
 EE 41440 Senior Design II - Guitar Effects

 Jack Doherty, Sydney Heller, Luis Hernandez, Henry Van Ess

 University of Notre Dame

 Department of Electrical Engineering

 7 May 2023

 Table of Contents

 1. Introduction ……………………………………………………………………………….. 3

 2. System Requirements …………………………………………………………………... 5

 3. Project Description ………………………………………………………………...... 6

 3.1 System Theory of Operation …………………………………………………..... 6

 3.2 System Block Diagram ……………………………………................................ 7

 3.3 Detailed Design/Operation of Subsystem 1 ………………………………........ 8

 3.4 Detailed Design/Operation of Subsystem 2 ………………………………...... 13

 3.5 Effects Theory ……………………………………... 16

 4. System Integration Testing …………………………………………………………….. 20

 4.1 Subsystem 1 - Audio Effects …………………………………………………... 22

 4.2 System 2 - Web Interface …………………………………….......................... 23

 4.3 Integrating Subsystems ……………………………….................................... 23

 5. To-Market Design Changes …………………………………………………………….. 24

 5.1 Latency ………………………………………………….................................... 24

 5.2 WiFi Network Selection ……………………………………............................. 25

 5.3 Housing Device ………………………………... 25

 1

 5.4 Web Interface on Mobile Devices ………………………………..................... 26

 6. Users Manual/Installation Manual …………………………………………………….. 26

 6.1 Setup/Installation …………………………………………………..................... 26

 6.2 Troubleshooting ……………………………………... 28

 7. Conclusions …………………………………………………………………….………… 28

 8. Appendices ……………………………………………………………………………….. 29

 8.1 Schematic Design.. 29

 8.2 Board Design................ ……………………………………............................. 29

 8.3 CAD Design..... ………………………………... 30

 8.4 Major Hardware Components...... ………………………………..................... 30

 8.5 Software....................................... ………………………………..................... 31

 2

 1 Introduction

 Common guitar pedals (built with analog components) are generally very

 expensive - usually upwards of $60 - and only offer one audio effect per pedal.

 The cost of having a diverse variety of options to alter guitar tone quickly adds

 up with the more effects desired. Furthermore, these pedals are all activated

 with their own buttons by foot. In a situation where many effects are required, a

 large amount of pedals on a board can become clumsy and difficult to navigate

 around.

 Our solution to these inconveniences is the creation of a “pedal” that

 effectively emulates common guitar effects digitally. With our design, many

 effects can be uploaded to just one “pedal" with a single interface. Not only does

 this save money, but also space. Easy storage and transportation make the use

 of our product a very user-friendly experience along with its control interface

 being Wi-Fi connection to a cell phone or any internet accessible device.

 Additionally, a suction cup clamp which holds the user’s phone to the front of the

 guitar allows the player to have control of the effects lineup at their fingertips as

 well as giving mobility to the effects board.

 Achieving the desired functionality of our digital guitar effects system

 required the use of the ESP32 WROOM 32-E microcontroller along with the

 WM8960 audio codec to provide the necessary ADC/DAC conversion of the

 audio signal and the digital signal processing that was needed to apply the

 effects that are typically provided by physical guitar pedals. The I2S

 3

 communication protocol was used to transmit the audio data captured from the

 input between the ADC and the DAC. Utilizing the I2S communication protocol

 provided the ability to manipulate the audio data using various methods to

 achieve effects such as distortion, tremolo, fuzz, and an 8-bit effect. The board

 was developed for a 5V power supply using a USB-C connector and a 3.3V

 voltage regulator to supply voltage to the microcontroller and the audio codec. A

 website interface was developed with sliders that could change the respective

 intensity factors for each of the effects through Wi-Fi communication with the

 ESP-32 microcontroller.

 The design met the expectations that were established for the project. The

 digital effects were successfully developed and controlled using the digital

 sliders on the website interface. If connected to the corresponding Wi-Fi

 network, users are able to connect to the website on their phone and control the

 digital effects with the sliders on their phone as they play the guitar. There was

 little to no latency when changing between different effects, and effects like

 tremolo and distortion could be utilized simultaneously as the user played.

 Some aspects of the project that could be improved is the latency with the

 audio signal at the output. It was noticed that at times when the user played,

 there was delay in the time that the audio signal was processed and was heard

 at the output. This presented itself as one of the central issues of the project

 because the audio that was being played by the user and the audio at the output

 was asynchronous. This issue could be resolved by optimizing the size of the

 audio buffer to reduce the amount of processing time needed by the

 4

 microcontroller. The project would have also benefited from the use of a volume

 slider which could provide the user with more control over the amplitude of the

 audio signal at the output instead of having to adjust it directly on the amplifier.

 2 System Requirements

 The ESP32-WROOM-32E microcontroller was chosen due to it

 possessing the necessary processing capabilities for digital signal processing of

 the audio samples. It was also chosen because of the Wi-Fi communication

 capabilities it provides for the website interface.

 The circuit board that was designed needed to receive 5V via USB-C and

 then through a voltage regulator provide 3.3V to the microcontroller and the

 audio codec. The circuit board also needed to include the necessary pull-up

 resistors for the I2C communication between the microcontroller and the audio

 codec. Online libraries developed for the ESP32 and the audio codec were

 utilized to enable the ADC/DAC for the left and right audio channels, and

 establish the I2S communication between the ADC and DAC where an audio

 buffer was utilized to transmit the signal.

 The circuit board that was designed for this project required a 3-D printed

 housing which contained space for the board itself and for the two ¼” stereo

 audio jacks that were used for the audio input coming from the guitar and the

 audio output going to the amplifier. The circuit board housing must also have a

 5

 designated space for the USB-C connector that supplies 5V from the wall outlet

 to the board.

 A website interface was required to control the digital effects as the user

 played the guitar. The website interface was developed using ESP32 libraries for

 the web server and HTML was utilized to create the web page of the interface.

 HTML was also used to create the sliders which were used to control the digital

 effects.

 A mount was placed on the body of the guitar to provide functionality for

 remote controlling of the digital effects using a cell phone. The cell phone

 connects to the corresponding Wi-Fi network that is associated with the web

 server which can then be utilized to control the effects remotely.

 3 Detailed Project Description

 3.1 System theory of operation

 Our solution utilizes the digital signal processing capabilities of the ESP32

 to emulate various guitar pedal effects, specifically distortion, fuzz, tremolo, and

 our experimental effect to recreate the sounds heard in 8-bit video games. We

 route the guitar signal first through a WM8960 codec chip, which includes an

 analog-to-digital converter as well as a digital-to-analog converter. On the input

 side, it makes use of the former. After quantization and digitization, the digital

 signal is passed through the ESP32 chip using I2S communication and the digital

 6

 audio signal is modified to achieve the desired effect. After the altered signal is

 processed, it is written back to the codec and converted back to an analog signal

 using the digital-to-analog converter. The resulting audio signal will be passed

 through a quarter inch TS guitar cable to a standard guitar amplifier that will

 output the new signal in real time (but with a small, limited amount of latency due

 to processing time). Our way of eliminating analog pedal circuits and using a

 single small processing board in a compact housing and developing an interface

 that can be used to adjust certain parameters such as gain and volume makes

 the device more convenient for the user.

