip is also fairly inexpensive and widely 

 available which was an important factor in developing our product because we 

 want to make a cheap and accessible device. The microcontroller is 

 energy-efficient as well, consuming low power to make it suitable for either a 

 battery or wall adapter power system. This allowed us to have choices in what 

 we wanted to do for our powering scheme. We also needed the device to be 

 easily programmed with the Arduino IDE in Python or C which gave us more 

 freedom in our choices for development. 

 We decided to go with powering our device through a wall adapter, 

 requiring 6 volts maximum at the input. The board uses a USB-C connector for 

 power. This can also be easily replaced with a battery pack that outputs to a 

 USB-C if the user wants to take the device somewhere there are no places to 

 plug the board into the wall and still supply the required voltage rating. The board 

 uses a low dropout voltage regulator (LDO) to balance the input voltage to the 

 required 3.3 volts for the ESP32-WROOM-32E chip. The specific regulator is the 

 AP2112K-3.3TRG1. This device uses a voltage reference and error amplifier that 

 compares the output voltage to the reference voltage, then it adjusts the 

 resistance of a pass resistor to maintain a stable output voltage. It is a linear 

 voltage regulator that dissipates the excess energy as heat, which is less efficient 

 than switching regulators. It is still good because it is simple and less noisy which 

 is important for an audio processing device. 

 The circuit includes a 40 MHz crystal oscillator that is important for the 

 function of the chip. The crystal serves as an external clock source for the ESP32 
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 microcontroller. It generates a stable frequency as a precise clock signal. This in 

 turn is used to synchronize the timing of operations done inside the chip to 

 operate reliably and provide stability. The ESP32 has an internal RC oscillator 

 that can also be used as a clock source. However, this RC oscillator is not as 

 accurate as the external crystal oscillator. Both the crystal and voltage regulator 

 are connected to decoupling capacitors. Specifically, the regulator has these 

 capacitors connected to its 3.3 V pin which is also supplied to the crystal 

 oscillator. There is little room for error when handling audio signals due to the 

 immediate requirements of the system; any mistiming can cause the audio signal 

 to not sound pleasant. 

 The integrated circuit on the PCB is essential to the functioning of the 

 serial monitor. The IC allows us to see this serial monitor and the Arduino IDE by 

 converting the signal coming from the USB. This signal is converted into a serial 

 signal. Because of this, we are able to see values being updated from the 

 website interface and also see the IP of the website so that it can be accessed. 

 Without the IC we would not be able to use the serial monitor to retrieve that 

 information. 

 The system all starts with the guitar input signal at the top-left of the 

 schematic. Our signal is passed into a quarter inch TRS audio jack that is 

 soldered to the through holes under the “AUDIO_IN” text on the board. Attached 

 to the through holes for the TRS jack are two sets of resistors and capacitors at 

 each of the left and right audio input channels of the WM8960. We used 47 

 nanofarad capacitors and 100 ohm resistors. These values were specifically 
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 chosen to function as a low pass filter, allowing only the frequencies below the 

 chosen cut-off frequency to be passed into the circuit. The value for the cut-off 

 frequency can be calculated using the formula: 

 ƒ    =     1     /    ( 2π  𝑅𝐶 )

 Our desired cut-off frequency was chosen to be 33.8 KHz. This filter 

 allows us to attenuate any high frequency noise from the output of the TRS jack 

 to the input of the analog to digital converter. 

 This analog signal then gets passed to the Sparkfun Audio Codec 

 Breakout WM8960. The WM8960 is a low power stereo audio codec. This 

 versatile device includes preamplifiers for our line inputs, speaker driver, 

 equalization for frequency manipulation, and dynamic range control. We use this 

 codec to convert our analog signal to a digital signal as well as using its 

 programmable gain amplifier (PGA) to create the distortion effect. Series 

 resistors are used to stabilize the digital signal and prevent any reflections from 

 happening. These reflections could cause the digital signal to be misrepresented 

 and create issues at the output. 

 This board is ideal for handling a variety of audio signals. It supports I2S 

 communication, which is what we chose for this specific project. I2S is beneficial 

 over other formats like SPI and UART because it is designed specifically for 

 transferring audio data. SPI and UART may not provide the same level of 

 reliability as I2S. I2S is also supported by a lot of microcontrollers which is 

 important in the rare case that vital hardware in our system becomes obsolete. 
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 I2S uses separate clock and data lines that are advantageous for reducing timing 

 errors and ensuring an accurate transfer of data. We needed our data to be 

 transferred as clean as possible to make sure we get high quality sound with low 

 latency. 

 This digital post-codec signal is passed into the ESP32. Inside the chip we 

 use digital signal processing to achieve our effects. We have four different 

 possible effects the user can experiment with. Depending on what is done in the 

 user interface an effect will be produced by the chip. This new signal is relayed 

 back to the WM8960. At this stage, the codec translates the altered audio signal 

 from digital back to an analog signal. This analog signal is relayed to the output 

 quarter inch TRS audio jack where it is picked up by a guitar cable and 

 transmitted to an external amplifier. 
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 3.4 Detailed Design/Operation of Website Interface 

 Interfaces 

 Our second subsystem involves a web interface that can be accessed by 

 the user through a phone, tablet, computer or any other device capable of 

 connecting to the internet. Upon uploading the program to the ESP32, the serial 

 monitor will print an IP address that can be pasted into a web browser. The 

 above interface will appear with four sliders. Each slider corresponds to the 

 intensity of one effect and can be adjusted to the desire of the user. Values range 

 from 0-10 for distortion, fuzz, and tremolo. The 8-bit guitar effect only has values 

 0 and 1 signifying on or off. 8-Bit will not work with the other effects, so they will 

 be disabled when the user turns the 8-bit effect on. This is reflected in real time 

 with the slider values displayed on the web interface. Fuzz and distortion work in 

 the same way that when one is turned on, the other will automatically turn off. 

 Tremolo is able to function with the fuzz or distortion effects simultaneously. 
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 This web interface is controlled by HTML for content and structure, CSS 

 for styling, and JavaScript for dynamic features like the interaction and animation 

 of the sliders. Upon uploading the code, the sliders are initialized and set to zero 

 so that all the effects are disabled by default. There are update functions that use 

 XMLHttpRequest to send GET requests to the server to retrieve data from the 

 webpage, reading the current value of the sliders as controlled by the 

 outward-facing web interface. This value is read by the code as a string and 

 converted to an integer so that it can be used in our functions as a determinant of 

 the intensity of the effect being outputted. We want to give the user as much 

 control as possible, since there are many different styles of playing guitar. This is 

 the main reason we chose not to use buttons on the web interface. The buttons 

 would give little to no control of the levels at the output. The website sliders 

 provide greater control of the gain for distortion, oscillations for tremolo, or wet 

 mix for fuzz. 

