

University of Notre Dame
Department of Electrical Engineering

Anomaly Detection PCB for
CubeSat Missions

Ambroise Curutchague, Bridget Goodwine, Jacob Gose, Conor O’Brien, Zach Zarzaur
Senior Design II

Professor Schafer

Spring 2022 Group 12 Final Report

Group 12 1 EE Senior Design

● Table of Contents

Table of Contents 1

1 Introduction 2

2 Detailed System Requirements 7

3 Detailed project description 9

3.1 System theory of operation 9

3.2 System Block diagram 10

3.3 Power 11

3.4 Anomaly and State Detection 19

3.5 Flight Computer Communication 27

3.6 Interfaces 31

3.7 Communications 31

4 System Integration Testing 32

4.1 Subsystem Testing 32

4.2 Testing Outcomes 34

5 Users Manual/Installation manual 34

5.1 Installation 34

5.2 Setup 36

5.3 Signs of a Working Product 36

5.4 Troubleshooting 37

6 To-Market Design Changes 38

7 Conclusions 40

8 Appendices 40

8.1 Appendix A. Complete Hardware Schematics 40

8.2 Appendix B. Complete Software Listings 47

8.3 Appendix C. Relevant Parts and Component Datasheets 57

Spring 2022 Group 12 Final Report

Group 12 2 EE Senior Design

1 Introduction

CubeSats are miniature, 10x10x10cm satellites intended for operation in low

Earth orbit. They may be used for a number of purposes: placing and using research

equipment in space, amateur radio communications, or testing systems when their

installation on a larger spacecraft is not yet robust enough to justify the cost. Because of

their lightweight, small-scale, and relatively inexpensive design, CubeSats are built by

university research groups, clubs, and companies around the world.

IrishSat is a student-led organization with the ultimate goal of launching a

CubeSat through NASA’s CubeSat Launch Initiative (CSLI) program. In this program,

NASA selects groups developing CubeSats based on proposals for the CubeSat’s

research and design. Once built, a selected CubeSat will be placed on-board a NASA

mission and ejected into Low Earth Orbit. IrishSat is a fairly young club, having only

been around for about 3 years, and consists of many majors, but mainly Electrical

Engineering, Mechanical Engineering, Aerospace Engineering, and Computer Science

majors. In addition to eventually launching a satellite, the club also strives to help

educate young engineers, allow them to apply the content they learn in class, expose

them to industry practices, and connect them to industry contacts.

IrishSat is composed of 4 main projects (ProtoSat, OAT Lab, IRIS, and Ground

Station) and 4 squads (Power, Computing, STOC, and Communications). Club

members typically join a squad and subsequently will join a project to work on their

specific area of expertise. The club is led by a President, CTO, Director of Research,

and Director of Business Operations, and the projects are led by Chief Engineers and

Project Managers.

Over the past 3 years IrishSat has developed three versions of its original High

Altitude Balloon project, which sought to simulate the operation of a CubeSat-form-

factor embedded system in the harsh environment of outer atmosphere. These High

Altitude Balloon missions allowed IrishSat personnel to test all of the main systems that

comprise a CubeSat, including power, communications, structure, and computing.

Spring 2022 Group 12 Final Report

Group 12 3 EE Senior Design

Figure 1. CAD drawing of IrishSat’s third High Altitude Balloon Project iteration:

IRIS v3

In this time period, IrishSat has also developed a Helmholtz cage that acts to

simulate an arbitrary magnetic field that can be used to test a CubeSat attitude control

system.

Spring 2022 Group 12 Final Report

Group 12 4 EE Senior Design

Figure 2. Helmholz cage developed by IrishSat’s Orbital, Attitude, and Thermal

Laboratory

IrishSat has additionally designed, constructed, and tested a Ground Station on

the roof of Nieuwland Hall of Science that allows our communications squad to track

and communicate with satellites currently in orbit, and will eventually serve as the main

data link between our CubeSat and Earth.

Figure 3. Uplink and downlink antenna elements for IrishSat’s Ground Station

Spring 2022 Group 12 Final Report

Group 12 5 EE Senior Design

Finally, and most important to this Senior Design project, IrishSat has also

developed two iterations of a prototype CubeSat as part of their Proto-Sat project,

testing structure, power, attitude control, computing, and communications. Last year’s

initial prototype was successfully demonstrated to have a working attitude control

system that was able to use reaction wheels to slow an induced rotation. This year’s

prototype was constructed in a 1U (10x10x10 cm) CubeSat form factor, and was

intended to be a more complete prototype, integrating all CubeSat subsystems into one,

wholly independently operating package.

Figure 4. ProtoSat’s initial prototype

Figure 5. ProtoSat’s current CubeSat prototype with senior design board integrated

(bottom middle)

Spring 2022 Group 12 Final Report

Group 12 6 EE Senior Design

The goal of this senior design project was to design the “brain” and the “guts”, so

to speak, of the prototype CubeSat that IrishSat’s Proto-Sat team has been developing.

Since most of the work of the Proto-Sat team has gone into the design of other systems,

we decided that it would be a great load off of the Proto-Sat team’s shoulders if the

heavy work for board design was done by a separate, dedicated team. In addition, most

of the members of Proto-Sat are underclassmen electrical engineers with no prior

experience doing board design or the kind of system-level integration that this project

required. By handling the difficult work of designing a power system and state/anomaly

detection system that would properly bias all components while ensuring that power

was consumed in the most efficient way possible, we intended to contribute significant,

practical progress to the Proto-Sat project that heretofore had concentrated work solely

on things like the attitude control and structural systems. By taking care of this “dirty

work”, we ensured that the underclassmen engineers of Proto-Sat, already a personnel-

limited team, were free to concentrate on the design of other systems.

It is a well known fact that the main failure point for student-designed CubeSat

systems is that they most often run out of power before they even get the opportunity to

deploy. After a CubeSat is handed over to NASA, it will sit for days or even weeks

before being launched, during which time it is confined to a dark space with no

opportunity for batteries to charge. By handling the optimization of power consumption

in a robust manner, we are giving our CubeSat a much better chance for success.

Implementing a state and anomaly detection system allows for our CubeSat to use

power only when it needs to, and additionally, to report back to our ground station when

it measures currents and voltages that indicate components going haywire. Our

framework allows for these issues to be detected and remedied, whether through

automatic rebooting of haywire components, or manual rebooting using commands that

could potentially be relayed to the flight computer via an RF data link between the flight

computer and the ground station.

This project represents a great leap forward in the development of IrishSat’s

CubeSat prototype. Consolidating all of the necessary components for battery

charging/discharging, voltage boosting and regulating, component switching,

component biasing, and component monitoring on a single PCB will allow our prototype

to become a more modular, self-contained system– relying on its own power and

internal connections for operation, rather than external power and external connections.

The software architecture that we developed similarly allows for this system to operate

continuously and independently, allowing our prototype to become a complete

embedded system unto itself and taking us one step closer to having a CubeSat ready

for deployment.

Spring 2022 Group 12 Final Report

Group 12 7 EE Senior Design

2 Detailed System Requirements

The system will provide power to a multitude of sensors and components. The

system needs to be able to integrate at least two solar cells with up to three LiPo

batteries, allowing the batteries to be charged when there is sunlight available. Since

the battery will output 3.7-4.2V, converters must be used to provide stable output

voltages for different components. These include 1.8V for the IMUs, 3.3V for the

ESP32, 5V for the Pi Zero, and 9V for the SDR and motor board.

The CubeSat needs to have a way to detect different states, including tumbling,

light on solar panels, low battery level, and available window for downlink, which must

be handled by our system. The tumbling state must be detected using an IMU that

ProtoSat has selected, and the ESP32 must be able to recognize that tumbling state

and send that information to the flight computer. The ESP32 also must use a

component, like a photoresistor, to determine the light that the system is exposed to, in

order to determine what types of components can be run efficiently. In order to fulfill this

requirement, the ESP32 must also be able to turn off power-intensive devices, like the

Raspberry Pi flight computer (Pi) and onboard software-defined-radio (SDR), when not

in use. The energy of the battery must also be monitored by the ESP32 to determine

when systems are safe to run, as discharging a LiPo battery too low can be extremely

detrimental, so a component like a fuel gauge must be used to monitor this. The ESP32

must be able to communicate substantial information back and forth with the IMU and

the fuel gauge. It must also be able to read analog data from the circuit used with the

photoresistor; that photoresistor should be selected and that circuit should be designed

so that the voltages for the light and no-light states are drastically different. Two IMUs

should be implemented for redundancy, and the method of communication between

them and the ESP32 and flight computer should take into account each device’s

different operating voltages.

The system will monitor the sensors to detect anomalies. In order to ensure

proper operation of the circuit, the current flowing into the Pi and IMUs must be

monitored, as well as the voltage provided by the 9V converter when it is active.

Different specifications will be required for each device based on their expected data

ranges. These readings must be stepped down as needed to provide no voltage higher

than 3.3V to the pins of the ESP32. The ESP32’s software must regularly check these

readings and be able to recognize anomalies–that is, spikes in current or voltage–and

send this information to the flight computer for eventual downlink. The ESP32 should

also be able to respond to continuous anomalies by rebooting the device, or shutting it

off entirely to conserve power. This software for this system constitutes the anomaly

detection system.

Spring 2022 Group 12 Final Report

Group 12 8 EE Senior Design

On the hardware side, for this to function properly, enough pins on the ESP32

must be able to read analog voltages. To ensure protection of the ADC pins and a

stable, reliable voltage sensing, a voltage-follower op amp should be used. This would

protect the pins from voltage- and current-fluctuations. The analog voltage reading must

be able to be converted by the software into a reading related to the actual

measurement–i.e. the current into or voltage of the input power of a device. The shut-off

circuit must be designed so as to not leave pins floating on the device, nor leave the

device unconnected to ground. Such circuits should also not draw more power than the

device does; these requirements may be met with a MOSFET configuration.