 3.2 System Block diagram

 7

 3.3 Detailed Design/Operation of Pedal Effect System

 Our board choice is the SparkFun IoT Redboard that runs an Espressif

 ESP32-WROOM-32E. One reason for choosing this model is because of its wifi

 capabilities. Developing a website interface with sliders was a requirement for the

 project, and choosing a microcontroller capable of Wi-Fi communication was

 necessary. Another reason was because this board was designed for audio

 signal processing. The IoT Redboard is able to do a variety of tasks including

 CPU and on chip memory, bluetooth capabilities, I2C communication, Qwiic

 connection to our codec breakout board and MP3 decoding. This system

 provided more features than we knew we would need for our project. If we

 needed to adapt to a new approach, then this development board would have

 allowed us to do that.

 The ESP32-WROOM-32E is a powerful chip that is perfect for our project.

 This offers dual-core processing that is able to run from 80 to 240 MHz, allowing

 8

 for real-time audio processing. The chip is also fairly inexpensive and widely

 available which was an important factor in developing our product because we

 want to make a cheap and accessible device. The microcontroller is

 energy-efficient as well, consuming low power to make it suitable for either a

 battery or wall adapter power system. This allowed us to have choices in what

 we wanted to do for our powering scheme. We also needed the device to be

 easily programmed with the Arduino IDE in Python or C which gave us more

 freedom in our choices for development.

 We decided to go with powering our device through a wall adapter,

 requiring 6 volts maximum at the input. The board uses a USB-C connector for

 power. This can also be easily replaced with a battery pack that outputs to a

 USB-C if the user wants to take the device somewhere there are no places to

 plug the board into the wall and still supply the required voltage rating. The board

 uses a low dropout voltage regulator (LDO) to balance the input voltage to the

 required 3.3 volts for the ESP32-WROOM-32E chip. The specific regulator is the

 AP2112K-3.3TRG1. This device uses a voltage reference and error amplifier that

 compares the output voltage to the reference voltage, then it adjusts the

 resistance of a pass resistor to maintain a stable output voltage. It is a linear

 voltage regulator that dissipates the excess energy as heat, which is less efficient

 than switching regulators. It is still good because it is simple and less noisy which

 is important for an audio processing device.

 The circuit includes a 40 MHz crystal oscillator that is important for the

 function of the chip. The crystal serves as an external clock source for the ESP32

 9

 microcontroller. It generates a stable frequency as a precise clock signal. This in

 turn is used to synchronize the timing of operations done inside the chip to

 operate reliably and provide stability. The ESP32 has an internal RC oscillator

 that can also be used as a clock source. However, this RC oscillator is not as

 accurate as the external crystal oscillator. Both the crystal and voltage regulator

 are connected to decoupling capacitors. Specifically, the regulator has these

 capacitors connected to its 3.3 V pin which is also supplied to the crystal

 oscillator. There is little room for error when handling audio signals due to the

 immediate requirements of the system; any mistiming can cause the audio signal

 to not sound pleasant.

 The integrated circuit on the PCB is essential to the functioning of the

 serial monitor. The IC allows us to see this serial monitor and the Arduino IDE by

 converting the signal coming from the USB. This signal is converted into a serial

 signal. Because of this, we are able to see values being updated from the

 website interface and also see the IP of the website so that it can be accessed.

 Without the IC we would not be able to use the serial monitor to retrieve that

 information.

 The system all starts with the guitar input signal at the top-left of the

 schematic. Our signal is passed into a quarter inch TRS audio jack that is

 soldered to the through holes under the “AUDIO_IN” text on the board. Attached

 to the through holes for the TRS jack are two sets of resistors and capacitors at

 each of the left and right audio input channels of the WM8960. We used 47

 nanofarad capacitors and 100 ohm resistors. These values were specifically

 10

 chosen to function as a low pass filter, allowing only the frequencies below the

 chosen cut-off frequency to be passed into the circuit. The value for the cut-off

 frequency can be calculated using the formula:

 ƒ = 1 / (2π 𝑅𝐶)

 Our desired cut-off frequency was chosen to be 33.8 KHz. This filter

 allows us to attenuate any high frequency noise from the output of the TRS jack

 to the input of the analog to digital converter.

 This analog signal then gets passed to the Sparkfun Audio Codec

 Breakout WM8960. The WM8960 is a low power stereo audio codec. This

 versatile device includes preamplifiers for our line inputs, speaker driver,

 equalization for frequency manipulation, and dynamic range control. We use this

 codec to convert our analog signal to a digital signal as well as using its

 programmable gain amplifier (PGA) to create the distortion effect. Series

 resistors are used to stabilize the digital signal and prevent any reflections from

 happening. These reflections could cause the digital signal to be misrepresented

 and create issues at the output.

 This board is ideal for handling a variety of audio signals. It supports I2S

 communication, which is what we chose for this specific project. I2S is beneficial

 over other formats like SPI and UART because it is designed specifically for

 transferring audio data. SPI and UART may not provide the same level of

 reliability as I2S. I2S is also supported by a lot of microcontrollers which is

 important in the rare case that vital hardware in our system becomes obsolete.

 11

 I2S uses separate clock and data lines that are advantageous for reducing timing

 errors and ensuring an accurate transfer of data. We needed our data to be

 transferred as clean as possible to make sure we get high quality sound with low

 latency.

 This digital post-codec signal is passed into the ESP32. Inside the chip we

 use digital signal processing to achieve our effects. We have four different

 possible effects the user can experiment with. Depending on what is done in the

 user interface an effect will be produced by the chip. This new signal is relayed

 back to the WM8960. At this stage, the codec translates the altered audio signal

 from digital back to an analog signal. This analog signal is relayed to the output

 quarter inch TRS audio jack where it is picked up by a guitar cable and

 transmitted to an external amplifier.

 12

 3.4 Detailed Design/Operation of Website Interface

 Interfaces

 Our second subsystem involves a web interface that can be accessed by

 the user through a phone, tablet, computer or any other device capable of

 connecting to the internet. Upon uploading the program to the ESP32, the serial

 monitor will print an IP address that can be pasted into a web browser. The

 above interface will appear with four sliders. Each slider corresponds to the

 intensity of one effect and can be adjusted to the desire of the user. Values range

 from 0-10 for distortion, fuzz, and tremolo. The 8-bit guitar effect only has values

 0 and 1 signifying on or off. 8-Bit will not work with the other effects, so they will

 be disabled when the user turns the 8-bit effect on. This is reflected in real time

 with the slider values displayed on the web interface. Fuzz and distortion work in

 the same way that when one is turned on, the other will automatically turn off.