 Our interface was chosen to be a web page for a variety of reasons. One 

 major deciding factor was being untraditional. In an increasingly growing world of 

 technology it is important to stay up to date and try new methods of achieving the 

 same goal. It would have been easy to be like the rest and have a physical pedal 

 which is beneficial for obvious reasons, but having the control at your fingertips 

 also has its advantages. For one, if the user is impaired or handicapped then 

 they may not be able to actually use a step pedal to turn their effects on. They 

 could possibly press it down with their hands but this can be difficult when in the 

 midst of playing a song. Another advantage is if the guitar player wants their 
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 sound engineer to control the output of effects. This way they would not have to 

 worry at all about which pedal they have to step on next. The interface would be 

 great in this manner, making sure that the guitar player can focus on playing as 

 opposed to messing around with a heap of pedals. The web page also allows us 

 to condense our effects on one screen. The burden of having ten pedals to carry 

 around, each with its own sound effects can be a hassle. Even if the effects were 

 condensed into one housing device with knobs and buttons, the user would have 

 to strategically place the housing device within close reach while dealing with 

 cables that could become twisted. With our design, all that is required is the 

 housing containing our board, which does not need to stay right next to the user, 

 and the user’s phone, which is likely already on them at all times. 
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 3.5 Effects Theory 

 3.5.1: Distortion 

 Figure 3.5.1(a): Clean Input (Sine Wave) 

 Figure 3.5.1(b): Distortion Output (Level 7) 
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 Figure 3.5.1(c): Distortion Output (Level 10) 

 Pictured above are oscilloscope traces of a demonstration test of our 

 system. Figure 3.5.1(a) shows the trace of a 400 Hz sine wave applied to the 

 input in all tests (distortion as well as following effect tests) and Figure 3.5.1(a) 

 and Figure 3.5.1(b) show the output of the pedal with distortion turned to levels 7 

 and 10, respectively. Our distortion functions essentially as traditional overdrive 

 distortion, which essentially creates a grittier sound, but still preserves a tone 

 similar to the original. This is accomplished by amplifying the strength of the 

 signal by the user-controlled amount of gain and clipping the output amplitude at 

 a value slightly higher than the max amplitude of the input signal. Clipping slightly 

 higher than the input amplitude allows a greater variety of distortion as for the 

 lower input values, the signal begins to clip but doesn’t hard clip as shown in the 

 scope traces. Having the clipping level like this does however come at the cost of 

 an increase in volume when distortion is in use. While this does not affect tone, it 
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 does require user attention to volume knobs if they wish to hold at a steady 

 sound level. 

 3.5.2: Fuzz 

 Figure 3.5.2: Fuzz Output 

 For our fuzz effect, we went about level adjustment slightly differently than 

 the conventional method of varying the amount of distortion. The output audio 

 signal is a mix between the ‘wet’ and ‘dry’ signals. Increasing the slider value to 

 ten would essentially be listening to a 100% distorted signal, matching the 

 unevenly-clipped trace shown above. This mix made obtaining a snapshot of the 

 modified waveform difficult to capture as the fuzz slider had to be maxed out to 

 find a single wave. In this case, the clean signal is still getting passed through to 

 the output, but the ‘wet’ signal basically overwhelms the clean. The lower the 

 value for the fuzz slider, the more of the clean signal will pass through to the 
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 audio output. The benefit of this effect compared to distortion is that the distorted 

 signal is not achieved through applying gain using PGA from the codec breakout 

 WM8960. The audio is more of a harmonic shift from a clean tone and is useful 

 for applying a unique buzzing sound, without losing original intonation, compared 

 to a bold kind of distortion. 

 This effect was achieved using a series of floating point numbers passed 

 as an array to the fuzz function. The function takes three arguments: a pointer to 

 the array containing the audio samples, an integer that indicates the number of 

 bytes in the array containing the samples, and another integer that represents 

 the gain factor. First, the gain factor is established by setting it equal to the value 

 passed in as an argument. Then the number of samples in the original array is 

 calculated by dividing the number of samples by the size of each sample. The 

 function then loops through each sample using a for loop. Within the loop, the 

 original sample is multiplied by the gain factor to introduce distortion. The 

 distorted signal is then added to the original signal, and then the original signal 

 again. This is to ensure that the clean sound can still be heard. Distorted signals 

 can easily override the original, so we wanted to really emphasize the original as 

 the priority. This also contributes to boosting harmonic content through 

 constructive interference. The loop will continue until all of the samples in the 

 original array have been processed. When completed, the data can be used for 

 output or further processing with tremolo. 
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 3.5.3: Tremolo 

 Figure 3.5.3: Tremolo Output 

 The oscilloscope image above shows, in a still shot, oscillation in the 

 amplitude of the output signal. Unlike the two types of distortion our system 

 creates, the tremolo effect does not change the tone of the signal; rather, it adds 

 a variable low-frequency oscillation of the presence of sound output from the 

 system. So for this effect, other than the strength of the signal, this effect does 

 not impact the shape of the wave. 

 This was accomplished in code by utilizing a built-in codec function that 

 controls the chip volume and incrementing up and down with iterations of the 

 main loop. This iteration bounced back and forth continuously and gradually 

 between the original signal strength and roughly -18 dB quieter, giving a pulsing 

 feeling to the audio. The slider on the interface that controls this effect varies 

 from 0 to 10 in 0.5 unit increments which represent speeds at which the sound 
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 volume is oscillated. The lowest “on” setting of 0.5 creates an oscillation period of 

 about 1.67 seconds and an input value of 10 creates one of about 0.084 

 seconds. 

 3.5.4: 8-Bit 

 The 8-Bit audio effect was an experimental sound that was unique and 

 offered an alternative type of guitar playing for the user. We were inspired to 

 create such an effect from old school video games. The grainy visuals of games 

 like Tetris, Super Mario Brothers, and Space Invaders were only made more 

 memorable with their upbeat and memorable music. The effect was achieved by 

 adding some clipping through gain, similar to the fuzz effect. We then wrote the 

 audio signal using a smaller buffer length. This shortening of the buffer length 

 allowed us to effectively reduce the bit resolution of the audio signal and output 

 sounds to emulate the theme songs from these iconic games. 