Since the ESP32 will be receiving all sensor data, it will be used to format and

send data packets to the SDR. Our team will determine the data that is necessary to

transmit and the frequency at which to sample the data. The ESP32 should not send all

data to the flight computer so as to relieve the processing load required. The ESP32

should also be able to recognize when the flight computer and/or SDR are not powered

on, and so it should not send any data. The ESP32 must be able to be reprogrammed

by a user. The pins used for this are 3.3V, GND, EN, GPIO0, TX, and RX. In order that

the device may properly select between download boot for programming and flash boot

to run software from memory, GPIO0, TX, and RX should remain unused by the rest of

the system.

The size limitations are substantial for this project. There is a separate PCB

being designed by the IrishSat ProtoSat team that will control three motors used for

attitude control. Our PCB will power this board, so we must send it power signals

through a pin stack. Both PCBs and the SDR must stack to fit within a

5.5cmx6.5cmx4.25cm space, so the board should be no larger than 5.32cmx6.32cm. To

satisfy this requirement, we will design our PCB with four layers, so we can utilize three

separate layers to route traces. The PCB must not generate excessive noise that would

compromise proper communication between devices. The PCB must have a ground

layer, on which no traces may be routed, to ensure proper power and signal grounding.

Components must only be placed on the top layer. Because many of the possible board

manufacturers are incapable of making blind or buried vias, all vias must be through

and intersect all layers of the board. In general, signal traces and pads should be at

least 5 mil apart in order to avoid shorting two separate elements in the board

manufacturing process. Trace width should be taken into account, and the power traces

on the board from the batteries must be able to handle up to 1.4A. It must contain

methods of contact for external components, including two-to-three batteries, two solar

cells, a 9V board which will upconvert the battery voltage to 9V, a barrel plug for the

SDR, the photoresistor (which must be sticking outside the CubeSat), the programming

pins of the ESP32, and the Pi Zero flight computer. The external connectors must be

Spring 2022 Group 12 Final Report

Group 12 9 EE Senior Design

arranged so that there is no overlap or collision when external devices are mounted on

the board–this may compromise the system by not allowing all devices to connect with

the PCB. The batteries, solar cells, SDR, photoresistor, and Pi Zero must be attached in

such a way that both good electrical contact and secure mechanical connections are

made. This precludes certain connection methods, such as Dupont wires, and

guarantees some soldering must be done. PCBs are lightweight, so we are not

concerned about exceeding any weight limits.

3 Detailed project description

3.1 System theory of operation

 Power is provided to the entire CubeSat through solar cells and LiPo batteries,

and this board uses three batteries and two solar cells. During periods of sunlight, the

solar cells charge the LiPo batteries, a process which is handled by the MPPTs (labeled

“charger” on the block diagram). The remaining amount of battery energy left is also

measured by fuel gauges, which relay that information to the ESP32 over I2C.

The LiPo batteries provide a variable voltage from 3.7-4.2V. Two batteries in

series (providing 7.4-8.4V) are connected to a port which provides input power for the

1.8, 3.3, and 5V converters. The remaining battery is connected to a port which

provides input power for the 9V converter. The power is distributed as subsystems

require; the ESP32, fuel gauges, two current sensors, and one of the voltage-follower

op-amps receive 3.3V, the two IMUs receive 1.8V, the Pi Zero, one current sensor, and

four of the voltage-follower op-amps receive 5V, and the SDR receives 9V. The power

lines of the Pi, IMUs, and the SDR are connected to MOSFET networks, so that the

ESP32 can enable or disable those devices. The photoresistor is powered with a GPIO

output on the ESP32. The ESP32 communicates with one IMU and the fuel gauges

through an I2C bus which it is the master of. It also communicates with the Pi Zero and

another IMU through a different I2C bus, which it is a slave of. To communicate

properly, two level shifters convert the 3.3V I2C signals from the Pi and ESP32 to 1.8V

signals for the IMUs. Current sensor readings for the IMUs and the Pi are received as

analog signals. Those readings are each passed through a voltage-follower op-amp to

ensure signal integrity. The 9V voltage is also monitored using a voltage-follower op-

amp into an analog pin. Both the 9V analog reading and the Pi’s current sensor reading

(which is referenced to 5V) are stepped down through voltage-divider networks before

the op-amp.

When solar cells and batteries are connected, the ESP32 turns on and boots in

flash mode. It turns on the 1.8V converter, the IMUs, and the fuel gauge, and waits to

enter a tumbling state. This state would indicate that the satellite has been evacuated

Spring 2022 Group 12 Final Report

Group 12 10 EE Senior Design

from the rocket and should begin running its main functions. The ESP32 then turns on

the Pi Zero, joins its I2C bus, and provides power to the photoresistor.

After tumbling, the ESP32 switches between either a “day cycle” or “night cycle”

depending on the reading from the photoresistor. Day cycle indicates there is enough

light to charge the batteries through the solar cells, so the Pi remains on. Night cycle

indicates there is not enough light, and to conserve power both the Pi (and the SDR, if it

is on) are turned off. The SDR can be turned on by the ESP32 when the CubeSat is

ready to communicate its data, but to conserve power, it is off by default.

Meanwhile, the ESP32 monitors the currents of the IMUs and the Pi and

monitors the 9V line. Any “spikes” in current or voltage are noted and relayed to the Pi.

Spikes may indicate malfunction, so these devices may be restarted or turned off

indefinitely.

3.2 System Block diagram

Figure 6. System Block Diagram

Spring 2022 Group 12 Final Report

Group 12 11 EE Senior Design

3.3 Power

The power subsystem is responsible for powering the 1U CubeSat prototype,

including the Senior Design PCB, a Raspberry Pi Zero 2 W, a Motor Controller Board

(designed by the ProtoSat team on IrishSat), and three reaction wheel motors. These

components have a variety of power needs.

The power is generated in our subsystem using four solar cells. The most

important consideration when choosing a solar cell was size. The solar cells are 11cm

long and 6.6cm wide, which is within the 1U size range specified by NASA in the CSLI

Guidelines. Only four of these solar cells can fit on the 1U CubeSat, so size also plays a

role in the quantity of solar cells used. The maximum output of each solar cell is 6.07V

and 200mA, resulting in max 1.22W. Two solar cells are wired in parallel, resulting in

two sets of solar cells, each outputting max 2.44W. The power output changes with the

intensity of sunlight exposure. The model number is P124 R1G and is produced by

Voltaic.

Wiring our solar cells in parallel was a decision driven by size constraints. Our

CubeSat cannot fit four batteries, but it can fit four solar cells. Having two sets of solar

cells allowed for the utilization of only two battery chargers and two batteries. Wiring all

four in parallel would be a critical source of failure and would only allow for one battery,

which is not ideal for storing maximum power.

This subsystem called for two 3.7V LiPo batteries. In practice, three LiPo

batteries were used due to unforeseen PCB design challenges, which will be discussed

at the end of this section as well as in the To-Market Design Changes section. These

LiPo batteries were each 6cm long and 3.6cm wide. The charge cutoff voltage is 4.2V.

Their capacity is 2Ah each. Their max continuous discharge current is 1A each, which

allows for a total max current of 1.4A when adding the current of one solar cell set. Our

system uses two of these sets, creating a total max current of 2.8A for the system.

Our system is divided into two separate power sets. The power set is defined as

one LiPo battery and two solar cells in parallel that are managed by the battery charger.

Power Set 1 is defined as containing Battery 1 (BT1) and Solar Cell 1 (VSC1) on the

PCB silkscreen. Power Set 1 powers the 1.8V, 3.3V, and 5V power rails. Power Set 2 is

defined as containing Battery 2 (BT2) and Solar Cell 2 (VSC2) on the PCB silkscreen.

Power Set 2 powers the 9V power rail. The reason for splitting up the power system is

because placing the battery chargers in parallel caused a multitude of issues. First, the

battery chargers can charge each other, which could damage the componentry in the

charger and overcharge the batteries. To remedy this issue, Schottky diodes were

placed in series with the load outputs of the chargers to prevent the reverse current.

Spring 2022 Group 12 Final Report

Group 12 12 EE Senior Design

The issue with this method is that the battery chargers did not evenly share the load. In

testing, one battery charger would output a large amount of current while the other

would output a small amount of current (~10mA). This outcome was predicted in online

research, but battery charger breakout boards in series with Schottky diodes were used

to test. In this layout, one power set would be neutralized, causing a large decrease in

total system power. The solution was using the power sets for different power rails. The

power rails were split up based on their current limits. The 9V rail supplies power to the

reaction wheel motors and the Sidekiq Z2 SDR. The reaction wheel motors need to pull

as much current as possible, so there should be no other essential components on that

rail to drain current. The SDR can be turned off and on by the ESP32, so our system

can determine if Power Set 2 has enough charge to turn on the SDR. The SDR is an

essential component, but our system can always wait to transmit back to the Ground

Station until there is enough charge to transmit and hold its orientation. The reaction

wheels will also not be running continuously, since they should stabilize the system

fairly quickly. Power Set 1 handles the other voltage rails (1.8V, 3.3V, and 5V) which

power the ESP32, Raspberry Pi Zero 2 W, and other necessary componentry.

The battery charger is a 1-Cell 1.5A Linear Battery Charger (BQ24074). The

battery charger features dynamic power path management (DPPM) that powers the

system while simultaneously and independently charging the battery. The battery

charger prioritizes powering the system over charging the battery, lowering the number

of charge and discharge cycles on the battery. The charger allows the system to run

with a defective or absent battery pack, supplying power solely from the solar cells. The

battery charger reads the battery voltage and terminates battery charging once it

reaches its maximum charge (4.2V). The max voltage load output of the battery charger

is regulated to 4.4V. If the solar panels are not receiving any light, the charger will

output the same voltage as the battery. If the battery is dead or not connected, the

charger will output the same voltage as the solar cell. If the solar cells output over 4.4V,

the battery charger load output will regulate it to 4.4V. The battery charger has a

maximum load output current of 5A, which is over the maximum source current of 1.4A

from one LiPo and two solar cells in parallel. The maximum charging current of the LiPo

is 1.5A.