 Tremolo is able to function with the fuzz or distortion effects simultaneously.

 13

 This web interface is controlled by HTML for content and structure, CSS

 for styling, and JavaScript for dynamic features like the interaction and animation

 of the sliders. Upon uploading the code, the sliders are initialized and set to zero

 so that all the effects are disabled by default. There are update functions that use

 XMLHttpRequest to send GET requests to the server to retrieve data from the

 webpage, reading the current value of the sliders as controlled by the

 outward-facing web interface. This value is read by the code as a string and

 converted to an integer so that it can be used in our functions as a determinant of

 the intensity of the effect being outputted. We want to give the user as much

 control as possible, since there are many different styles of playing guitar. This is

 the main reason we chose not to use buttons on the web interface. The buttons

 would give little to no control of the levels at the output. The website sliders

 provide greater control of the gain for distortion, oscillations for tremolo, or wet

 mix for fuzz.

 Our interface was chosen to be a web page for a variety of reasons. One

 major deciding factor was being untraditional. In an increasingly growing world of

 technology it is important to stay up to date and try new methods of achieving the

 same goal. It would have been easy to be like the rest and have a physical pedal

 which is beneficial for obvious reasons, but having the control at your fingertips

 also has its advantages. For one, if the user is impaired or handicapped then

 they may not be able to actually use a step pedal to turn their effects on. They

 could possibly press it down with their hands but this can be difficult when in the

 midst of playing a song. Another advantage is if the guitar player wants their

 14

 sound engineer to control the output of effects. This way they would not have to

 worry at all about which pedal they have to step on next. The interface would be

 great in this manner, making sure that the guitar player can focus on playing as

 opposed to messing around with a heap of pedals. The web page also allows us

 to condense our effects on one screen. The burden of having ten pedals to carry

 around, each with its own sound effects can be a hassle. Even if the effects were

 condensed into one housing device with knobs and buttons, the user would have

 to strategically place the housing device within close reach while dealing with

 cables that could become twisted. With our design, all that is required is the

 housing containing our board, which does not need to stay right next to the user,

 and the user’s phone, which is likely already on them at all times.

 15

 3.5 Effects Theory

 3.5.1: Distortion

 Figure 3.5.1(a): Clean Input (Sine Wave)

 Figure 3.5.1(b): Distortion Output (Level 7)

 16

 Figure 3.5.1(c): Distortion Output (Level 10)

 Pictured above are oscilloscope traces of a demonstration test of our

 system. Figure 3.5.1(a) shows the trace of a 400 Hz sine wave applied to the

 input in all tests (distortion as well as following effect tests) and Figure 3.5.1(a)

 and Figure 3.5.1(b) show the output of the pedal with distortion turned to levels 7

 and 10, respectively. Our distortion functions essentially as traditional overdrive

 distortion, which essentially creates a grittier sound, but still preserves a tone

 similar to the original. This is accomplished by amplifying the strength of the

 signal by the user-controlled amount of gain and clipping the output amplitude at

 a value slightly higher than the max amplitude of the input signal. Clipping slightly

 higher than the input amplitude allows a greater variety of distortion as for the

 lower input values, the signal begins to clip but doesn’t hard clip as shown in the

 scope traces. Having the clipping level like this does however come at the cost of

 an increase in volume when distortion is in use. While this does not affect tone, it

 17

 does require user attention to volume knobs if they wish to hold at a steady

 sound level.

 3.5.2: Fuzz

 Figure 3.5.2: Fuzz Output

 For our fuzz effect, we went about level adjustment slightly differently than

 the conventional method of varying the amount of distortion. The output audio

 signal is a mix between the ‘wet’ and ‘dry’ signals. Increasing the slider value to

 ten would essentially be listening to a 100% distorted signal, matching the

 unevenly-clipped trace shown above. This mix made obtaining a snapshot of the

 modified waveform difficult to capture as the fuzz slider had to be maxed out to

 find a single wave. In this case, the clean signal is still getting passed through to

 the output, but the ‘wet’ signal basically overwhelms the clean. The lower the

 value for the fuzz slider, the more of the clean signal will pass through to the

 18

 audio output. The benefit of this effect compared to distortion is that the distorted

 signal is not achieved through applying gain using PGA from the codec breakout

 WM8960. The audio is more of a harmonic shift from a clean tone and is useful

 for applying a unique buzzing sound, without losing original intonation, compared

 to a bold kind of distortion.

 This effect was achieved using a series of floating point numbers passed

 as an array to the fuzz function. The function takes three arguments: a pointer to

 the array containing the audio samples, an integer that indicates the number of

 bytes in the array containing the samples, and another integer that represents

 the gain factor. First, the gain factor is established by setting it equal to the value

 passed in as an argument. Then the number of samples in the original array is

 calculated by dividing the number of samples by the size of each sample. The

 function then loops through each sample using a for loop. Within the loop, the

 original sample is multiplied by the gain factor to introduce distortion. The

 distorted signal is then added to the original signal, and then the original signal

 again. This is to ensure that the clean sound can still be heard. Distorted signals

 can easily override the original, so we wanted to really emphasize the original as

 the priority. This also contributes to boosting harmonic content through

 constructive interference. The loop will continue until all of the samples in the

 original array have been processed. When completed, the data can be used for

 output or further processing with tremolo.

 19

 3.5.3: Tremolo

 Figure 3.5.3: Tremolo Output

 The oscilloscope image above shows, in a still shot, oscillation in the

 amplitude of the output signal. Unlike the two types of distortion our system

 creates, the tremolo effect does not change the tone of the signal; rather, it adds

 a variable low-frequency oscillation of the presence of sound output from the

 system. So for this effect, other than the strength of the signal, this effect does

 not impact the shape of the wave.

 This was accomplished in code by utilizing a built-in codec function that

 controls the chip volume and incrementing up and down with iterations of the

 main loop. This iteration bounced back and forth continuously and gradually

 between the original signal strength and roughly -18 dB quieter, giving a pulsing

 feeling to the audio. The slider on the interface that controls this effect varies

 from 0 to 10 in 0.5 unit increments which represent speeds at which the sound

 20

 volume is oscillated. The lowest “on” setting of 0.5 creates an oscillation period of

 about 1.67 seconds and an input value of 10 creates one of about 0.084

 seconds.

 3.5.4: 8-Bit

 The 8-Bit audio effect was an experimental sound that was unique and

 offered an alternative type of guitar playing for the user. We were inspired to

 create such an effect from old school video games. The grainy visuals of games

 like Tetris, Super Mario Brothers, and Space Invaders were only made more

 memorable with their upbeat and memorable music. The effect was achieved by

 adding some clipping through gain, similar to the fuzz effect. We then wrote the

 audio signal using a smaller buffer length. This shortening of the buffer length

 allowed us to effectively reduce the bit resolution of the audio signal and output

 sounds to emulate the theme songs from these iconic games.