 These four effects serve as just a starting point to what can be 

 accomplished. With improvements to communication between devices and 

 optimization of our memory usage, we can add many more effects. The main 

 goal of this project was to get at least three effects and we were able to achieve 

 four. The limitations of our system would require us to use more memory than we 

 were able to use. Passing the signal between an SD card and the microcontroller 

 caused too much delay, to where the signal became hard to play along with and 

 keep a constant train of thought. We were able to improve our performance by 

 limiting the delay at the output through keeping the buffer lengths as small as 
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 possible to limit the number of calculations being performed for each iteration of 

 a loop. This project was all about finding this balance to give the user the most 

 enjoyable experience possible. 

 4  System Integration Testing 

 To ensure that all subsystems were integrated successfully, we tested the 

 elements of each subsystem separately throughout the course of the project 

 before eventually combining elements into their functioning subsystems and then 

 one complete system. 

 4.1 Subsystem 1 - Audio Effects 

 To begin, we attempted audio passthrough using I2S communication 

 between the IoT Redboard and the audio codec. We needed to confirm that the 

 audio signal could pass cleanly through the AD/DA conversions in our setup, and 

 that a clear signal could be heard through the amplifier from a music source. 

 After audio passthrough was a success, we tackled each effect 

 individually. We tested each effect in the main loop first to check if it was 

 producing the desired sound. Use of an oscilloscope as described in the previous 

 section was also essential in this step to troubleshoot and tweak our 

 programming to match the effects we were looking for. We then tested the ability 

 to turn the effects on and off programmatically by calling a function that handled 
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 the effect outside of the main loop. Next, we tested the ability to vary effect 

 intensity by hardcoding a change in parameters. 

 After the successful execution of each audio effect, we collected the code 

 for all the working effects and checked that we could call multiple effects within 

 one script. This tested whether or not we could observe the same effect at the 

 output that we heard when testing each effect individually. 

 4.2 Subsystem 2 - Web Interface 

 For the web interface, we first tested the visual display to ensure that it 

 looked and functioned properly. We wanted to make sure that we could 

 successfully communicate with the ESP32 to display the name of the effect, an 

 interactable slider, and the slider’s value for each of our guitar effects. 

 4.3 Integrating Subsystems 

 Once both subsystems were individually tested and functioning properly, 

 we integrated them to ensure that they worked together as expected. After the 

 web interface looked and behaved as expected, we tested the ability to 

 programmatically read the current slider values from the web interface so that we 

 could access the effect intensities that the user chose. We then incorporated the 

 read slider values into the functions controlling each audio effect, adjusting the 

 appropriate parameters to reflect the effect intensity selected. This tested our 

 ability to control the audio effects through the web interface. 

 23 



 Finally, we verified that we could also control the slider values from the 

 script, and observe that the web interface display updated properly to reflect 

 these changes in value. This tested our ability to control the web interface from 

 the script, which was essential for cases where our effects could not be applied 

 simultaneously, and one effect had to be disabled if another effect was enabled 

 by the user. 

 5  To-Market Design Changes 

 5.1 Latency 

 Reducing the latency between the input and output signals is critical before 

 taking our product to market. This latency, when significant, can be noticeable to 

 the user. Consequently, it can be distracting to the guitarist and inhibit their 

 enjoyment of the experience. Before bringing our digital guitar effects pedal to 

 market, we would need to reduce this latency until it is imperceptible to the user. 

 To achieve this, we can search for ways to optimize the code by exploring the 

 following: a decrease in the sampling rate, a reduction of the number of 

 calculations performed when applying an effect, and a shorter buffer length that 

 does not compromise the quality of the output signal. Another option is to use a 

 faster processor that can handle more calculations in less time. This may include 

 leveraging the capabilities of a dual-core processor, or even using a dedicated 

 DSP chip. 
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 5.2 WiFi Network Selection 

 Another challenge of our present design is that the WiFi network is hard-coded 

 into the backend of the product. In order to sell our product commercially, the 

 user must be able to choose the WiFi network from the frontend so that they are 

 able to access the webpage with the sliders controlling the intensity of the 

 effects. One solution could be to add a small OLED or LCD display that can 

 display a list of available wifi networks. The user could then use a button or 

 series of buttons to navigate the list and select the desired network. The 

 electrical components required for this approach are inexpensive, so we could 

 continue to keep the cost of our project low. Another approach is to allow the 

 device to create its own WiFi hotspot, which the user can connect to from their 

 smartphone or computer. Once connected, the user could access a configuration 

 page through a web browser to enter the WiFi network credentials. 

 5.3 Housing Device 

 In addition to these challenges, the housing device would need to be adapted so 

 that it possesses off-the-shelf production quality. The enclosure should be sturdy 

 and simple to use, with clear labeling of inputs and outputs, as well as intuitive 

 controls. The housing design should be compact and durable so that the user 

 can easily transport our product without hassle or damage. 
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 5.4 Web Interface on Mobile Devices 

 Finally, before selling our product commercially, we would need to update the 

 web interface so that the layout is designed for a mobile device. That is, the size 

 of the sliders and their corresponding labels should be reduced so that all four 

 sliders of our current design could fit onto one page of a mobile screen, thus 

 eliminating the need for the user to scroll to change a specific effect at the 

 bottom. For an even more streamlined experience, this web interface could be 

 adapted into a mobile app, allowing us to streamline the process of launching the 

 effects slider interface, and to continuously update our product with additional 

 effects for the user over time. 

 6  Users Manual/Installation manual 

 6.1 Setup/Installation 

 In order to use our product, the user needs their own guitar, two standard 

 guitar cables (1/4"), an amplifier, a guitar phone mount, and a USB-C connector 

 (all sold separately). To begin, they can use the USB-C connector to connect to 

 power. An LED will indicate if the device is successfully powered. Then, the user 

 can connect one of the standard guitar cables from their guitar to the “audio in” 

 port of our device. The second standard guitar cable then connects from the 

 “audio out” port of our device to the input port of the user’s amplifier. These 

 26 



 connections are necessary to apply the desired effects to the guitar’s audio 

 output and play the edited signal through the amp. 

 To continue setting up their guitar effects “pedal,” the user must connect 

 the device to a WiFi network. If the final product design ultimately provides its 

 own hotspot, the user can use their phone to search for the corresponding 

 “Guitar Effects Pedal” network and connect to it. Alternatively, if the market 

 product includes a display on the physical device itself, the user can navigate to 

 their desired network using the buttons or touchscreen provided. Another LED 

 can indicate if the device is successfully connected to WiFi. The most important 

 step is to ensure that our guitar effects “pedal” and the user’s phone are 

 connected to the same WiFi network in order to communicate with each other.  1 

 Once connected, the user can open their browser of choice and navigate 

 to the IP address of the device. This can be found on the device itself in the case 

 of providing its own hotspot, or by logging into the WiFi’s router if using another 

 network. If connected successfully, the sliders for each guitar effect will display 

 on the phone screen of the user. The user can then use the web browser to 

 control the application and the intensity of each effect. The only thing left to do is 

 to place their phone into a guitar phone mount, and to jam out to their heart’s 

 desire. 