Spring 2022 Group 12 Final Report

Group 12 13 EE Senior Design

Figure 7. Battery Charger

Since the battery charger outputs a range of voltages with a maximum value of

4.4V, the load output needs to be regulated to power multiple different voltage rails. Our

system utilizes four DC-DC converters instead of linear voltage regulators. For the 5V

and 9V power rails DC-DC boost converters must be used. For the 1.8V and 3.3V

power rails, linear voltage regulators were an option. Linear voltage regulators lack

efficiency. The input current essentially equals the output current. Since voltage is

decreasing and current is remaining equal, total power is lost. A DC-DC converter can

increase current in proportion to decreasing voltage to keep power essentially equal.

DC-DC converters usually have high efficiencies around 95%, meaning 5% of the input

power will be lost to the converter. DC-DC converters do not have the same output

voltage accuracy of linear voltage regulators, but for this application the improved

accuracy is not necessary.

The two IMUs (ICM-20948) require 1.8V. The 1.8V DC-DC converter (XCL210)

was used to supply this voltage. The max current consumption for the 1.8V rail is

6.22mA. The XCL210 has a max output current of 200mA with an efficiency of 93%.

These specifications exceeded the power requirements for this rail. The XCL210 also

has an Enable pin for easily switching the converter off or on. This rail was powered

directly by Power Set 1 from the output of the battery charger.

Spring 2022 Group 12 Final Report

Group 12 14 EE Senior Design

Figure 8. 1.8V DC-DC Converter and IMU

The ESP32-MINI-1U-H4, two battery fuel gauges (MAX17043), four LEDs (PG1,

CH1, PG2, and CH2), two current sensors (ACS725LLCTR-10AB-T), and a low-power

op amp (LM321MF_NOPB) require 3.3V. The 3.3V DC-DC converter (RPM3.3-2.0) was

used to supply this voltage. The max current consumption for the 3.3V rail is 793.3mA.

The RPM3.3-2.0 has a max output current of 2A with an efficiency of 98%. These

specifications exceeded the power requirements for this rail.

Spring 2022 Group 12 Final Report

Group 12 15 EE Senior Design

Figure 9. 3.3V DC-DC Converter, ESP32-MINI-1U-H4, Battery Fuel Gauge, IMU

Current Sensor, I2C Level Shifter & Low Power Op Amp

The Raspberry Pi Zero 2 W, a current sensor (ACS724LLCTR-10AB-T), a unity

gain op amp (LMV934MA), and an LED controller on the Motor Controller Board

(PCA9685) all require 5V. The max current consumption for the 5V rail is 414.84mA.

The 5V DC-DC converter (RPM5-2.0) was used to supply this voltage. The RPM5-2.0

has a max output current of 2A with an efficiency of 98%.

Spring 2022 Group 12 Final Report

Group 12 16 EE Senior Design

Figure 10. 5V DC-DC Converter, Raspberry Pi Zero 2 W, Raspberry Pi Current Sensor,

Unity Gain Op Amp

Our system design has an error in utilizing this 5V DC-DC converter. This

converter can only step down voltage, although the data sheet claims its input voltage

range is 3-17V. To remedy this mistake, two 3.7V LiPos were connected in series to

increase the output voltage to 7.4V. The RPM5-2.0 would then step down the voltage to

5V successfully. This design change does not allow for battery charging, since the

Spring 2022 Group 12 Final Report

Group 12 17 EE Senior Design

BQ24074 battery charger only allows for a single cell battery input. The batteries in

series could also charge unevenly, creating a potential for overcharging one of the

batteries. Due to these reasons, Power Set 1 cannot not charge the batteries in series.

Power Set 2 maintained full functionality of charging the LiPo battery while also

powering the 9V rail.

The reaction wheel motors and the Sidekiq Z2 SDR require 9V. The SDR

requires around 330mA maximum when transmitting. As mentioned above, the SDR will

be completely off when not in the Downlink state, meaning all 1.4A from Power Set 2

will be used to power the reaction wheel motors. When converting from 4.4V to 9V, the

output current is roughly half of the input current, since the power remains equal,

meaning the reaction wheel motors will realize around 700mA maximum. The reaction

wheel motors at full speed draw around 400mA total. At max acceleration, the current

draw can jump to 850mA. The Motor Controller Board will have to limit the acceleration

of the reaction wheels to keep the current draw below 700mA. Limiting acceleration will

limit the functionality of the attitude control system, but it will still be effective.

The 9V DC-DC converter (U3V40F9) was used to supply this voltage. This

converter is its own PCB and was connected to the Senior Design PCB using a

pinstack. The reason for not transferring the converter on to our PCB was because of its

small size and the lack of space on our PCB. The 9V converter board is only 1.5x1.5cm.

Since the Raspberry Pi Zero 2 W also connects to our PCB through a pinstack, this

converter sits right next to it without taking up any more height. Otherwise, there would

have been an open gap next to the Raspberry Pi Zero 2 W that the 9V converter now

fills. The 9V converter handles continuous input currents up to 3.5A, meaning it easily

handles the max output current of 1.4A from Power Set 2.

Figure 11. 9V DC-DC Converter

Spring 2022 Group 12 Final Report

Group 12 18 EE Senior Design

Table 1. Power Draw by Component

Component

Bias

Voltage (V)

Typical

Current

Draw (mA)

Max

Current

Draw (mA)

Typical

Power Draw

(mW)

Max Power

Draw (mW)

Power Set 1

ICM-20948 IMU

(x2)

1.8, 1.8

(VDDIO) 3.11 3.11 5.598 5.598

1.8V Rail

Total 6.22 6.22 11.196 11.196

ESP-32 3.3 20 108 66 356.4

Current Sensors

(x2) -

ACS725LLCTR-

10AB-T 3.3 10 14 33 46.2

Level Shifters (x2) 3.3 64 128 211.2 422.4

Battery Fuel

Gauges (x2) -

MAX17043 3.3 0.05 0.075 0.165 0.2475

LEDs (x4) 3.3 30 100 99 330

Single Op Amp -

LM321MF/NOPB 3.3 0.430 1.15 1.419 3.795

3.3V Rail

Total 288.53 793.3 952.149 2617.89

Raspberry Pi Zero 5 120 400 600 2000

Quad Input Op

Amp -

LMV934MA/NOP

B 5 0.464 0.840 2.32 4.2

Current Sensor -

ACS724LLCTR-

10AB-T 5 10 14 50 70

5V Rail

Total 130.464 414.84 652.32 2074.2

Power Set

1 Total 425.214 1214.36 1615.665 4703.286

Spring 2022 Group 12 Final Report

Group 12 19 EE Senior Design

Power Set 2

Sidekiq Z2 (SDR) 9 228 620 2052 5580

Motors 9 400 700 3600 6300

9V Rail

Total 628 1320 5652 11880

Power Set

2 Total 628 1320 5652 11880

System

Total: 1053.24 2534.36 7267.665 16583.286

3.4 Anomaly and State Detection

The Anomaly and State Detection subsystem is required to detect and respond

to the current state of the CubeSat as it is in orbit, as well as to monitor the current draw

and/or voltage of all high power components, ensuring that devices are operating

correctly and within recommended tolerances. If devices are not needed in the system’s

current state, or if they are drawing too much power/voltage, a MOSFET network must

be able to switch the device on or off using a 3.3V enable signal from the ESP32,

regardless of device bias voltage. The overall operation of the subsystem should be to

ensure that power is consumed by the full system in the most efficient way possible,

depending on both internal and external conditions of the CubeSat.

The current sensors chosen for our board were the ACS724LLCTR-10AB-T and

the ACS725LLCTR-10AB-T, both from Allegro Microsystems. These were chosen

because they fulfill the voltage and current requirements for their respective

components. The ACS724LLCTR-10AB-T is designed for 5V, and the ACS724LLCTR-

10AB-T is designed for 3.3V, which allowed these to measure current from the Pi and

the IMU’s, respectively. Both can handle 10 A of current, which is well beyond the

current inputs to either the Pi or the IMU’s. Both current sensors output an analog

voltage signal which exhibits a linear response with respect to input current, allowing the

ESP32 to map the voltage reading to current using a simple linear formula. An example

from the ACS724 is shown in Figure 12, reproduced from Allegro’s datasheet. The

sensitivity of the ACS725 is 132 mV/A, of the ACS724 200 mV/A. The zero value is

1.65V; functionally no device should drop below this, as it would indicate current in the

reverse direction.

Spring 2022 Group 12 Final Report

Group 12 20 EE Senior Design

The output of each current sensor is passed through a voltage-follower op-amp.

These op-amps protect the ADC from voltage- or current-fluctuations by providing a low

output impedance and a stable, reliable voltage.

Figure 12. The response of the ACS724, reproduced from Allegro’s datasheet. The

output voltage is linearly proportional to the current, and changes with temperature.

The MOSFETs chosen to effect the switching circuit were the FDN86501LZ and

the FDN352AP, which are an N-Channel FET and a P-Channel FET, respectively. The

FDN86501LZ was chosen because it has a low threshold voltage (Vt = 2.4V max, 1.9V

nominal). This ensures that it can be turned on by a 3.3V enable signal from the ESP32,

as the equation for NMOS saturation is 𝑉𝑔𝑠 > 𝑉𝑡 , and the source voltage for all N-

Channel MOSFETs in this configuration is 0V (ground). The FDN86501LZ is also able

to handle 60V and 2.6A, which for all configurations is sufficient to handle required

voltage and current draw. The FDN352AP was chosen for its relatively low threshold

voltage (Vt = -2.5V max, -2.0V nominal), high voltage tolerance (-30 𝑉𝑑𝑠), and high drain

current tolerance (-1.3 A).