 These four effects serve as just a starting point to what can be

 accomplished. With improvements to communication between devices and

 optimization of our memory usage, we can add many more effects. The main

 goal of this project was to get at least three effects and we were able to achieve

 four. The limitations of our system would require us to use more memory than we

 were able to use. Passing the signal between an SD card and the microcontroller

 caused too much delay, to where the signal became hard to play along with and

 keep a constant train of thought. We were able to improve our performance by

 limiting the delay at the output through keeping the buffer lengths as small as

 21

 possible to limit the number of calculations being performed for each iteration of

 a loop. This project was all about finding this balance to give the user the most

 enjoyable experience possible.

 4 System Integration Testing

 To ensure that all subsystems were integrated successfully, we tested the

 elements of each subsystem separately throughout the course of the project

 before eventually combining elements into their functioning subsystems and then

 one complete system.

 4.1 Subsystem 1 - Audio Effects

 To begin, we attempted audio passthrough using I2S communication

 between the IoT Redboard and the audio codec. We needed to confirm that the

 audio signal could pass cleanly through the AD/DA conversions in our setup, and

 that a clear signal could be heard through the amplifier from a music source.

 After audio passthrough was a success, we tackled each effect

 individually. We tested each effect in the main loop first to check if it was

 producing the desired sound. Use of an oscilloscope as described in the previous

 section was also essential in this step to troubleshoot and tweak our

 programming to match the effects we were looking for. We then tested the ability

 to turn the effects on and off programmatically by calling a function that handled

 22

 the effect outside of the main loop. Next, we tested the ability to vary effect

 intensity by hardcoding a change in parameters.

 After the successful execution of each audio effect, we collected the code

 for all the working effects and checked that we could call multiple effects within

 one script. This tested whether or not we could observe the same effect at the

 output that we heard when testing each effect individually.

 4.2 Subsystem 2 - Web Interface

 For the web interface, we first tested the visual display to ensure that it

 looked and functioned properly. We wanted to make sure that we could

 successfully communicate with the ESP32 to display the name of the effect, an

 interactable slider, and the slider’s value for each of our guitar effects.

 4.3 Integrating Subsystems

 Once both subsystems were individually tested and functioning properly,

 we integrated them to ensure that they worked together as expected. After the

 web interface looked and behaved as expected, we tested the ability to

 programmatically read the current slider values from the web interface so that we

 could access the effect intensities that the user chose. We then incorporated the

 read slider values into the functions controlling each audio effect, adjusting the

 appropriate parameters to reflect the effect intensity selected. This tested our

 ability to control the audio effects through the web interface.

 23

 Finally, we verified that we could also control the slider values from the

 script, and observe that the web interface display updated properly to reflect

 these changes in value. This tested our ability to control the web interface from

 the script, which was essential for cases where our effects could not be applied

 simultaneously, and one effect had to be disabled if another effect was enabled

 by the user.

 5 To-Market Design Changes

 5.1 Latency

 Reducing the latency between the input and output signals is critical before

 taking our product to market. This latency, when significant, can be noticeable to

 the user. Consequently, it can be distracting to the guitarist and inhibit their

 enjoyment of the experience. Before bringing our digital guitar effects pedal to

 market, we would need to reduce this latency until it is imperceptible to the user.

 To achieve this, we can search for ways to optimize the code by exploring the

 following: a decrease in the sampling rate, a reduction of the number of

 calculations performed when applying an effect, and a shorter buffer length that

 does not compromise the quality of the output signal. Another option is to use a

 faster processor that can handle more calculations in less time. This may include

 leveraging the capabilities of a dual-core processor, or even using a dedicated

 DSP chip.

 24

 5.2 WiFi Network Selection

 Another challenge of our present design is that the WiFi network is hard-coded

 into the backend of the product. In order to sell our product commercially, the

 user must be able to choose the WiFi network from the frontend so that they are

 able to access the webpage with the sliders controlling the intensity of the

 effects. One solution could be to add a small OLED or LCD display that can

 display a list of available wifi networks. The user could then use a button or

 series of buttons to navigate the list and select the desired network. The

 electrical components required for this approach are inexpensive, so we could

 continue to keep the cost of our project low. Another approach is to allow the

 device to create its own WiFi hotspot, which the user can connect to from their

 smartphone or computer. Once connected, the user could access a configuration

 page through a web browser to enter the WiFi network credentials.

 5.3 Housing Device

 In addition to these challenges, the housing device would need to be adapted so

 that it possesses off-the-shelf production quality. The enclosure should be sturdy

 and simple to use, with clear labeling of inputs and outputs, as well as intuitive

 controls. The housing design should be compact and durable so that the user

 can easily transport our product without hassle or damage.

 25

 5.4 Web Interface on Mobile Devices

 Finally, before selling our product commercially, we would need to update the

 web interface so that the layout is designed for a mobile device. That is, the size

 of the sliders and their corresponding labels should be reduced so that all four

 sliders of our current design could fit onto one page of a mobile screen, thus

 eliminating the need for the user to scroll to change a specific effect at the

 bottom. For an even more streamlined experience, this web interface could be

 adapted into a mobile app, allowing us to streamline the process of launching the

 effects slider interface, and to continuously update our product with additional

 effects for the user over time.

 6 Users Manual/Installation manual

 6.1 Setup/Installation

 In order to use our product, the user needs their own guitar, two standard

 guitar cables (1/4"), an amplifier, a guitar phone mount, and a USB-C connector

 (all sold separately). To begin, they can use the USB-C connector to connect to

 power. An LED will indicate if the device is successfully powered. Then, the user

 can connect one of the standard guitar cables from their guitar to the “audio in”

 port of our device. The second standard guitar cable then connects from the

 “audio out” port of our device to the input port of the user’s amplifier. These

 26

 connections are necessary to apply the desired effects to the guitar’s audio

 output and play the edited signal through the amp.

 To continue setting up their guitar effects “pedal,” the user must connect

 the device to a WiFi network. If the final product design ultimately provides its

 own hotspot, the user can use their phone to search for the corresponding

 “Guitar Effects Pedal” network and connect to it. Alternatively, if the market

 product includes a display on the physical device itself, the user can navigate to

 their desired network using the buttons or touchscreen provided. Another LED

 can indicate if the device is successfully connected to WiFi. The most important

 step is to ensure that our guitar effects “pedal” and the user’s phone are

 connected to the same WiFi network in order to communicate with each other. 1

 Once connected, the user can open their browser of choice and navigate

 to the IP address of the device. This can be found on the device itself in the case

 of providing its own hotspot, or by logging into the WiFi’s router if using another

 network. If connected successfully, the sliders for each guitar effect will display

 on the phone screen of the user. The user can then use the web browser to

 control the application and the intensity of each effect. The only thing left to do is

 to place their phone into a guitar phone mount, and to jam out to their heart’s

 desire.