 1  If using our device in its present state on Notre Dame’s campus, the user must connect their 
 phone to the SDNet network and enter the password “CapstoneProject”. 
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 6.2 Troubleshooting 

 In the event that the user is not hearing the anticipated effect applied at 

 the output, the first step is to check all cable connections. If the LED indicating 

 power is not illuminated, the USB-C connector may not be connected properly, or 

 the USC-C cord or power source might be faulty. If the LED indicating power is 

 illuminated, check that the guitar cables are connected securely to the guitar and 

 to the amp, and check that the volume of the amplifier is up. Specifically for the 

 distortion effect, if minimal distortion is noticed even when the slider is set to 10, 

 make sure that the output volume knob on the guitar itself is turned to max - this 

 may be necessary to ensure that signal is strong enough to experience clipping 

 when processed. 

 If the user must continue troubleshooting, ensure that our product and the 

 user’s phone are connected to the same WiFi network, and check the strength of 

 the WiFi signal. If the WiFi connection is weak, the devices may not 

 communicate successfully. 

 If none of these steps resolve the problem, try turning the device off and 

 back on, and refresh the webpage. 
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 7  Conclusions 

 The digital guitar effects system conceived in this project is a unique, 

 cost-effective solution that integrates multiple effects into a single system. 

 Single-effect pedals can quickly create a mess of a floorspace when used in 

 performance or practice and require a hardware purchase when a new effect is 

 wanted. Our effort to solve these problems with a single digital pedal can offer 

 musicians of all skill levels and budgets an alternative option to ease their 

 physical and/or financial hassles. While our project is only a sample of the 

 capabilities of this technological application, it offers an insight into the 

 possibilities of a cheaper, more versatile alternative to traditional effects pedals. 

 Currently our system offers 4 effects, all performing signal alteration in the time 

 domain. Future updates to this device would likely include a more expansive 

 lineup of effects available for download, including those performing signal 

 processing in the frequency domain to greatly expand capabilities. Additionally, a 

 more powerful chip would likely be required to execute more complex 

 computations at a fast enough rate, as even with the effects we created this was 

 an issue. The chip and software, in addition to upgrades to the housing as well 

 as interface connection would produce a product ready to market. 
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 8  Appendices 

 8.1 Schematic Design 

 8.2 Board Design 
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 8.3 CAD Design 

 Board Housing 

 8.4 Major Hardware Components 

 PART NAME  DATASHEET LINK 

 SparkFun IoT RedBoard - 

 ESP32 Development Board 

 https://cdn.sparkfun.com/assets/4/3/1/7/6/esp32-wroom-32e 

 _esp32-wroom-32ue_datasheet_en_v1-6.pdf 

 (ESP32-D0WD-V3 chip) 

 Audio Codec Breakout - 

 WM8960 

 https://cdn.sparkfun.com/assets/a/3/a/7/4/WM8960_datashe 

 et_v4.2.pdf 
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 8.5 Software 

 #include  <Wire.h> 

 #include  <SparkFun_WM8960_Arduino_Library.h> 

 #include  <algorithm> 

 #include  <WiFi.h> 

 #include  <AsyncTCP.h> 

 #include  <ESPAsyncWebServer.h> 

 #include  <iostream> 

 #include  <string> 

 WM8960  codec  ; 

 // Include I2S driver 

 #include  <driver/i2s.h> 

 // Connections to I2S 

 #define  I2S_WS  25 

 #define  I2S_SD  17 

 #define  I2S_SDO  4 

 #define  I2S_SCK  16 

 // Use I2S Processor 0 

 #define  I2S_PORT  I2S_NUM_0 

 // Define input buffer length 
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 #define  bufferLen  512 

 int16_t  sBuffer  [  bufferLen  ]; 

 // Define Sample Rate 

 #define  SAMPLERATE  44100 

 // WiFi login credentials 

 const  char  *  ssid  =  "SDNet"  ; 

 const  char  *  password  =  "CapstoneProject"  ; 

 // Variables to read the slider values from the web interface 

 String  distortionValue  =  "0"  ; 

 String  tremoloValue  =  "0"  ; 

 String  fuzzValue  =  "0"  ; 

 String  eightBitValue  =  "0"  ; 

 const  char  *  PARAM_INPUT  =  "value"  ; 

 // Create AsyncWebServer object on port 80 

 AsyncWebServer  server  (  80  ); 

 // Create the visual display of the webpage 

 const  char  index_html  []  PROGMEM  =  R"rawliteral( 

 <!DOCTYPE html> 
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 <head> 

 <meta name="viewport" content="width=device-width, initial-scale=1.0"> 

 <title>Guitar Effects</title> 

 <style> 

 html {font-family: Arial; display: inline-block; text-align: center;} 

 h2 {font-size: 2.3rem;} 

 p {font-size: 1.9rem;} 

 body {max-width: 400px; margin:0px auto; padding-bottom: 25px;} 

 .slider { -webkit-appearance: none; margin: 14px; width: 360px; 

 height: 25px; background: #2196F3; 

 outline: none; -webkit-transition: .2s; transition: opacity .2s;} 

 .slider::-webkit-slider-thumb {-webkit-appearance: none; appearance: 

 none; width: 35px; height: 35px; background: #003249; cursor: pointer;} 

 .slider::-moz-range-thumb { width: 35px; height: 35px; background: 

 #003249; cursor: pointer; } 

 .slider-container { display: flex; align-items: center; }; 

 .slider-value { display: inline; margin-left: 10px; }; 

 </style> 

 </head> 

 <body> 

 <h2>Distortion</h2> 

 <div class="slider-container"> 

 <label for="distortion-slider"></label> 
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 <p><input type="range" onchange="updateDistortionSlider(this)" 

 id="distortion-slider" min="0" max="10" value="%DISTORTIONVALUE%" step="1" 

 class="slider"></p> 

 <p><span id="textDistortionValue">%DISTORTIONVALUE%</span></p> 

 </div> 

 <h2>Tremolo</h2> 

 <div class="slider-container"> 

 <label for="tremolo-slider"></label> 

 <p><input type="range" onchange="updateTremoloSlider(this)" 

 id="tremolo-slider" min="0" max="10" value="%TREMOLOVALUE%" step="0.5" 

 class="slider"></p> 

 <p><span id="textTremoloValue">%TREMOLOVALUE%</span></p> 

 </div> 

 <h2>Fuzz</h2> 

 <div class="slider-container"> 

 <label for="fuzz-slider"></label> 

 <p><input type="range" onchange="updateFuzzSlider(this)" 

 id="fuzz-slider" min="0" max="10" value="%FUZZVALUE%" step="1" 

 class="slider"></p> 

 <p><span id="textFuzzValue">%FUZZVALUE%</span></p> 

 </div> 

 <h2>8-Bit</h2> 

 <div class="slider-container"> 
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 <label for="eightBit-slider"></label> 