Spring 2022 Group 12 Final Report

Group 12 21 EE Senior Design

It was originally conceived of to design four separate MOSFET networks, with the

additional two being used to switch on and off the Pi’s IMU and the ESP32’s IMU

separately, but as it was realized that it would not be necessary to have one IMU on

without the other, and additionally that the IMU’s draw negligible current in practice,

these other two MOSFET networks were removed from the final design. The ability to

switch on and off IMU’s was retained through the ESP32’s direct control over the 1.8V

DC-DC converter, which requires a high enable signal to operate. As it is not necessary

to have control over the power to individual IMU’s, writing high or low to the 1.8V DC-

DC converter enable pin allows control over the entire 1.8V net, which allows the

system to turn on and off both IMU’s together.

The two MOSFET networks that were retained control power output to the Pi

flight computer and the SDR. To implement these systems, which use a 3.3V enable

signal from the ESP32 to switch 5V and 9V signals to the Pi flight computer and SDR,

respectively, the following MOSFET topology was used (shown in Figure 13.).

Figure 13. The MOSFET circuit topology used. The “effective” circuits for when the

enable signal is low and high are also shown.

This circuit works by routing an enable signal from the ESP32 to the gate of an

N-Channel MOSFET. This N-Channel MOSFET has its source connected to ground and

Spring 2022 Group 12 Final Report

Group 12 22 EE Senior Design

its drain connected to the gate of a P-Channel MOSFET in parallel with the low side of a

10 kΩ resistor that is in turn connected to VDD. The source of this P-Channel MOSFET

is connected to VDD, while the drain is connected to the input pin of the device under

test. When the 3.3V enable signal from the ESP32 is low, the N-Channel MOSFET is an

open circuit, meaning that a full 9V is present at the low end of the 10 kΩ resistor, as

negligible current flows into the gate of the P-Channel MOSFET. Since for a P-Channel

MOSFET, cutoff condition is reached when 𝑉𝑠𝑔 ≤ |𝑉𝑡|, VDD present at the gate will

result in a low voltage being present on the drain, and the device being turned OFF.

When the 3.3V enable signal from the ESP32 is high, the N-Channel MOSFET is an

closed circuit, resulting in ground being present at the gate of the P-Channel MOSFET.

𝑉𝑠𝑔 of the P-Channel MOSFET will be equal to 0, and since the saturation condition for

a P-Channel MOSFET is 𝑉𝑠𝑔 ≥ |𝑉𝑡|, this will result in the P-Channel MOSFET

presenting VDD to the input pin of the device, and the device will be turned ON.

The following section discusses the detailed operation of the subsystem’s

different states. A finite state machine diagram is shown in Figure 14, showing the

transition conditions between states and the enabled devices in each state (assuming

full CubeSat functioning). This finite state machine was implemented in code using the

functions checkState() and updateState(), both contained within Tumbling.cpp (See

Appendix B, 9.2 ii.).

Spring 2022 Group 12 Final Report

Group 12 23 EE Senior Design

○

Figure 14. Finite state machine representation of the system.

Undeployed

The Undeployed state describes the state of the CubeSat prior to ejection from

the rocket. This is a meta-state that will prohibit entry into any other state besides

“Tumbling”. This state is determined by the fact that tumbling has not occurred yet. In

this state, everything is turned off except for the ESP32 and the IMU’s.

Spring 2022 Group 12 Final Report

Group 12 24 EE Senior Design

Tumbling

 The tumbling state represents the state of the CubeSat immediately after being

injected into an orbit, when it will be “tumbling” through space with constant angular

velocity. This angular velocity is detected by the ESP32’s IMU, and the algorithm to

detect CubeSat tumbling is implemented on the ESP32, reading IMU data over an I2C

connection. The IMU chosen was the ICM-20948. This IMU was chosen because it is

the world’s lowest power 9-axis IMU, which combines a 3-axis gyroscope, 3-axis

accelerometer, 3-axis compass in a 3x3x1mm package. This allows the system to

measure the absolute orientation of the CubeSat as well as the angular velocity during

tumbling.

 Algorithmically, tumbling detection is done in the following manner: I2C signals

from the ESP32’s IMU are read by the ESP32. The angular acceleration from the

gyroscope is read and stored in a variable. If this angular acceleration in either the x, y,

or z axis exceeds a threshold of 1 radians/sec for longer than 3 seconds continuously,

the system is considered to be “tumbling”, and the state variable is updated accordingly.

This detection is implemented in code as the tumblingDetection() function, contained in

Tumbling.cpp (See Appendix B, 9.2 ii.).

In this state, the ESP32 turns on the Pi flight computer. After full integration with

the Proto-Sat team’s motor board, the attitude control system (controlled by the flight

computer and contained externally on the motor controller board) will attempt to slow

the rotation of the CubeSat.

Day Cycle

 The Day Cycle represents regular operation of the CubeSat during the “day”, or

the period of time in which it is exposed to the sun, has sufficient power, and is not

downlinking. Detection of a voltage above a certain threshold across a photoresistor

arranged in a voltage divider circuit will be used to enable this state. The photoresistor

chosen was the PDV-P8104. This photoresistor was chosen because of a favorable

difference between its “OFF” resistance and its “ON” resistance, which enabled greater

voltage resolution in reading the voltage divider circuit using an analog input from the

ESP32. Below is a schematic representation of the circuit.

Spring 2022 Group 12 Final Report

Group 12 25 EE Senior Design

Figure 15. The photoresistor monitoring circuit. PHOTORES_POWER is the output of

the ESP32’s GPIO32; the signal PHOTORES_MONITOR passes through a voltage-

follower op-amp before being monitored by the ESP32’s I38, which functions as an ADC

pin.

The circuit was designed in order to yield two largely different voltage readings.

Specifically, the voltage values desired were about 1.0V when dark and just under 3.3V

when light. While illuminated, the photoresistor has a resistance of 27-60 kΩ, resulting

in a voltage of about 3.1-3.2V on the monitor pin. While dark, the photoresistor has a

resistance of 2 MΩ, resulting in about 1.1V on the pin. This is a difference of about 2V;

since the ESP32 12-bit ADC has a resolution of about 1240/V, the two states are

separated by about 2480 analog values. This circuit is shown in Figure 15.

Day Cycle determination in code is done by the function dayCycleCheck(),

contained within Tumbling.cpp (See Appendix B, 9.2 ii.). In this state, everything is

enabled but the SDR. The SDR is not necessary here because there is no transmission.

Night Cycle

 The Night Cycle represents regular operation of the CubeSat during the “night”,

or the period of time in which it is not exposed to the sun, has sufficient power, and is

not downlinking. Reading of a photoresistor monitor voltage below the “day” threshold

enables this state. In this state, the, SDR, IMU, and Pi flight computer, leaving only the

ESP32 fully operational. Since there is no sun to charge the solar panels, the attitude

control system is unnecessary, meaning that the Pi and IMU can be shut off. If there is

an available window for downlink, the downlink state can be entered provided that the

battery has sufficient power. Night Cycle determination in code is made by a false

Spring 2022 Group 12 Final Report

Group 12 26 EE Senior Design

output from the function dayCycleCheck(), contained within Tumbling.cpp (See

Appendix B, 9.2 ii.).

Downlink

 In the downlink state, the SDR will be turned on using an enable signal to the

SDR MOSFET network. This state will be entered into based on the readings of a GPS

module on the completed CubeSat. The current iteration of the system does not

integrate a condition for entering downlink state based on an external signal, but since

we have demonstrated the ability to power the SDR, to switch it on and off using I2C

signals from the flight computer, and also to form data packets containing information

about anomalies and battery level, it is reasonable to state that implementing a downlink

state using our current system setup will be easily accomplished with modifications to

software only.

Low Power

 The Low Power state is entered when the charge level of the battery falls below a

certain threshold (10%). This condition will be detected by the battery fuel gauge and

the state triggered by the ESP32. In the low power mode, everything will be shut off

except for the battery fuel gauge and the ESP32, which will also place itself into sleep

mode. This state is exited upon batteries reaching 15% charge. Since our board had

several unforeseen issues with our selected fuel gauges (SDA and SCL lines were

flipped, both gauges had the same I2C slave address, documentation was poor), we did

not successfully implement low power detection in code. However, it is reasonable to

think that if we selected different fuel gauges, it would have been possible to implement

a low power check function within our finite state machine similarly to how we

implemented dayCycleCheck().

Sleep

 The sleep state represents a last-ditch attempt to save the batteries of the

CubeSat if their charge level falls below a dangerous threshold. Fully discharged LIPO

batteries have been known to become permanently damaged, and thus it is in the best

interest of the power system to avoid over-discharging them. Since LIPO batteries will

output less than nominal voltage if they are below a certain charge threshold, upon

reaching a dangerous level of discharge the LIPO will naturally output less than 3.3V,

resulting in a bias voltage that is too low to run the ESP32. Since we use a combination

of NMOS and PMOS in our MOSFET networks, a floating voltage on the NMOS gate

after ESP32 shutdown will result in a low output of the PMOS. This ensures that upon

Spring 2022 Group 12 Final Report

Group 12 27 EE Senior Design

ESP32 failure, our MOSFETs do not simply switch on all components and thereby drain

what little power remains in the battery.

The following section discusses anomaly detection, which was accomplished by

measuring input current to the Pi flight computer, the ESP’s IMU, and the Pi’s IMU, as

well as input voltage to the SDR. Current readings from the current sensors are made

indirectly by first measuring an analog volage output from the sensor and then mapping

to current within the code. Voltage readings were made by measuring voltage through a

voltage divider (to avoid overloading the analog input pins) and then mapping to true

voltage in code. Anomaly detection for the SDR was done using the checkAnomalies

function contained in Tumbling.cpp, while anomaly detectction for the Pi and the IMU’s

was done using the measure_imu_currents() function contained in sensors.cpp (See

Appendix B, 9.2 ii.).