 1 If using our device in its present state on Notre Dame’s campus, the user must connect their
 phone to the SDNet network and enter the password “CapstoneProject”.

 27

 6.2 Troubleshooting

 In the event that the user is not hearing the anticipated effect applied at

 the output, the first step is to check all cable connections. If the LED indicating

 power is not illuminated, the USB-C connector may not be connected properly, or

 the USC-C cord or power source might be faulty. If the LED indicating power is

 illuminated, check that the guitar cables are connected securely to the guitar and

 to the amp, and check that the volume of the amplifier is up. Specifically for the

 distortion effect, if minimal distortion is noticed even when the slider is set to 10,

 make sure that the output volume knob on the guitar itself is turned to max - this

 may be necessary to ensure that signal is strong enough to experience clipping

 when processed.

 If the user must continue troubleshooting, ensure that our product and the

 user’s phone are connected to the same WiFi network, and check the strength of

 the WiFi signal. If the WiFi connection is weak, the devices may not

 communicate successfully.

 If none of these steps resolve the problem, try turning the device off and

 back on, and refresh the webpage.

 28

 7 Conclusions

 The digital guitar effects system conceived in this project is a unique,

 cost-effective solution that integrates multiple effects into a single system.

 Single-effect pedals can quickly create a mess of a floorspace when used in

 performance or practice and require a hardware purchase when a new effect is

 wanted. Our effort to solve these problems with a single digital pedal can offer

 musicians of all skill levels and budgets an alternative option to ease their

 physical and/or financial hassles. While our project is only a sample of the

 capabilities of this technological application, it offers an insight into the

 possibilities of a cheaper, more versatile alternative to traditional effects pedals.

 Currently our system offers 4 effects, all performing signal alteration in the time

 domain. Future updates to this device would likely include a more expansive

 lineup of effects available for download, including those performing signal

 processing in the frequency domain to greatly expand capabilities. Additionally, a

 more powerful chip would likely be required to execute more complex

 computations at a fast enough rate, as even with the effects we created this was

 an issue. The chip and software, in addition to upgrades to the housing as well

 as interface connection would produce a product ready to market.

 29

 8 Appendices

 8.1 Schematic Design

 8.2 Board Design

 30

 8.3 CAD Design

 Board Housing

 8.4 Major Hardware Components

 PART NAME DATASHEET LINK

 SparkFun IoT RedBoard -

 ESP32 Development Board

 https://cdn.sparkfun.com/assets/4/3/1/7/6/esp32-wroom-32e

 _esp32-wroom-32ue_datasheet_en_v1-6.pdf

 (ESP32-D0WD-V3 chip)

 Audio Codec Breakout -

 WM8960

 https://cdn.sparkfun.com/assets/a/3/a/7/4/WM8960_datashe

 et_v4.2.pdf

 31

https://cdn.sparkfun.com/assets/4/3/1/7/6/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en_v1-6.pdf
https://cdn.sparkfun.com/assets/4/3/1/7/6/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en_v1-6.pdf
https://cdn.sparkfun.com/assets/a/3/a/7/4/WM8960_datasheet_v4.2.pdf
https://cdn.sparkfun.com/assets/a/3/a/7/4/WM8960_datasheet_v4.2.pdf

 8.5 Software

 #include <Wire.h>

 #include <SparkFun_WM8960_Arduino_Library.h>

 #include <algorithm>

 #include <WiFi.h>

 #include <AsyncTCP.h>

 #include <ESPAsyncWebServer.h>

 #include <iostream>

 #include <string>

 WM8960 codec ;

 // Include I2S driver

 #include <driver/i2s.h>

 // Connections to I2S

 #define I2S_WS 25

 #define I2S_SD 17

 #define I2S_SDO 4

 #define I2S_SCK 16

 // Use I2S Processor 0

 #define I2S_PORT I2S_NUM_0

 // Define input buffer length

 32

 #define bufferLen 512

 int16_t sBuffer [bufferLen];

 // Define Sample Rate

 #define SAMPLERATE 44100

 // WiFi login credentials

 const char * ssid = "SDNet" ;

 const char * password = "CapstoneProject" ;

 // Variables to read the slider values from the web interface

 String distortionValue = "0" ;

 String tremoloValue = "0" ;

 String fuzzValue = "0" ;

 String eightBitValue = "0" ;

 const char * PARAM_INPUT = "value" ;

 // Create AsyncWebServer object on port 80

 AsyncWebServer server (80);

 // Create the visual display of the webpage

 const char index_html [] PROGMEM = R"rawliteral(

 <!DOCTYPE html>

 33

 <head>

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Guitar Effects</title>

 <style>

 html {font-family: Arial; display: inline-block; text-align: center;}

 h2 {font-size: 2.3rem;}

 p {font-size: 1.9rem;}

 body {max-width: 400px; margin:0px auto; padding-bottom: 25px;}

 .slider { -webkit-appearance: none; margin: 14px; width: 360px;

 height: 25px; background: #2196F3;

 outline: none; -webkit-transition: .2s; transition: opacity .2s;}

 .slider::-webkit-slider-thumb {-webkit-appearance: none; appearance:

 none; width: 35px; height: 35px; background: #003249; cursor: pointer;}

 .slider::-moz-range-thumb { width: 35px; height: 35px; background:

 #003249; cursor: pointer; }

 .slider-container { display: flex; align-items: center; };

 .slider-value { display: inline; margin-left: 10px; };

 </style>

 </head>

 <body>

 <h2>Distortion</h2>

 <div class="slider-container">

 <label for="distortion-slider"></label>

 34

 <p><input type="range" onchange="updateDistortionSlider(this)"

 id="distortion-slider" min="0" max="10" value="%DISTORTIONVALUE%" step="1"

 class="slider"></p>

 <p>%DISTORTIONVALUE%</p>

 </div>

 <h2>Tremolo</h2>

 <div class="slider-container">

 <label for="tremolo-slider"></label>

 <p><input type="range" onchange="updateTremoloSlider(this)"

 id="tremolo-slider" min="0" max="10" value="%TREMOLOVALUE%" step="0.5"

 class="slider"></p>

 <p>%TREMOLOVALUE%</p>

 </div>

 <h2>Fuzz</h2>

 <div class="slider-container">

 <label for="fuzz-slider"></label>

 <p><input type="range" onchange="updateFuzzSlider(this)"

 id="fuzz-slider" min="0" max="10" value="%FUZZVALUE%" step="1"

 class="slider"></p>

 <p>%FUZZVALUE%</p>

 </div>

 <h2>8-Bit</h2>

 <div class="slider-container">

 35

 <label for="eightBit-slider"></label>

 <p><input type="range" onchange="updateEightBitSlider(this)"

 id="eightBit-slider" min="0" max="1" value="%EIGHTBITVALUE%" step="1"

 class="slider"></p>

 <p>%EIGHTBITVALUE%</p>

 </div>

 <script>

 function updateDistortionSlider(element) {

 var distortionValue =

 document.getElementById("distortion-slider").value;

 var fuzzValue = document.getElementById("fuzz-slider").value;

 var eightBitValue =

 document.getElementById("eightBit-slider").value;

 if (fuzzValue != 0) {

 document.getElementById("fuzz-slider").value = 0;

 document.getElementById("textFuzzValue").innerHTML = 0;

 fuzzValue = 0;

 console.log(fuzzValue);