 <p><input type="range" onchange="updateEightBitSlider(this)" 

 id="eightBit-slider" min="0" max="1" value="%EIGHTBITVALUE%" step="1" 

 class="slider"></p> 

 <p><span id="textEightBitValue">%EIGHTBITVALUE%</span></p> 

 </div> 

 <script> 

 function updateDistortionSlider(element) { 

 var distortionValue = 

 document.getElementById("distortion-slider").value; 

 var fuzzValue = document.getElementById("fuzz-slider").value; 

 var eightBitValue = 

 document.getElementById("eightBit-slider").value; 

 if (fuzzValue != 0) { 

 document.getElementById("fuzz-slider").value = 0; 

 document.getElementById("textFuzzValue").innerHTML = 0; 

 fuzzValue = 0; 

 console.log(fuzzValue); 

 var xhr = new XMLHttpRequest(); 

 xhr.open("GET", "/fuzz-slider?value=" + fuzzValue, true); 

 xhr.send(); 

 } 

 if (eightBitValue != 0) { 
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 document.getElementById("eightBit-slider").value = 0; 

 document.getElementById("textEightBitValue").innerHTML = 0; 

 eightBitValue = 0; 

 console.log(eightBitValue); 

 var xhr = new XMLHttpRequest(); 

 xhr.open("GET", "/eightBit-slider?value=" + eightBitValue, true); 

 xhr.send(); 

 } 

 document.getElementById("textDistortionValue").innerHTML = 

 distortionValue; 

 console.log(distortionValue); 

 var xhr = new XMLHttpRequest(); 

 xhr.open("GET", "/distortion-slider?value=" + distortionValue, 

 true); 

 xhr.send(); 

 } 

 function updateTremoloSlider(element) { 

 var tremoloValue = document.getElementById("tremolo-slider").value; 

 var eightBitValue = 

 document.getElementById("eightBit-slider").value; 

 if (eightBitValue != 0) { 

 document.getElementById("eightBit-slider").value = 0; 

 document.getElementById("textEightBitValue").innerHTML = 0; 

 eightBitValue = 0; 

 console.log(eightBitValue); 
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 var xhr = new XMLHttpRequest(); 

 xhr.open("GET", "/eightBit-slider?value=" + eightBitValue, true); 

 xhr.send(); 

 } 

 document.getElementById("textTremoloValue").innerHTML = 

 tremoloValue; 

 console.log(tremoloValue); 

 var xhr = new XMLHttpRequest(); 

 xhr.open("GET", "/tremolo-slider?value=" + tremoloValue, true); 

 xhr.send(); 

 } 

 function updateFuzzSlider(element) { 

 var fuzzValue = document.getElementById("fuzz-slider").value; 

 var distortionValue = 

 document.getElementById("distortion-slider").value; 

 var eightBitValue = 

 document.getElementById("eightBit-slider").value; 

 if (distortionValue != 0) { 

 document.getElementById("distortion-slider").value = 0; 

 document.getElementById("textDistortionValue").innerHTML = 0; 

 distortionValue = 0; 

 console.log(distortionValue); 

 var xhr = new XMLHttpRequest(); 

 xhr.open("GET", "/distortion-slider?value=" + distortionValue, 

 true); 
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 xhr.send(); 

 } 

 if (eightBitValue != 0) { 

 document.getElementById("eightBit-slider").value = 0; 

 document.getElementById("textEightBitValue").innerHTML = 0; 

 eightBitValue = 0; 

 console.log(eightBitValue); 

 var xhr = new XMLHttpRequest(); 

 xhr.open("GET", "/eightBit-slider?value=" + eightBitValue, true); 

 xhr.send(); 

 } 

 document.getElementById("textFuzzValue").innerHTML = fuzzValue; 

 console.log(fuzzValue); 

 var xhr = new XMLHttpRequest(); 

 xhr.open("GET", "/fuzz-slider?value=" + fuzzValue, true); 

 xhr.send(); 

 } 

 function updateEightBitSlider(element) { 

 var eightBitValue = 

 document.getElementById("eightBit-slider").value; 

 var distortionValue = 

 document.getElementById("distortion-slider").value; 

 var tremoloValue = document.getElementById("tremolo-slider").value; 

 var fuzzValue = document.getElementById("fuzz-slider").value; 

 if (distortionValue != 0) { 
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 document.getElementById("distortion-slider").value = 0; 

 document.getElementById("textDistortionValue").innerHTML = 0; 

 distortionValue = 0; 

 console.log(distortionValue); 

 var xhr = new XMLHttpRequest(); 

 xhr.open("GET", "/distortion-slider?value=" + distortionValue, 

 true); 

 xhr.send(); 

 } 

 if (tremoloValue != 0) { 

 document.getElementById("tremolo-slider").value = 0; 

 document.getElementById("textTremoloValue").innerHTML = 0; 

 tremoloValue = 0; 

 console.log(tremoloValue); 

 var xhr = new XMLHttpRequest(); 

 xhr.open("GET", "/tremolo-slider?value=" + tremoloValue, true); 

 xhr.send(); 

 } 

 if (fuzzValue != 0) { 

 document.getElementById("fuzz-slider").value = 0; 

 document.getElementById("textFuzzValue").innerHTML = 0; 

 fuzzValue = 0; 

 console.log(fuzzValue); 

 var xhr = new XMLHttpRequest(); 

 xhr.open("GET", "/fuzz-slider?value=" + fuzzValue, true); 
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 xhr.send(); 

 } 

 document.getElementById("textEightBitValue").innerHTML = 

 eightBitValue; 

 console.log(eightBitValue); 

 var xhr = new XMLHttpRequest(); 

 xhr.open("GET", "/eightBit-slider?value=" + eightBitValue, true); 

 xhr.send(); 

 } 

 </script> 

 </body> 

 </html> 

 )rawliteral"  ; 

 // Replaces placeholder with button section in your web page 

 String  processor  (  const  String  &  var  ){ 

 if  (  var  ==  "DISTORTIONVALUE"  ){ 

 return  distortionValue  ; 

 } 
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 if  (  var  ==  "TREMOLOVALUE"  ){ 

 return  tremoloValue  ; 