Data processing for each analog input signal was tailored for each device in

order to detect anomalies for the specific device. The ACS725s, connected to the IMUs,

are expected to reach only about 1.67V or so under normal operation. Before the

voltage-follower, the output reading of the ACS724 goes through a voltage divider using

1 kΩ and 2 kΩ resistors, which attenuates the signal by a factor of ⅔. This reduces the

max voltage from 5V to about 3.4V, which is acceptable for the ESP32’s pins. The Pi

Zero’s input current is stable from around 100-200mA, which is indicated by about 1.7-

1.8V on the ADC pin. If the Pi is on and the voltage drops below or rises above these

values, the ESP32 reports a negative or positive current spike, respectively.

The voltage from the 9V converter is also monitored. The voltage is first passed

through a voltage divider using 1 kΩ and 560 Ω resistors, which attenuates the signal by

a factor of about 0.36. This means the max voltage into the op-amp is about 3.23V,

which is acceptable for the ESP32’s pins. This voltage, like the current sensor readings,

is passed through a voltage-follower op-amp to ensure signal integrity before reaching

the ESP32 pin.

3.5 Flight Computer Communication

The major system requirement for the communication with the ProtoSat flight

computer is that because the Pi Zero is the flight computer and the ESP controls a

subsystem of the CubeSat, the Pi must be in control of when it receives the ESP

reports. Therefore, the ESP had two I2C buses; one that the ESP controlled to

communicate with the IMU and fuel gauges that it controlled, and one that connected

the ESP to the Pi that the Pi controlled.

Spring 2022 Group 12 Final Report

Group 12 28 EE Senior Design

The ESP32 joins the TwoWire PiBus with an address of 0x08, and registers the

requestEvent() and receiveEvent() functions in the PiComm library to respond to

request and receive events on that bus. The receiveEvent() function is triggered when

the Pi writes to the ESP32, and the requestEvent() function is triggered when the Pi

reads from the ESP32. If the Pi is requesting data from the ESP32, it must first write to

the ESP32 to inform it of its request, so that when the requestEvent() function is

triggered, the ESP32 knows what data to return to the Pi.

Figure 16. Interaction between the ESP32 and the Pi Zero

If the Pi is sending a command to the ESP32, it can simply write to the ESP32.

Because all writes and reads begin with a write that triggers the receiveEvent() function,

the nature of the writing is determined by the opcode sent. Messages are sent in the

format of “opcode:data”, where the opcode is the function requested and the data is the

necessary data to complete that function. For example, the opcode to set the current

request ID is 4, so a write of “4:3” will cause the receiveEvent() function to set the

current request ID to 3, which is the request ID to send a tumbling report. Then, when

reading from the ESP32, the requestEvent() function has a switch statement that will

call the send_tumbling_report() function if the current_request is 3. The opcodes were

chosen to reduce communications over the I2C, and are abstracted in the Pi with the

ESP32Client class, with the following methods:

● get_anomaly_report()

● get_tumbling_report()

● restart_sensor()

Spring 2022 Group 12 Final Report

Group 12 29 EE Senior Design

● shutdown_sensor()

● get_current_sensor_readings()

See Appendix B for the complete ESP32Client class.

Figure 17. receiveEvent() function decision tree

The ESP32’s receiveEvent() function calls the following functions depending on

the opcode sent by the Pi:

● restart_device(int device_id)

● shutdown_device(int device_id)

The functionality to set the current_variable to be equal to the data sent is

uncomplicated and therefore is done in the receiveEvent() function instead of a

dedicated function.

Spring 2022 Group 12 Final Report

Group 12 30 EE Senior Design

Figure 18. requestEvent() function decision tree

The ESP32’s requestEvent() function calls the following response functions

depending on the current request variable:

● send_anomaly_report()

● send_tumbling_report()

● send_current_sensor_readings()

While the send_current_sensor_readings() was implemented successfully when

using the ESP32-S3 devkit, after the switch to the ESP32-MINI-1U we were unable to

get this data transfer working. Fortunately, if the current sensor readings were outside of

an acceptable range, this was reported in the anomaly report, so while some

functionality was lost, the ability to transfer crucial information was retained.

The ESP32 uses the Wire.h library to handle I2C communications, and the Pi

uses smbus2. The ESP32Client class is present in both the messages.py and onoff.py

scripts in the Pi/ directory, and all of the ESP32 I2C functions are in the PiComms.cpp

file in the ESP32/PiComms/ directory. See Appendix B to view selections of the

software and links to the complete software listing.

Spring 2022 Group 12 Final Report

Group 12 31 EE Senior Design

3.6 Interfaces

The ESP32’s I2C bus was designed to communicate with the IMUs and the fuel

gauges, but the fuel gauges’ SDA and SCL lines ended up swapped on the final board

design. We were able to establish functionality with the fuel gauge included in the

subsystem integration demo, but cut the fuel gauge from the final demonstration due to

this issue. The ESP32’s I2C bus is the TwoWire ESPBus, and is sent to the

Adafruit_ICM20948 icm instance used to read data from the IMU.

The ESP32 also reads in analog voltage input from the current sensors for the

ESP32’s IMU, the Pi’s IMU, and the Pi itself in the measure_imu_currents() function in

the Sensors.cpp file (see entry ii in Appendix B). The analog voltage is read in as a

value between 0 and 4095, which maps to 0 to 3.3V on the input pin. Each pin is

sampled 1,000 times before averaging the sensor value and completing the calculation

of the current. The sensor value is multiplied by (3.3/4095.0) to calculate the voltage on

the pin, and then the zero value is subtracted from the measurement. The zero value is

the voltage read on the pin when the device is off and the current is known to be zero;

the current sensors can measure both positive and negative voltage, so this is roughly

half of 3.3V. This voltage value is then divided by the sensitivity; for example, the IMU’s

current sensors measure 0.132A for every 1V, so the IMU voltages are multiplied by

1/0.132. The Pi’s current sensor operates at 5V, but is sent through a voltage divider

before being read in from the ESP32, so this voltage also has to be multiplied by 3.3/5

in addition to being divided by the sensitivity in order to calculate the current through the

Pi. A Pi current anomaly is triggered if the calculation of the current is greater than 1A or

less than 100mA, and an IMU current anomaly is triggered if the voltage that

corresponds to the current is more than 0.02V above or below the expected zero value.

This is because current powering the IMUs are below the sensitivity of the current

sensors.

3.7 Communications

The communications subsystem consists of a Sidekiq Z2 SDR from Epiq

Solutions, which we are responsible for powering and providing sensor data. The

Sidekiq Z2 SDR was chosen because it was donated to us by Epiq Solutions, with a

retail cost of roughly $20,000. It is also very small (30mm x 51mm x 5mm), very light (8

g), relatively low power (<2W), wideband (70 MHz to 6 GHz), has a high sample rate

(61.44 Msps), and is able to interface with Raspberry Pi.

 The SDR is powered by a 9V DC signal from a 2.5*0.7mm barrel plug connector.

This barrel plug connector connects to the output of the 9V MOSFET network through a

Spring 2022 Group 12 Final Report

Group 12 32 EE Senior Design

through hole connector, with and SDR enable signal from the ESP32 as the voltage

read on the gate of the N-Channel MOSFET at the beginning of the network, as

discussed in section 4.4. Since the Proto-Sat team has not yet developed the software

interface between the SDR and their Raspberry Pi flight computer, for now, the data

packetization requirement of this subsystem is fulfilled by sending battery level and

detected anomalies notifications to the flight computer over an I2C connection between

the ESP32 and the Pi. In the future, this data will be the input to signal processing

software that will modulate, encode, and send the data to the SDR for transmission.

Figure 19. Sidekiq Z2 software-defined-radio

4 System Integration Testing

4.1 Subsystem Testing

 Since almost the whole system was contained entirely on the board, the board

was built first before any testing could be done. This involved placing all surface mount

components, although through-hole components were left unconnected for the time

being. In practice, due to difficulties in placing the ESP32, an ESP32-S3 Devkit module

was used for initial testing by soldering wires from the Devkit’s GPIO pins to the

appropriate places on the board.

 Using a power supply, about 3.7V was supplied to the BT1 connector, which

provided power to the whole board save for the 9V supply. After it was determined that

the RPM5.0-2.0 would not be able to output 5V and the decision was made to use two

batteries in series, the test voltage was moved up to 6V. With this, the 1.8, 3.3, and 5V

converters were tested with multimeters. After the 9V converter board was connected,

the power supply was moved to the BT2 connector with a 3.7V supply and the 9V lines

were tested with a multimeter as well.

 To test charging, batteries were connected to the BT1 & BT2 connectors. A

green LED connected to the PGOOD pins of the MPPTs ensured that the batteries were

Spring 2022 Group 12 Final Report

Group 12 33 EE Senior Design

recognized as valid input sources. Then, solar panels were connected to VSC1 &

VSC2. When a large light was shone on them, the red LEDs connected to the CH pins

lit up, indicating that the MPPT was charging the batteries using the solar panels.

 To ensure proper testing of the anomaly detection system, software needed to be

written. “Hello, World!” code was written to be installed on the ESP32 using PlatformIO,

Visual Studio Code, and an Arduino framework, so that the ESP32’s connections and

download boot could be tested. Then, GPIO pins corresponding to enable signals for

different devices were toggled periodically, and a multimeter was used to ensure the

power lines of each device were actually changing. Additionally, in this stage, code was

developed for the current sensors, and the currents were displayed on the serial monitor

while the devices toggled. The difference in readings indicated the current sensors were

functioning properly, and the current sensors were subsequently calibrated to each

device's respective zero and typical operating values.