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/fuzz-slider?value=" + fuzzValue, true);

 xhr.send();

 }

 if (eightBitValue != 0) {

 36

 document.getElementById("eightBit-slider").value = 0;

 document.getElementById("textEightBitValue").innerHTML = 0;

 eightBitValue = 0;

 console.log(eightBitValue);

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/eightBit-slider?value=" + eightBitValue, true);

 xhr.send();

 }

 document.getElementById("textDistortionValue").innerHTML =

 distortionValue;

 console.log(distortionValue);

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/distortion-slider?value=" + distortionValue,

 true);

 xhr.send();

 }

 function updateTremoloSlider(element) {

 var tremoloValue = document.getElementById("tremolo-slider").value;

 var eightBitValue =

 document.getElementById("eightBit-slider").value;

 if (eightBitValue != 0) {

 document.getElementById("eightBit-slider").value = 0;

 document.getElementById("textEightBitValue").innerHTML = 0;

 eightBitValue = 0;

 console.log(eightBitValue);

 37

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/eightBit-slider?value=" + eightBitValue, true);

 xhr.send();

 }

 document.getElementById("textTremoloValue").innerHTML =

 tremoloValue;

 console.log(tremoloValue);

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/tremolo-slider?value=" + tremoloValue, true);

 xhr.send();

 }

 function updateFuzzSlider(element) {

 var fuzzValue = document.getElementById("fuzz-slider").value;

 var distortionValue =

 document.getElementById("distortion-slider").value;

 var eightBitValue =

 document.getElementById("eightBit-slider").value;

 if (distortionValue != 0) {

 document.getElementById("distortion-slider").value = 0;

 document.getElementById("textDistortionValue").innerHTML = 0;

 distortionValue = 0;

 console.log(distortionValue);

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/distortion-slider?value=" + distortionValue,

 true);

 38

 xhr.send();

 }

 if (eightBitValue != 0) {

 document.getElementById("eightBit-slider").value = 0;

 document.getElementById("textEightBitValue").innerHTML = 0;

 eightBitValue = 0;

 console.log(eightBitValue);

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/eightBit-slider?value=" + eightBitValue, true);

 xhr.send();

 }

 document.getElementById("textFuzzValue").innerHTML = fuzzValue;

 console.log(fuzzValue);

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/fuzz-slider?value=" + fuzzValue, true);

 xhr.send();

 }

 function updateEightBitSlider(element) {

 var eightBitValue =

 document.getElementById("eightBit-slider").value;

 var distortionValue =

 document.getElementById("distortion-slider").value;

 var tremoloValue = document.getElementById("tremolo-slider").value;

 var fuzzValue = document.getElementById("fuzz-slider").value;

 if (distortionValue != 0) {

 39

 document.getElementById("distortion-slider").value = 0;

 document.getElementById("textDistortionValue").innerHTML = 0;

 distortionValue = 0;

 console.log(distortionValue);

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/distortion-slider?value=" + distortionValue,

 true);

 xhr.send();

 }

 if (tremoloValue != 0) {

 document.getElementById("tremolo-slider").value = 0;

 document.getElementById("textTremoloValue").innerHTML = 0;

 tremoloValue = 0;

 console.log(tremoloValue);

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/tremolo-slider?value=" + tremoloValue, true);

 xhr.send();

 }

 if (fuzzValue != 0) {

 document.getElementById("fuzz-slider").value = 0;

 document.getElementById("textFuzzValue").innerHTML = 0;

 fuzzValue = 0;

 console.log(fuzzValue);

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/fuzz-slider?value=" + fuzzValue, true);

 40

 xhr.send();

 }

 document.getElementById("textEightBitValue").innerHTML =

 eightBitValue;

 console.log(eightBitValue);

 var xhr = new XMLHttpRequest();

 xhr.open("GET", "/eightBit-slider?value=" + eightBitValue, true);

 xhr.send();

 }

 </script>

 </body>

 </html>

)rawliteral" ;

 // Replaces placeholder with button section in your web page

 String processor (const String & var){

 if (var == "DISTORTIONVALUE"){

 return distortionValue ;

 }

 41

 if (var == "TREMOLOVALUE"){

 return tremoloValue ;

 }

 if (var == "FUZZVALUE"){

 return fuzzValue ;

 }

 if (var == "EIGHTBITVALUE"){

 return eightBitValue ;

 }

 return String ();

 } // ends String processor()

 // All the code for the web interface setup and functionality, called in

 setup()

 void web_interface_setup ()

 {

 // Connect to Wi-Fi

 WiFi . begin (ssid , password);

 while (WiFi . status () != WL_CONNECTED) {

 delay (1000);

 Serial . println ("Connecting to WiFi..");

 }

 42

 // Print ESP Local IP Address

 Serial . println (WiFi . localIP ());

 // Route for root / web page

 server . on ("/" , HTTP_GET , [](AsyncWebServerRequest * request){

 request -> send_P (200 , "text/html" , index_html , processor);

 });

 server . on ("/distortion-slider" , HTTP_GET , [] (AsyncWebServerRequest

 * request) {

 String inputMessage ;

 // GET input1 value on <ESP_IP>/slider?value=<inputMessage>

 if (request -> hasParam (PARAM_INPUT)) {

 inputMessage = request -> getParam (PARAM_INPUT)-> value ();

 distortionValue = inputMessage ;

 }

 else {

 inputMessage = "No message sent" ;

 }

 Serial . println ("Distortion Value: " + inputMessage);

 request -> send (200 , "text/plain" , "OK");

 });

 // Send a GET request to <ESP_IP>/slider?value=<inputMessage>

 server . on ("/tremolo-slider" , HTTP_GET , [] (AsyncWebServerRequest

 * request) {

 43

 String inputMessage ;

 // GET input1 value on <ESP_IP>/slider?value=<inputMessage>

 if (request -> hasParam (PARAM_INPUT)) {

 inputMessage = request -> getParam (PARAM_INPUT)-> value ();

 tremoloValue = inputMessage ;

 }

 else {

 inputMessage = "No message sent" ;

 }

 Serial . println ("Tremolo Value: " + inputMessage);

 request -> send (200 , "text/plain" , "OK");