 } 

 if  (  var  ==  "FUZZVALUE"  ){ 

 return  fuzzValue  ; 

 } 

 if  (  var  ==  "EIGHTBITVALUE"  ){ 

 return  eightBitValue  ; 

 } 

 return  String  (); 

 }  // ends String processor() 

 // All the code for the web interface setup and functionality, called in 

 setup() 

 void  web_interface_setup  () 

 { 

 // Connect to Wi-Fi 

 WiFi  .  begin  (  ssid  ,  password  ); 

 while  (  WiFi  .  status  () !=  WL_CONNECTED  ) { 

 delay  (  1000  ); 

 Serial  .  println  (  "Connecting to WiFi.."  ); 

 } 
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 // Print ESP Local IP Address 

 Serial  .  println  (  WiFi  .  localIP  ()); 

 // Route for root / web page 

 server  .  on  (  "/"  ,  HTTP_GET  , [](  AsyncWebServerRequest  *  request  ){ 

 request  ->  send_P  (  200  ,  "text/html"  ,  index_html  ,  processor  ); 

 }); 

 server  .  on  (  "/distortion-slider"  ,  HTTP_GET  , [] (  AsyncWebServerRequest 

 *  request  ) { 

 String  inputMessage  ; 

 // GET input1 value on <ESP_IP>/slider?value=<inputMessage> 

 if  (  request  ->  hasParam  (  PARAM_INPUT  )) { 

 inputMessage  =  request  ->  getParam  (  PARAM_INPUT  )->  value  (); 

 distortionValue  =  inputMessage  ; 

 } 

 else  { 

 inputMessage  =  "No message sent"  ; 

 } 

 Serial  .  println  (  "Distortion Value: "  +  inputMessage  ); 

 request  ->  send  (  200  ,  "text/plain"  ,  "OK"  ); 

 }); 

 // Send a GET request to <ESP_IP>/slider?value=<inputMessage> 

 server  .  on  (  "/tremolo-slider"  ,  HTTP_GET  , [] (  AsyncWebServerRequest 

 *  request  ) { 
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 String  inputMessage  ; 

 // GET input1 value on <ESP_IP>/slider?value=<inputMessage> 

 if  (  request  ->  hasParam  (  PARAM_INPUT  )) { 

 inputMessage  =  request  ->  getParam  (  PARAM_INPUT  )->  value  (); 

 tremoloValue  =  inputMessage  ; 

 } 

 else  { 

 inputMessage  =  "No message sent"  ; 

 } 

 Serial  .  println  (  "Tremolo Value: "  +  inputMessage  ); 

 request  ->  send  (  200  ,  "text/plain"  ,  "OK"  ); 

 }); 

 server  .  on  (  "/fuzz-slider"  ,  HTTP_GET  , [] (  AsyncWebServerRequest  *  request  ) 

 { 

 String  inputMessage  ; 

 // GET input1 value on <ESP_IP>/slider?value=<inputMessage> 

 if  (  request  ->  hasParam  (  PARAM_INPUT  )) { 

 inputMessage  =  request  ->  getParam  (  PARAM_INPUT  )->  value  (); 

 fuzzValue  =  inputMessage  ; 

 } 

 else  { 

 inputMessage  =  "No message sent"  ; 

 } 

 Serial  .  println  (  "Fuzz Value: "  +  inputMessage  ); 

 request  ->  send  (  200  ,  "text/plain"  ,  "OK"  ); 

 44 



 }); 

 server  .  on  (  "/eightBit-slider"  ,  HTTP_GET  , [] (  AsyncWebServerRequest 

 *  request  ) { 

 String  inputMessage  ; 

 // GET input1 value on <ESP_IP>/slider?value=<inputMessage> 

 if  (  request  ->  hasParam  (  PARAM_INPUT  )) { 

 inputMessage  =  request  ->  getParam  (  PARAM_INPUT  )->  value  (); 

 eightBitValue  =  inputMessage  ; 

 } 

 else  { 

 inputMessage  =  "No message sent"  ; 

 } 

 Serial  .  println  (  "8-Bit Value: "  +  inputMessage  ); 

 request  ->  send  (  200  ,  "text/plain"  ,  "OK"  ); 

 }); 

 // Start server 

 server  .  begin  (); 

 }  // ends web_interface_setup() 

 int  disValInt  =  distortionValue  .  toInt  (); 

 // Code for setting up the codec, called in setup() 

 void  codec_setup  () 
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 { 

 // General setup needed 

 //int* reg_address = WM8960_REG_AUDIO_INTERFACE_2 

 //*reg_address = 0b0010000; 

 codec  .  enableVREF  (); 

 codec  .  enableVMID  (); 

 // Setup signal flow to the ADC 

 codec  .  enableLMIC  (); 

 codec  .  enableRMIC  (); 

 // Connect from INPUT1 to "n" (aka inverting) inputs of PGAs. 

 codec  .  connectLMN1  (); 

 codec  .  connectRMN1  (); 

 // Disable mutes on PGA inputs (aka INTPUT1) 

 codec  .  disableLINMUTE  (); 

 codec  .  disableRINMUTE  (); 

 // Set pga volumes 

 codec  .  setLINVOLDB  (  3  *  disValInt  ); 

 codec  .  setRINVOLDB  (  3  *  disValInt  ); 

 // Set input boosts to get inputs 1 to the boost mixers 

 codec  .  setLMICBOOST  (  WM8960_MIC_BOOST_GAIN_0DB  ); 
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 codec  .  setRMICBOOST  (  WM8960_MIC_BOOST_GAIN_0DB  ); 

 // Connect from MIC inputs (aka pga output) to boost mixers 

 codec  .  connectLMIC2B  (); 

 codec  .  connectRMIC2B  (); 

 // Enable boost mixers 

 codec  .  enableAINL  (); 

 codec  .  enableAINR  (); 

 // Disconnect LB2LO (booster to output mixer (analog bypass) 

 // For this example, we are going to pass audio throught the ADC and DAC 

 codec  .  disableLB2LO  (); 

 codec  .  disableRB2RO  (); 

 // Connect from DAC outputs to output mixer 

 codec  .  enableLD2LO  (); 

 codec  .  enableRD2RO  (); 

 // Set gainstage between booster mixer and output mixer 

 // For this loopback example, we are going to keep these as low as they 

 go 

 codec  .  setLB2LOVOL  (  WM8960_OUTPUT_MIXER_GAIN_NEG_21DB  ); 

 codec  .  setRB2ROVOL  (  WM8960_OUTPUT_MIXER_GAIN_NEG_21DB  ); 