The devices tested in this way included the IMUs, the Pi Zero, and the SDR. For

testing purposes here and elsewhere, the Pi was connected using Dupont wires.

Moreover, while the Pi was on, we used the ssh protocol to connect to it. Its ability to

ssh indicated that it was working as expected.

To test the photoresistor and its circuit, we wrote high the GPIO32 pin, which

provided its power. Then, the analog signal of the photoresistor was monitored using

the serial monitor while the photoresistor was exposed and covered. A drastic difference

in values between these states indicated the circuit was working properly.

 Once the devices could be turned on, I2C lines were tested. Both the ESP32’s

bus with the fuel gauges and IMU and the Pi’s bus with the ESP32 and another IMU

were tested. Unfortunately, we found the fuel gauges unable to be used due to an error

in schematic design. Signals were read from the IMUs using an Adafruit library for the

ICM-20948, and signals were traded between the Pi and ESP32 using standard I2C

code. To ensure proper functioning of the IMUs, the board was shaken and rotated to

indicate tumbling while the serial monitor was observed.

After the IMUs were confirmed to be working, the state detection system was

tested in full by creating the environmental conditions needed to toggle between each

state. On boot, the board was tested to ensure that only the IMU would be on. The

board was then shaken to simulate tumbling, then the photoresistor was alternately

covered and uncovered to simulate day and night cycles.

Spring 2022 Group 12 Final Report

Group 12 34 EE Senior Design

4.2 Testing Outcomes

 By taking measurements from the outputs of the converters, we guarantee our

power system’s basic functionality. The charging requirements are also guaranteed by

observing the MPPTs and their LEDs. By testing the ESP32’s ability to enable and

disable devices, the basic capability of one main feature of the anomaly and state

detection subsystem is shown. Another capability of this subsystem is shown by the

current sensor, photoresistor, and 9V analog readings as the finite state machine

progresses between states. This subsystem is essentially completed by demonstrating

these two processes in conjunction.

 The tumbling detection is shown by the ESP32 receiving proper signals from the

IMUs when tumbling is being simulated.

 The Interfaces subsystem is demonstrated with the proper functioning of the I2C

busses between all devices; particularly, the testing demonstrated that data could be

transferred from the ESP32 and read on the Pi via the ssh protocol.

 Since all devices that were connected properly were able to function properly

under expected conditions (tumbling, light, no light, charging, battery-powered, etc.), we

also concluded that noise in the circuit was not pronounced enough to cause

interference, although more robust testing may be needed for a final design. Based on

measurements taken with a multimeter, we also concluded that the system was properly

grounded, with continuity between ground pins, and no devices were left floating when

not being powered. The size limitations were considered satisfied when the fully-built

board was able to be placed in the ProtoSat without extra adjustment to the ProtoSat’s

design.

5 Users Manual/Installation manual

5.1 Installation

If not already, the board must be constructed by placing components and ICs. It

is recommended to use a pick-and-place machine and a reflow oven for this process.

The pick-and-place should be used in conjunction with a schematic of the complete

board design, as the board itself does not have labeled values. Leave off the through-

hole components and the PMOSes (Q2, Q3, Q5, Q7, Q9, Q10, Q11); NMOSes may be

placed normally. In accordance with the ESP32-MINI-1U datasheet, ensure the reflow

process heats the board above 217°C (~235-250°C) for 60-90 seconds.

Then, place the through-hole components. Connect the Pi Zero 2 W and the

external 9V converter board using header pins. Connect BT1, BT2, and the solar cell

Spring 2022 Group 12 Final Report

Group 12 35 EE Senior Design

inputs to connectors compatible with the desired batteries and solar cells. BT1 should

be connected to a rechargeable battery providing at least 5V, while BT2 should be

connected to one providing at least 3.7V. Connect the photoresistor, ensuring adequate

length of wires so that the photoresistor can stick outside the CubeSat. Finally, connect

header pins to the ESP32 programming contacts so that a programmer board can be

used.

The configuration of the MOSFETs deviates from the original board design for

proper functioning. During board design, the source and drain for each PMOS

configuration were flipped, so the PMOSes must be turned upside down and rotated in

order to contact the correct pads. Consult the datasheet and the schematic to ensure

that the source, drain, and gate are placed correctly. Additionally, two wires and a

resistor (~10 kΩ) must be added. Figure 20 below shows how these circuits should be

modified. Specifically:

● the input pins of each IMUs’ current sensor (VDD_IMUPI_IN &

VDD_IMUESP_IN) should be shorted to 1.8V (VCC) with a wire;

● a 10 kΩ resistor should connect +5V & N$15;

● a PMOS with a low to mid-range threshold voltage (<1.0V, i.e. FDN352AP)

should be placed so that the source is connected to +5V, the gate to N$15

(controlled by PI_EN), and the drain to POWER_PI_IN, the input of the Pi’s

current sensor;

● a PMOS with a mid-range threshold voltage (1.0-2.5V, i.e. FDN352AP) should be

placed so that the source is connected V9V, the gate to N$4 (controlled by

SDR_EN), and the drain to SDR, the voltage that the SDR receives.

Figure 20. Modifications made to the board to ensure proper MOSFET circuit

configurations.

Once built, the main board and its peripherals may be placed inside the ProtoSat.

Place the board inside the Sat, and use the 2.4mm screw holes on the corners of the

board for mounting. Once code has been written into the ESP32 (below), remove the

programming pins and ensure the ESP32 starts in flash boot when connected to power.

Spring 2022 Group 12 Final Report

Group 12 36 EE Senior Design

5.2 Setup

Download the code from GitHub or from the senior design website. Create a

PlatformIO project with VSCode, and select the ESP32 Dev Module option. Copy the

PiComm/, Sensors/, and Tumbling/ directories from the ESP/ directory into the

lib/directory of the project, and replace the main.cpp and platform.ini files in the base

directory with the main.cpp and platform.ini files in the ESP/ directory. Add the following

Adafruit libraries to the project: Adafruit Unified Sensor, Adafruit ICM20X, and Adafruit

MAX1704X. Compile and upload the code to the ESP32-MINI with an ESP32

programmer. The ESP32 programmer can be connected via header pins next to the

ESP32-MINI on the board.

Connect to the SDNet wifi in the Senior Design Lab. Once you see the green

LED on the Pi on, run the command ssh pi@192.168.10.140 to ssh into the Pi Zero.

Note that it will take a while for the Pi to boot, even after the green LED turns on. If you

are unsure if the Pi is up and running, run ping 192.168.10.140 to see if the data

packets sent are timing out. If they are timing out, try restarting the Pi. If none of the

above works, run dns-sd -G v4 hal.local. If an entry is returned, check the IP address of

your ssh command and the entry matches. If not, retry the ssh command with the newly

found IP address. Once you have ssh-ed into the Pi, run the command cd SeniorDesign

to enter the SeniorDesign demonstration directory, and run python messages.py or

python onoff.py to run the demonstration scripts. The messages.py script will repeatedly

ask the ESP32 for updates on anomalies and tumbling state, and requires no user

input. The onoff.py script can be used to turn devices on and off depending on user

entry; enter on:5 to the prompt to turn the SDR on. The two devices available for turning

on and off are the Pi with device ID 4 and the SDR with device ID 5, although, if you

enter off:4, the Pi will be powered off and you will no longer have a working SSH

connection to the Pi.

5.3 Signs of a Working Product

Upon powering through batteries, the green LEDs connected to the MPPTs, PG1

& PG2, should light up, indicating valid input sources. Upon connecting solar panels and

shining lights on them, the red LEDs CH1 & CH2 should light up. The ESP32 itself

should be able to program. Once “tumbled” (i.e. shaken or rotated), the Pi Zero should

also boot, indicated by a green LED (note: for the demo code, the Pi Zero is on

automatically). Proper functioning of the Pi Zero should be ensured by using the ssh

protocol; this may require light shining on the solar panels for a proper amount of

current draw. The Pi’s programs may be run to ensure correct operation; see above for

more details.

https://github.com/bgoodwine/SeniorDesign
https://seniordesign.ee.nd.edu/2023/DesignTeams/irishsat/downloads.html

Spring 2022 Group 12 Final Report

Group 12 37 EE Senior Design

5.4 Troubleshooting

There are myriad ways to troubleshoot the board, and which method should be

used is based on the specific issue being met. In general, any troubleshooting may start

with a visual inspection of the board. Ensure there are no pins shorted and that there

are good electrical connections between components and the board. Look especially at

contacts between the board and externals. Loose copper or excessive solder may

create shorts around the board.

For power issues, connect BT1 and/or BT2 to a power supply, depending upon

which device is misbehaving (e.g. for the 9V converter and SDR, connect to BT2; for all

other devices, connect to BT1). Provide a voltage of at least 5V to BT1 or 3.7V to BT2.

Check that all outputs of the converters are at expected values; the 1.8V converter and

9V converter may need to be enabled by the ESP32. If there is a discrepancy between

expected and actual voltage outputs, check for poor connections from the specific

converter, and consider replacing it.

For issues involving ESP32 programming, ensure that the pins IO0 and EN are

being controlled by the programmer. If not, consider replacing the programmer, or using

wires to connect these pins to an appropriate value. Ensure that the correct framework

is being used on the IDE (i.e. an ESP32 devkit framework, not an ESP32-C3 or an

ESP32-S3 framework). If issues still persist, consider replacing the ESP32 or building a

new board.

For issues involving I2C connections, ensure that the bus is declared correctly in

the code. The ESP32 should be a master on the bus with pins GPIO33 & GPIO25

respectively, and a slave with pins GPIO22 & GPIO19 respectively. Consider checking

these pins with a logic analyzer configured to read I2C signals. If issues still persist, test

code may be written to ensure the GPIO pins may be pulled high and low. For the IMUs,

Ensure that the level shifters are working properly; if the GPIO pins are pulled high to

3.3V, the corresponding SDA & SCL pins on the level shifter that are connected to the

IMU should be pulled to 1.8V. If the GPIO pins are pulled to ground, those pins should

be pulled to ground as well. For the Pi, try ssh’ing and seeing if code can be run. If this

does not work, try rebooting the system with a higher voltage (do not exceed 8.4V) or

with solar cells with lights shining attached.