 });

 server . on ("/fuzz-slider" , HTTP_GET , [] (AsyncWebServerRequest * request)

 {

 String inputMessage ;

 // GET input1 value on <ESP_IP>/slider?value=<inputMessage>

 if (request -> hasParam (PARAM_INPUT)) {

 inputMessage = request -> getParam (PARAM_INPUT)-> value ();

 fuzzValue = inputMessage ;

 }

 else {

 inputMessage = "No message sent" ;

 }

 Serial . println ("Fuzz Value: " + inputMessage);

 request -> send (200 , "text/plain" , "OK");

 44

 });

 server . on ("/eightBit-slider" , HTTP_GET , [] (AsyncWebServerRequest

 * request) {

 String inputMessage ;

 // GET input1 value on <ESP_IP>/slider?value=<inputMessage>

 if (request -> hasParam (PARAM_INPUT)) {

 inputMessage = request -> getParam (PARAM_INPUT)-> value ();

 eightBitValue = inputMessage ;

 }

 else {

 inputMessage = "No message sent" ;

 }

 Serial . println ("8-Bit Value: " + inputMessage);

 request -> send (200 , "text/plain" , "OK");

 });

 // Start server

 server . begin ();

 } // ends web_interface_setup()

 int disValInt = distortionValue . toInt ();

 // Code for setting up the codec, called in setup()

 void codec_setup ()

 45

 {

 // General setup needed

 //int* reg_address = WM8960_REG_AUDIO_INTERFACE_2

 //*reg_address = 0b0010000;

 codec . enableVREF ();

 codec . enableVMID ();

 // Setup signal flow to the ADC

 codec . enableLMIC ();

 codec . enableRMIC ();

 // Connect from INPUT1 to "n" (aka inverting) inputs of PGAs.

 codec . connectLMN1 ();

 codec . connectRMN1 ();

 // Disable mutes on PGA inputs (aka INTPUT1)

 codec . disableLINMUTE ();

 codec . disableRINMUTE ();

 // Set pga volumes

 codec . setLINVOLDB (3 * disValInt);

 codec . setRINVOLDB (3 * disValInt);

 // Set input boosts to get inputs 1 to the boost mixers

 codec . setLMICBOOST (WM8960_MIC_BOOST_GAIN_0DB);

 46

 codec . setRMICBOOST (WM8960_MIC_BOOST_GAIN_0DB);

 // Connect from MIC inputs (aka pga output) to boost mixers

 codec . connectLMIC2B ();

 codec . connectRMIC2B ();

 // Enable boost mixers

 codec . enableAINL ();

 codec . enableAINR ();

 // Disconnect LB2LO (booster to output mixer (analog bypass)

 // For this example, we are going to pass audio throught the ADC and DAC

 codec . disableLB2LO ();

 codec . disableRB2RO ();

 // Connect from DAC outputs to output mixer

 codec . enableLD2LO ();

 codec . enableRD2RO ();

 // Set gainstage between booster mixer and output mixer

 // For this loopback example, we are going to keep these as low as they

 go

 codec . setLB2LOVOL (WM8960_OUTPUT_MIXER_GAIN_NEG_21DB);

 codec . setRB2ROVOL (WM8960_OUTPUT_MIXER_GAIN_NEG_21DB);

 // Enable output mixers

 47

 codec . enableLOMIX ();

 codec . enableROMIX ();

 // CLOCK STUFF, These settings will get you 44.1KHz sample rate, and

 class-d

 // freq at 705.6kHz

 codec . enablePLL (); // Needed for class-d amp clock

 codec . setPLLPRESCALE (WM8960_PLLPRESCALE_DIV_2);

 codec . setSMD (WM8960_PLL_MODE_FRACTIONAL);

 codec . setCLKSEL (WM8960_CLKSEL_PLL);

 codec . setSYSCLKDIV (WM8960_SYSCLK_DIV_BY_2);

 codec . setBCLKDIV (4);

 codec . setDCLKDIV (WM8960_DCLKDIV_16);

 codec . setPLLN (7);

 codec . setPLLK (0x86 , 0xC2 , 0x26); // PLLK=86C226h

 //codec.setADCDIV(0); // Default is 000 (what we need for 44.1KHz)

 //codec.setDACDIV(0); // Default is 000 (what we need for 44.1KHz)

 codec . setWL (WM8960_WL_16BIT);

 //codec.writeRegister(0x09, 0b00100000);

 codec . enablePeripheralMode ();

 //codec.enableMasterMode();

 //codec.setALRCGPIO(); // Note, should not be changed while ADC is

 enabled.

 // Enable ADCs and DACs

 48

 codec . enableAdcLeft ();

 codec . enableAdcRight ();

 codec . enableDacLeft ();

 codec . enableDacRight ();

 codec . disableDacMute ();

 //codec.enableLoopBack(); // Loopback sends ADC data directly into DAC

 codec . disableLoopBack ();

 // Default is "soft mute" on, so we must disable mute to make channels

 active

 codec . disableDacMute ();

 codec . enableHeadphones ();

 codec . enableHeadphoneZeroCross ();

 codec . enableOUT3MIX (); // Provides VMID as buffer for headphone ground

 Serial . println ("Volume set to +0dB");

 codec . setHeadphoneVolumeDB (0.00);

 Serial . println ("Codec Setup complete. Listen to left/right INPUT1 on

 Headphone outputs.");

 }

 // Code for setting up the i2s communication, called in setup()

 void i2s_install () {

 49

 // Set up I2S Processor configuration

 const i2s_driver_config_t i2s_config = {

 . mode = i2s_mode_t (I2S_MODE_MASTER | I2S_MODE_RX | I2S_MODE_TX),

 . sample_rate = 44100 ,

 . bits_per_sample = i2s_bits_per_sample_t (16),

 . channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT ,

 . communication_format = i2s_comm_format_t (I2S_COMM_FORMAT_STAND_MSB),

 . intr_alloc_flags = 0 ,

 . dma_buf_count = 8 ,

 . dma_buf_len = bufferLen ,

 . use_apll = false ,

 . tx_desc_auto_clear = false ,

 . fixed_mclk = 0 ,

 . mclk_multiple = i2s_mclk_multiple_t (I2S_MCLK_MULTIPLE_DEFAULT),

 . bits_per_chan = i2s_bits_per_chan_t (I2S_BITS_PER_CHAN_DEFAULT)

 };

 i2s_driver_install (I2S_PORT , & i2s_config , 0 , NULL);

 }

 void i2s_setpin () {

 // Set I2S pin configuration

 const i2s_pin_config_t pin_config = {

 . mck_io_num = - 1 ,

 . bck_io_num = I2S_SCK ,

 . ws_io_num = I2S_WS ,

 50

 . data_out_num = I2S_SDO ,

 . data_in_num = I2S_SD

 };

 i2s_set_pin (I2S_PORT , & pin_config);