 // Enable output mixers 
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 codec  .  enableLOMIX  (); 

 codec  .  enableROMIX  (); 

 // CLOCK STUFF, These settings will get you 44.1KHz sample rate, and 

 class-d 

 // freq at 705.6kHz 

 codec  .  enablePLL  ();  // Needed for class-d amp clock 

 codec  .  setPLLPRESCALE  (  WM8960_PLLPRESCALE_DIV_2  ); 

 codec  .  setSMD  (  WM8960_PLL_MODE_FRACTIONAL  ); 

 codec  .  setCLKSEL  (  WM8960_CLKSEL_PLL  ); 

 codec  .  setSYSCLKDIV  (  WM8960_SYSCLK_DIV_BY_2  ); 

 codec  .  setBCLKDIV  (  4  ); 

 codec  .  setDCLKDIV  (  WM8960_DCLKDIV_16  ); 

 codec  .  setPLLN  (  7  ); 

 codec  .  setPLLK  (  0x86  ,  0xC2  ,  0x26  );  // PLLK=86C226h 

 //codec.setADCDIV(0); // Default is 000 (what we need for 44.1KHz) 

 //codec.setDACDIV(0); // Default is 000 (what we need for 44.1KHz) 

 codec  .  setWL  (  WM8960_WL_16BIT  ); 

 //codec.writeRegister(0x09, 0b00100000); 

 codec  .  enablePeripheralMode  (); 

 //codec.enableMasterMode(); 

 //codec.setALRCGPIO(); // Note, should not be changed while ADC is 

 enabled. 

 // Enable ADCs and DACs 
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 codec  .  enableAdcLeft  (); 

 codec  .  enableAdcRight  (); 

 codec  .  enableDacLeft  (); 

 codec  .  enableDacRight  (); 

 codec  .  disableDacMute  (); 

 //codec.enableLoopBack(); // Loopback sends ADC data directly into DAC 

 codec  .  disableLoopBack  (); 

 // Default is "soft mute" on, so we must disable mute to make channels 

 active 

 codec  .  disableDacMute  (); 

 codec  .  enableHeadphones  (); 

 codec  .  enableHeadphoneZeroCross  (); 

 codec  .  enableOUT3MIX  ();  // Provides VMID as buffer  for headphone ground 

 Serial  .  println  (  "Volume set to +0dB"  ); 

 codec  .  setHeadphoneVolumeDB  (  0.00  ); 

 Serial  .  println  (  "Codec Setup complete. Listen to  left/right INPUT1 on 

 Headphone outputs."  ); 

 } 

 // Code for setting up the i2s communication, called in setup() 

 void  i2s_install  () { 
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 // Set up I2S Processor configuration 

 const  i2s_driver_config_t  i2s_config  = { 

 .  mode  =  i2s_mode_t  (  I2S_MODE_MASTER  |  I2S_MODE_RX  |  I2S_MODE_TX  ), 

 .  sample_rate  =  44100  , 

 .  bits_per_sample  =  i2s_bits_per_sample_t  (  16  ), 

 .  channel_format  =  I2S_CHANNEL_FMT_RIGHT_LEFT  , 

 .  communication_format  =  i2s_comm_format_t  (  I2S_COMM_FORMAT_STAND_MSB  ), 

 .  intr_alloc_flags  =  0  , 

 .  dma_buf_count  =  8  , 

 .  dma_buf_len  =  bufferLen  , 

 .  use_apll  =  false  , 

 .  tx_desc_auto_clear  =  false  , 

 .  fixed_mclk  =  0  , 

 .  mclk_multiple  =  i2s_mclk_multiple_t  (  I2S_MCLK_MULTIPLE_DEFAULT  ), 

 .  bits_per_chan  =  i2s_bits_per_chan_t  (  I2S_BITS_PER_CHAN_DEFAULT  ) 

 }; 

 i2s_driver_install  (  I2S_PORT  , &  i2s_config  ,  0  ,  NULL  ); 

 } 

 void  i2s_setpin  () { 

 // Set I2S pin configuration 

 const  i2s_pin_config_t  pin_config  = { 

 .  mck_io_num  = -  1  , 

 .  bck_io_num  =  I2S_SCK  , 

 .  ws_io_num  =  I2S_WS  , 
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 .  data_out_num  =  I2S_SDO  , 

 .  data_in_num  =  I2S_SD 

 }; 

 i2s_set_pin  (  I2S_PORT  , &  pin_config  ); 

 } 

 void  setup  () 

 { 

 Serial  .  begin  (  115200  ); 

 Wire  .  begin  (); 

 if  (  codec  .  begin  () ==  false  )  //Begin communication over I2C 

 { 

 Serial  .  println  (  "The device did not respond. Please  check wiring."  ); 

 while  (  1  );  // Freeze 

 } 

 Serial  .  println  (  "Device is connected properly."  ); 

 codec_setup  (); 

 // Set up I2S 

 i2s_install  (); 

 i2s_setpin  (); 

 i2s_start  (  I2S_PORT  ); 
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 web_interface_setup  (); 

 } 

 float  tWave  =  125  ; 

 float  direction  = -  0.5  ; 

 int  iClip  =  0  ; 

 void  triangolo  (){ 

 // Update the value based on the current direction 

 if  (  iClip  ==  0  ){ 

 tWave  +=  direction  *  tremoloValue  .  toInt  (); 

 } 

 // Check if the value has reached the lower or upper limit 

 if  (  tWave  <=  107  ) { 

 iClip  ++; 

 if  (  iClip  ==  25  ){ 

 direction  =  0.5  ; 

 iClip  =  0  ; 

 tWave  =  107  ; 

 } 

 } 

 else  if  (  tWave  >=  125  ) { 

 iClip  ++; 
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 if  (  iClip  ==  25  ){ 

 direction  = -  0.5  ; 

 iClip  =  0  ; 

 tWave  =  125  ; 

 } 

 } 

 codec  .  setHeadphoneVolume  (  tWave  ); 

 } 

 void  fuzz  (  float*  audioData  ,  int  numBytes  ,  int  gainFactor  ) 

 { 

 const  float  mixGain  =  2  *  gainFactor  ;  // tone shift factor 

 // Apply the fuzz effect to each sample in the input audio data 

 int  numSamples  =  numBytes  /  sizeof  (  float  ); 

 for  (  int  i  =  0  ;  i  <  numSamples  ;  i  ++) { 

 // Apply tone shift to the sample 

 float  ampedSample  =  audioData  [  i  ] *  mixGain  ; 

 // Mix the original and shifted samples 

 audioData  [  i  ] =  (  audioData  [  i  ] +  ampedSample  ) +  audioData  [  i  ]; 