 To troubleshoot the photoresistor, while it is receiving power, monitor the output

voltage using a serial monitor or a multimeter. Note the reading when the photoresistor

is exposed to ambient light. Then, totally cover the photoresistor in darkness by clasping

it with both hands. The resistance should change, which would be reflected by a change

in voltage; if not, consider replacing the photoresistor.

Spring 2022 Group 12 Final Report

Group 12 38 EE Senior Design

6 To-Market Design Changes

 Quite a few changes will need to be made to our board before it will be ready to

be placed in our CubeSat and launched into orbit. To begin, the board needs to be

changed to account for some of the issues that were discussed above. Specifically,

changes will need to be made to the MOSFET circuit system in order to ensure proper

operation; this edit will not be hard to do but will require reprinting the boards. In

addition, we want to add another MOSFET circuit for ProtoSat’s motor controller board.

As we have it right now, the motor control board connects directly to the 9 volt

converter, while the SDR connects to 9 volts through our board. For a future iteration,

we will add a header pinout to attach the motor controller board to and create a

MOSFET network that is similar to the ones we have for other components. This

MOSFET network will ensure that the motor controller board can be turned off and

disconnected from our flight computer without us losing communication with the SDR.

We will need to find a new 5 volt converter to use on our final board for our

satellite. We had issues with the one that we chose as it seemed to only be a buck

converter as opposed to a buck-boost converter. As a result, the converter could not

boost the 3.7 volt to 4.4 volt input signal to 5 volts, but instead needed a signal that was

greater than 5 volts. To make the converter work for our demo, we connected two

batteries in series to produce a greater voltage on the 5 volt converter. We cannot use

this design on our CubeSat for two specific reasons. The first reason is that we do not

want to have a third battery due to mass and space constraints. The second and more

important reason is that we would be unable to charge two batteries that are connected

in series, so the only battery that could get charged would be the one supplying power

to the 9 volt rail. As a result, it is obvious that we need to find a replacement part for the

5 volt converter for our final product.

We also will need to edit the fuel gauges, as we accidentally flipped the SDA and

SCL pins in our schematic. We are also considering changing the fuel gauges as the

ones we chose do not have great documentation. We neglected to include a current

sensor for the SDR on our original design due to time, budget, and space constraints.

Since the SDR is such a functional part of our satellite and to detect anomalies on all of

our sensors and interfaces, we would definitely add a current sensor for the SDR before

calling this a final product. Due to the high voltage (9V) and max current draw during

transmission (300 mA), we would need to find a current sensor that is properly rated,

which might be hard to find and costly.

In addition, we will replace the current sensors that are included in our design

with different current sensors. We originally thought that we would have to read larger

currents than we actually needed to. Due to this belief, we chose current sensors that

Spring 2022 Group 12 Final Report

Group 12 39 EE Senior Design

had high current tolerances but were not very sensitive to smaller changes in current.

Upon testing, we discovered that we actually need to measure very small currents (in

the microamp to milliamp to range) that can also handle reading larger spikes in current

in case of an anomaly. Thus, we will look deeper into finding a more suitable current

sensor for future iterations of our board. We are currently considering either the

ACS724LLCTR-2P5AB-S, which has a sensing range of ±2.5A, or the ACS724LLCTR-

05AU-S, which has a sensing range of 0-5A. Both of these sensors have a sensitivity of

800mV/A, which would be reduced to about 528mV/A when used with the 3.3V pins of

the ESP32. Alternatively, other options such as low input bias current op-amps could be

explored.

 While placing everything on the board, we also came across a number of

different ways to improve the layout of the board. For example, the position of the

header pin spaces for the Pi can be shifted to another portion of the board and we can

place less components with significant height around it in order to fit the Pi on top of the

board as opposed to on the bottom. Shifting parts around will be made significantly

easier if we also had bottom mounted components. We thought about utilizing bottom

mounted components when making our original board design, but we could not due to

potential concerns from the ProtoSat team in regards to the position of the board in the

CubeSat. More research can be done on if bottom mounted components will be

possible to use on our board if the ProtoSat team deems it necessary. We also put too

many vias to ground under the 5 volt and 3.3 volt converters, which are both parts that

get mounted to the board from the bottom. If we had misplaced these parts by just a few

millimeters, one of the pads could have made contact with the ground via and it would

not have worked. Thus, we should decrease the amount of ground vias for the

converters and move them out from under the components.

 The biggest design consideration that will need to be made is if the components

we chose are suitable to launch into space. Space hardened materials and other

components that are rated for space are not cheap, not easy to come by, and are

normally made to order, so the lead time can be months. Due to the cost and time

restraints, we could not make our board completely ready to launch. Instead, we made

the board to fit the prototype CubeSat that was being made by the ProtoSat team.

When our club gets selected for a launch, the team will need to build an entirely new

system that is prepared for launch, and our board will be included in this redesign.

7 Conclusions

 To conclude, we deem our project as a success for the club. Although our board

is not a final product that can be put into a satellite and launched, we knew coming into

this project that this would be the case due to some of the aforementioned reasons (i.e.

Spring 2022 Group 12 Final Report

Group 12 40 EE Senior Design

cost and time). Choosing to complete this project allowed us to consolidate almost all of

our electronics into a compact series of boards that fit within the dimensions given by

the ProtoSat team, thus making our club more attractive in the long run to be selected

for a CubeSat mission.

8 Appendices

8.1 Appendix A. Complete Hardware Schematics

Figure 21. ESP32 Schematic

Spring 2022 Group 12 Final Report

Group 12 41 EE Senior Design

Figure 22. ESP32 Programming Pins

Figure 23. Pi Zero Schematic

Spring 2022 Group 12 Final Report

Group 12 42 EE Senior Design

Figure 24. 1.8V, 3.3V, 5V, and 9V Converter Schematics

Figure 25. MOSFET Circuit Schematics

Spring 2022 Group 12 Final Report

Group 12 43 EE Senior Design

Figure 26. Current Sensor Schematics

Spring 2022 Group 12 Final Report

Group 12 44 EE Senior Design

Figure 27. Level Shifter Schematics

Figure 28. Fuel Gauge Schematic

Figure 29. MPPT Linear Charger

Spring 2022 Group 12 Final Report

Group 12 45 EE Senior Design

Figure 30. IMU Schematic

Figure 31. Unity Gain Op Amp Schematic - Quad Input

Spring 2022 Group 12 Final Report

Group 12 46 EE Senior Design

Figure 32. Unity Gain Op Amp Schematic - Single Input

Figure 33. Photoresistor Circuit Schematic

Spring 2022 Group 12 Final Report

Group 12 47 EE Senior Design

Figure 34. Final Board Layout

8.2 Appendix B. Complete Software Listings

i. main.cpp for the ESP32 (main.cpp)

https://github.com/bgoodwine/SeniorDesign/blob/main/ESP32/main.cpp

Spring 2022 Group 12 Final Report

Group 12 48 EE Senior Design

// Include the Wire library for I2C
#include <Wire.h>
#include "Arduino.h"
#include <Adafruit_Sensor.h>

// Private libaries
#include "PiComms.h"
#include "Tumbling.h"
#include "Sensors.h"

// External TwoWire I2C wires from Tumbling.h and PiComms.h
extern TwoWire PiBus;
extern TwoWire ESPBus;
extern Adafruit_ICM20948 icm;
extern Adafruit_MAX17048 maxlipo;

// global tumbling/anomaly values
extern String current_anomaly_report;
extern String current_tumbling_report;
extern int current_tumbling_state;

// global current values
extern double piIMUCurrent;
extern double piCurrent;
extern double espIMUCurrent;

// Tumbling external global state variables
extern int currentState;
extern int oldCurrentState;
extern int anomaly;
extern float outputsArray[3];
extern float tumbleTime;
extern float tumbleStart;
extern float stillStart;
extern float stillTime;
extern float batteryLevel;
extern float oldBatteryLevel;
extern float battThreshold;

void turnOnPi() {
 digitalWrite(Pi5_en, HIGH);
 digitalWrite(PI_IMU_en, HIGH);
 digitalWrite(LVL_SHFT_PI_EN, HIGH);
 Serial.println("Pi, Pi IMU, and Pi level shifter enabled.");
 delay(1000);
 PiBus.begin((uint8_t)ESP_ADDR, (int)PI_SDA, (int)PI_SCL);

Spring 2022 Group 12 Final Report

Group 12 49 EE Senior Design

 Serial.println("Joined Pi I2C bus.");
}

void turnOffPi() {
 // turn off pi
 // Pi low, IMU pi low, pi imu level shifter, SCL/SDA lines of
pi bus
 digitalWrite(Pi5_en, LOW);
 digitalWrite(PI_IMU_en, LOW);
 digitalWrite(LVL_SHFT_PI_EN, LOW);
 Serial.println("Pi, Pi IMU, and Pi level shifter disabled.");
}

void setup() {
 // Serial monitor initialization
 Serial.begin(115200);
 delay(500);
 while(!Serial);

 // Register PiComms.h functions to handle I2C data from Pi
 PiBus.onReceive(receiveEvent);
 PiBus.onRequest(requestEvent);

 pinMode(PR_en, OUTPUT); // devices enable pins
 pinMode(Pi5_en, OUTPUT);
 pinMode(SDR_en, OUTPUT);
 pinMode(IMU_en, OUTPUT); // IMUs
 pinMode(PI_IMU_en, OUTPUT);

 pinMode(LVL_SHFT_EN, OUTPUT); // level shifters
 pinMode(LVL_SHFT_PI_EN, OUTPUT);
 pinMode(DCDC_EN, OUTPUT); // DC-DC converter