 }

 void setup ()

 {

 Serial . begin (115200);

 Wire . begin ();

 if (codec . begin () == false) //Begin communication over I2C

 {

 Serial . println ("The device did not respond. Please check wiring.");

 while (1); // Freeze

 }

 Serial . println ("Device is connected properly.");

 codec_setup ();

 // Set up I2S

 i2s_install ();

 i2s_setpin ();

 i2s_start (I2S_PORT);

 51

 web_interface_setup ();

 }

 float tWave = 125 ;

 float direction = - 0.5 ;

 int iClip = 0 ;

 void triangolo (){

 // Update the value based on the current direction

 if (iClip == 0){

 tWave += direction * tremoloValue . toInt ();

 }

 // Check if the value has reached the lower or upper limit

 if (tWave <= 107) {

 iClip ++;

 if (iClip == 25){

 direction = 0.5 ;

 iClip = 0 ;

 tWave = 107 ;

 }

 }

 else if (tWave >= 125) {

 iClip ++;

 52

 if (iClip == 25){

 direction = - 0.5 ;

 iClip = 0 ;

 tWave = 125 ;

 }

 }

 codec . setHeadphoneVolume (tWave);

 }

 void fuzz (float* audioData , int numBytes , int gainFactor)

 {

 const float mixGain = 2 * gainFactor ; // tone shift factor

 // Apply the fuzz effect to each sample in the input audio data

 int numSamples = numBytes / sizeof (float);

 for (int i = 0 ; i < numSamples ; i ++) {

 // Apply tone shift to the sample

 float ampedSample = audioData [i] * mixGain ;

 // Mix the original and shifted samples

 audioData [i] = (audioData [i] + ampedSample) + audioData [i];

 }

 }

 void eightbit (float* audioData , int numBytes){

 const float eightbitfactor = 10 ;

 int numSamples = numBytes / sizeof (float);

 53

 for (int i = 0 ; i < numSamples ; i ++) {

 float ampedsample = audioData [i]* eightbitfactor ;

 audioData [i] = audioData [2 * i];

 }

 }

 void loop ()

 {

 if (eightBitValue . toInt () == 0){

 size_t bytesIn = 0 ;

 size_t bytesOut = 0 ;

 esp_err_t result = i2s_read (I2S_PORT , & sBuffer , bufferLen , & bytesIn ,

 portMAX_DELAY);

 // codec.writeRegister(0x09, 0b00100000); //uncomment to apply 8-bit

 effect

 // If no distortion, no fuzz, and no tremolo (clean)

 if (distortionValue . toInt ()== 0 && tremoloValue . toInt () == 0 &&

 fuzzValue . toInt () == 0)

 {

 // Set PGA values to 0 dB for no distortion

 codec . setLINVOLDB (0);

 codec . setRINVOLDB (0);

 54

 // Immediately play back what was read in

 esp_err_t result_w = i2s_write (I2S_PORT , & sBuffer , bytesIn , & bytesOut ,

 portMAX_DELAY);

 // If there is an I2S write error, let us know on the serial terminal

 if (result_w != ESP_OK){

 Serial . print ("I2S write error.");

 }

 } // ends the if-statement for no distortion, no fuzz, and no tremolo

 // If distortion and no delay and no fuzz

 if (distortionValue . toInt () != 0 && tremoloValue . toInt () == 0 &&

 fuzzValue . toInt () == 0)

 {

 // Sets PGA values for distortion using function

 codec . setLINVOLDB (3 * distortionValue . toInt ());

 codec . setRINVOLDB (3 * distortionValue . toInt ());

 // Play back what was read in with distortion

 esp_err_t result_w = i2s_write (I2S_PORT , & sBuffer , bufferLen ,

 & bytesOut , portMAX_DELAY);

 } // ends distortion and no delay case

 // If tremolo and no distortion and no fuzz

 55

 if (distortionValue . toInt () == 0 && tremoloValue . toInt () != 0 &&

 fuzzValue . toInt () == 0){

 // Set PGA values to 0 dB for no distortion

 codec . setLINVOLDB (0);

 codec . setRINVOLDB (0);

 triangolo ();

 esp_err_t result_w = i2s_write (I2S_PORT , & sBuffer , bytesIn , & bytesOut ,

 portMAX_DELAY);

 }

 // If fuzz and no distortion and no tremolo

 if (distortionValue . toInt () == 0 && tremoloValue . toInt () == 0 &&

 fuzzValue . toInt () != 0)

 {

 // Set PGA values to 0 dB for no distortion

 codec . setLINVOLDB (0);

 codec . setRINVOLDB (0);

 float * audioData = (float *) & sBuffer ; // Cast buffer as float*

 int numBytes = bytesIn ; // Get the number of bytes of audio data

 fuzz (audioData , numBytes , fuzzValue . toInt ());

 56

 esp_err_t result_w = i2s_write (I2S_PORT , & sBuffer , bytesIn , & bytesOut ,

 portMAX_DELAY);

 }

 // If distortion and tremolo and no fuzz

 if (distortionValue . toInt () != 0 && tremoloValue . toInt () != 0 &&

 fuzzValue . toInt () == 0)

 {

 //Set PGA values for distortion

 codec . setLINVOLDB (3 * distortionValue . toInt ());

 codec . setRINVOLDB (3 * distortionValue . toInt ());

 triangolo ();

 esp_err_t result_w = i2s_write (I2S_PORT , & sBuffer , bufferLen ,

 & bytesOut , portMAX_DELAY);

 }

 // If tremolo and fuzz and no distortion

 if (distortionValue . toInt () == 0 && tremoloValue . toInt () != 0 &&

 fuzzValue . toInt () != 0)

 {

 float * audioData = (float *) & sBuffer ; // Cast buffer as float*

 int numBytes = bytesIn ; // Get the number of bytes of audio data

 fuzz (audioData , numBytes , fuzzValue . toInt ());

 57

 triangolo ();

 esp_err_t result_w = i2s_write (I2S_PORT , & sBuffer , bufferLen ,

 & bytesOut , portMAX_DELAY);

 }

 }

 // 8-bit switch

 if (eightBitValue . toInt () != 0){

 size_t bytesIn = 0 ;

 size_t bytesOut = 0 ;

 esp_err_t result = i2s_read (I2S_PORT , & sBuffer , bufferLen / 2 , & bytesIn ,

 portMAX_DELAY);

 // Set PGA values to 0 dB for no distortion

 codec . setLINVOLDB (0);

 codec . setRINVOLDB (0);

 float * audioData = (float *)& sBuffer ; // Cast buffer as float*

 int numBytes = bytesIn ; // Get the number of bytes of audio data

 eightbit (audioData , numBytes);

 esp_err_t result_w = i2s_write (I2S_PORT , & sBuffer , bufferLen / 2 ,

 & bytesOut , portMAX_DELAY);

 }

 }

 58