 } 

 } 

 void  eightbit  (  float*  audioData  ,  int  numBytes  ){ 

 const  float  eightbitfactor  =  10  ; 

 int  numSamples  =  numBytes  /  sizeof  (  float  ); 
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 for  (  int  i  =  0  ;  i  <  numSamples  ;  i  ++) { 

 float  ampedsample  =  audioData  [  i  ]*  eightbitfactor  ; 

 audioData  [  i  ] =  audioData  [  2  *  i  ]; 

 } 

 } 

 void  loop  () 

 { 

 if  (  eightBitValue  .  toInt  () ==  0  ){ 

 size_t  bytesIn  =  0  ; 

 size_t  bytesOut  =  0  ; 

 esp_err_t  result  =  i2s_read  (  I2S_PORT  , &  sBuffer  ,  bufferLen  , &  bytesIn  , 

 portMAX_DELAY  ); 

 // codec.writeRegister(0x09, 0b00100000); //uncomment to apply 8-bit 

 effect 

 // If no distortion, no fuzz, and no tremolo (clean) 

 if  (  distortionValue  .  toInt  ()==  0  &&  tremoloValue  .  toInt  ()  ==  0  && 

 fuzzValue  .  toInt  () ==  0  ) 

 { 

 // Set PGA values to 0 dB for no distortion 

 codec  .  setLINVOLDB  (  0  ); 

 codec  .  setRINVOLDB  (  0  ); 
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 // Immediately play back what was read in 

 esp_err_t  result_w  =  i2s_write  (  I2S_PORT  , &  sBuffer  ,  bytesIn  , &  bytesOut  , 

 portMAX_DELAY  ); 

 // If there is an I2S write error, let us know on the serial terminal 

 if  (  result_w  !=  ESP_OK  ){ 

 Serial  .  print  (  "I2S write error."  ); 

 } 

 }  // ends the if-statement for no distortion, no  fuzz, and no tremolo 

 // If distortion and no delay and no fuzz 

 if  (  distortionValue  .  toInt  () !=  0  &&  tremoloValue  .  toInt  () ==  0  && 

 fuzzValue  .  toInt  () ==  0  ) 

 { 

 // Sets PGA values for distortion using function 

 codec  .  setLINVOLDB  (  3  *  distortionValue  .  toInt  ()); 

 codec  .  setRINVOLDB  (  3  *  distortionValue  .  toInt  ()); 

 // Play back what was read in with distortion 

 esp_err_t  result_w  =  i2s_write  (  I2S_PORT  , &  sBuffer  ,  bufferLen  , 

 &  bytesOut  ,  portMAX_DELAY  ); 

 }  // ends distortion and no delay case 

 // If tremolo and no distortion and no fuzz 
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 if  (  distortionValue  .  toInt  () ==  0  &&  tremoloValue  .  toInt  () !=  0  && 

 fuzzValue  .  toInt  () ==  0  ){ 

 // Set PGA values to 0 dB for no distortion 

 codec  .  setLINVOLDB  (  0  ); 

 codec  .  setRINVOLDB  (  0  ); 

 triangolo  (); 

 esp_err_t  result_w  =  i2s_write  (  I2S_PORT  , &  sBuffer  ,  bytesIn  , &  bytesOut  , 

 portMAX_DELAY  ); 

 } 

 // If fuzz and no distortion and no tremolo 

 if  (  distortionValue  .  toInt  () ==  0  &&  tremoloValue  .  toInt  ()  ==  0  && 

 fuzzValue  .  toInt  () !=  0  ) 

 { 

 // Set PGA values to 0 dB for no distortion 

 codec  .  setLINVOLDB  (  0  ); 

 codec  .  setRINVOLDB  (  0  ); 

 float  *  audioData  = (  float  *) &  sBuffer  ;  // Cast  buffer as float* 

 int  numBytes  =  bytesIn  ;  // Get the number of bytes of audio data 

 fuzz  (  audioData  ,  numBytes  ,  fuzzValue  .  toInt  ()); 
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 esp_err_t  result_w  =  i2s_write  (  I2S_PORT  , &  sBuffer  ,  bytesIn  , &  bytesOut  , 

 portMAX_DELAY  ); 

 } 

 // If distortion and tremolo and no fuzz 

 if  (  distortionValue  .  toInt  () !=  0  &&  tremoloValue  .  toInt  ()  !=  0  && 

 fuzzValue  .  toInt  () ==  0  ) 

 { 

 //Set PGA values for distortion 

 codec  .  setLINVOLDB  (  3  *  distortionValue  .  toInt  ()); 

 codec  .  setRINVOLDB  (  3  *  distortionValue  .  toInt  ()); 

 triangolo  (); 

 esp_err_t  result_w  =  i2s_write  (  I2S_PORT  , &  sBuffer  ,  bufferLen  , 

 &  bytesOut  ,  portMAX_DELAY  ); 

 } 

 // If tremolo and fuzz and no distortion 

 if  (  distortionValue  .  toInt  () ==  0  &&  tremoloValue  .  toInt  ()  !=  0  && 

 fuzzValue  .  toInt  () !=  0  ) 

 { 

 float  *  audioData  = (  float  *) &  sBuffer  ;  // Cast  buffer as float* 

 int  numBytes  =  bytesIn  ;  // Get the number of bytes of audio data 

 fuzz  (  audioData  ,  numBytes  ,  fuzzValue  .  toInt  ()); 
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 triangolo  (); 

 esp_err_t  result_w  =  i2s_write  (  I2S_PORT  , &  sBuffer  ,  bufferLen  , 

 &  bytesOut  ,  portMAX_DELAY  ); 

 } 

 } 

 // 8-bit switch 

 if  (  eightBitValue  .  toInt  () !=  0  ){ 

 size_t  bytesIn  =  0  ; 

 size_t  bytesOut  =  0  ; 

 esp_err_t  result  =  i2s_read  (  I2S_PORT  , &  sBuffer  ,  bufferLen  /  2  , &  bytesIn  , 

 portMAX_DELAY  ); 

 // Set PGA values to 0 dB for no distortion 

 codec  .  setLINVOLDB  (  0  ); 

 codec  .  setRINVOLDB  (  0  ); 

 float  *  audioData  = (  float  *)&  sBuffer  ;  // Cast buffer  as float* 

 int  numBytes  =  bytesIn  ;  // Get the number of bytes  of audio data 

 eightbit  (  audioData  ,  numBytes  ); 

 esp_err_t  result_w  =  i2s_write  (  I2S_PORT  , &  sBuffer  ,  bufferLen  /  2  , 

 &  bytesOut  ,  portMAX_DELAY  ); 

 } 

 } 
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