 // enable i2c communication periferals
 digitalWrite(LVL_SHFT_EN, HIGH);
 digitalWrite(LVL_SHFT_PI_EN, HIGH);
 Serial.println("Level shifters for Pi and ESP's IMU enabled.");
 digitalWrite(DCDC_EN, HIGH);
 Serial.println("DC-DC converter enabled.");

 delay(10);

 // Begin IMU I2C connection on ESP controlled bus
 ESPBus.begin((int)ESP_SDA, (int)ESP_SCL);
 Serial.println("Joined ESP's I2C bus.");

Spring 2022 Group 12 Final Report

Group 12 50 EE Senior Design

 // Initialize current sensor for analog input & current
measurement
 pinMode(PI_IMU_CURRENT, INPUT);
 pinMode(ESP_IMU_CURRENT, INPUT);
 pinMode(PI_CURRENT, INPUT);

 // Write low all devices except IMU to initialize
 digitalWrite(PR_en, LOW);
 Serial.println("Photoresistor: OFF");
 digitalWrite(IMU_en, HIGH);
 Serial.println("IMU: ON");
 digitalWrite(SDR_en, LOW);
 Serial.println("SDR: OFF");

 // turn off pi
 turnOnPi();
 delay(1000);

 // Initialize MAX1704X (fuel gauge)
 /*if(!maxlipo.begin(&ESPBus)) {
 Serial.println("Oops, no MAX17048 detected...");
 } else {
 Serial.print(F("Found MAX17048"));
 Serial.print(F(" with Chip ID: 0x"));
 Serial.println(maxlipo.getChipID(), HEX);
 }*/

 // Initialise IMU
 Serial.println("Adafruit ICM20948 test!");
 if (!icm.begin_I2C((uint8_t)0x69, &ESPBus, (int32_t)0)) {
 Serial.println("Failed to find ICM20948 chip");
 } else {
 Serial.println("\nSUCCESS!\n");
 }

 Serial.print("Gyro range set to: ");
 switch (icm.getGyroRange()) {
 case ICM20948_GYRO_RANGE_250_DPS:
 Serial.println("250 degrees/s");
 break;
 case ICM20948_GYRO_RANGE_500_DPS:
 Serial.println("500 degrees/s");
 break;
 case ICM20948_GYRO_RANGE_1000_DPS:
 Serial.println("1000 degrees/s");
 break;

Spring 2022 Group 12 Final Report

Group 12 51 EE Senior Design

 case ICM20948_GYRO_RANGE_2000_DPS:
 Serial.println("2000 degrees/s");
 break;
 }

 uint8_t gyro_divisor = icm.getGyroRateDivisor();
 float gyro_rate = 1100 / (1.0 + gyro_divisor);

 Serial.print("Gyro data rate divisor set to: ");
 Serial.println(gyro_divisor);
 Serial.print("Gyro data rate (Hz) is approximately: ");
 Serial.println(gyro_rate);

 Serial.println("I2C connections ready.");
 Serial.println("Device Control System Initialized.");
 Serial.println("Anomaly/State Detection System Initialized.");
 Serial.println("Undeployed state detected...");

}

void loop() {
 delay(1000);
 static int i = 0;

 oldBatteryLevel = batteryLevel;

 // retrieve current anomaly report
 currentState = checkState(currentState, oldCurrentState,
batteryLevel);
 updateState(currentState, oldCurrentState);
 anomaly = checkAnomalies(currentState);
 batteryLevel = 0;
 String old_anomaly_report = sendReport(anomaly,
oldBatteryLevel, batteryLevel);
 //Serial.print("Old anomaly report: ");
 //Serial.println(old_anomaly_report);

 oldCurrentState = currentState;

 // retrieve current data as anomaly report
 current_anomaly_report = measure_imu_currents(piIMUCurrent,
espIMUCurrent, piCurrent);
 current_anomaly_report = " " + current_anomaly_report;
 Serial.println("Current anomaly report: ");

Spring 2022 Group 12 Final Report

Group 12 52 EE Senior Design

 Serial.println(current_anomaly_report);

 // save current cycle state for tumbling report
 current_tumbling_state = currentState;
 Serial.print("Current detected state: ");
 Serial.println(current_tumbling_state);

}

ii. Links to GitHub for the libraries written for the ESP32 main.cpp program

● PiComm.cpp

● PiComm.h

● Sensors.cpp

● Sensors.h

● Tumbling.cpp

● Tumbling.h

iii. platform.ini configuration file

; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html

[env:esp32dev]
platform = espressif32
board = esp32dev
framework = arduino
monitor_speed = 115200
lib_deps =
 adafruit/Adafruit Unified Sensor@^1.1.9
 adafruit/Adafruit ICM20X@^2.0.5
 adafruit/Adafruit MAX1704X@^1.0.0

iii. ESP32Client class for the Pi

#!/usr/bin/env python

SDA1 GPIO2 pin 3

https://github.com/bgoodwine/SeniorDesign/blob/main/ESP32/PiComm/PiComm.cpp
https://github.com/bgoodwine/SeniorDesign/blob/main/ESP32/PiComm/PiComm.h
https://github.com/bgoodwine/SeniorDesign/blob/main/ESP32/Sensors/Sensors.cpp
https://github.com/bgoodwine/SeniorDesign/blob/main/ESP32/Sensors/Sensors.h
https://github.com/bgoodwine/SeniorDesign/blob/main/ESP32/Tumbling/Tumbling.cpp
https://github.com/bgoodwine/SeniorDesign/blob/main/ESP32/Tumbling/Tumbling.h

Spring 2022 Group 12 Final Report

Group 12 53 EE Senior Design

SCL1 GPIO3 pin 5

J8
1 2
SDA 5V
SCL GND

connect GPIO2 on Pi to 22 on ESP32 (SDA)
connect GPIO3 on Pi to 21 on ESP32 (SDL)

ls /dev/*i2c* results in /dev/i2c-1

import array
import struct
import time
from smbus2 import SMBus

class ESP32Client:
 def __init__(self):
 # initialize i2c parameters
 self.addr = 0x8 # ESP32 address
 self.offset = 0
 self.bus = SMBus(1) # 1 = /dev/ic2-1
 self.num_current_bytes = 8 # size of a double

 # send one 32B message to Pi
 def send_msg(self, msg, verbose=False):
 if len(msg) > 32:
 print('ERROR: msg is > 32B, use send_long_msg >:(')
 return False

 # normalize to 32B
 while len(msg) < 32:
 msg = msg + '\n'

 if verbose:
 print(f'Sending 32B message: {msg.strip()}')
 print(f'Length of message: {len(msg)}')
 print('')

 # convert to byte array
 byte_msg = bytearray()
 byte_msg.extend(map(ord, msg))
 if verbose:
 print(f'bytes: {byte_msg}')
 print(f'len: {len(byte_msg)}')

Spring 2022 Group 12 Final Report

Group 12 54 EE Senior Design

 print('')

 # write bytes
 self.bus.write_i2c_block_data(self.addr, self.offset,
byte_msg)
 if verbose:
 print('Done sending.')
 return True

 # request status report from the ESP32
 def get_anomaly_report(self):
 # send status report request to esp
 self.send_msg('4:0')
 msg = '0:' + '\0'
 if not self.send_msg(msg):
 return ''

 msg = ''
 # read response from esp
 byte = self.bus.read_byte(self.addr)
 msg += chr(byte)
 #print(f'Skipping: {byte} -> {hex(byte)} -> {chr(byte)}')
 time.sleep(0.25)
 byte = self.bus.read_byte(self.addr)
 msg += chr(byte)
 #print(f'Skipping: {byte} -> {hex(byte)} -> {chr(byte)}')
 time.sleep(0.25)
 while byte != 0:
 byte = self.bus.read_byte(self.addr)
 msg += chr(byte)
 #print(f'{byte} -> {hex(byte)} -> {chr(byte)}')
 time.sleep(0.25)
 msg += chr(self.bus.read_byte(self.addr))
 time.sleep(0.1)

 # remove opcode:
 #msg = msg[2:]

 return msg

 def get_tumbling_report(self):
 # send status report request to esp
 self.send_msg('4:3')
 msg = '0:' + '\0'
 if not self.send_msg(msg):
 return ''

Spring 2022 Group 12 Final Report

Group 12 55 EE Senior Design

 msg = ''
 # read response from esp
 #msg += chr(self.bus.read_byte(self.addr))
 byte = self.bus.read_byte(self.addr)
 letter = chr(byte)
 #print(f'Skipping: {byte} -> {hex(byte)} -> {chr(byte)}')
 time.sleep(0.25)
 byte = self.bus.read_byte(self.addr)
 letter = chr(byte)
 #print(f'Skipping: {byte} -> {hex(byte)} -> {chr(byte)}')
 time.sleep(0.25)
 #msg += letter
 while byte != 0:
 byte = self.bus.read_byte(self.addr)
 letter = chr(byte)
 #print(f'{byte} -> {hex(byte)} -> {chr(byte)}')
 msg += letter
 time.sleep(0.25)
 msg += chr(self.bus.read_byte(self.addr))
 time.sleep(0.1)

 # remove opcode:
 #msg = msg[2:]
 return msg

 # request message from ESP32 for SDR
 def get_msg(self):
 # opcode 4 sets request id, request id 0 is send message
 self.send_msg('4:2')

 # read in 8 bytes = sizeof(double)
 msg = ''
 for i in range(0, 23):
 msg += chr(self.bus.read_byte(self.addr))
 time.sleep(0.05)
 time.sleep(0.1)

 print(msg)
 return msg

 # request current data from ESP32
 def get_current_sensor_readings(self):
 # opcode 4 sets request id, request id 1 is send sensor
readings

Spring 2022 Group 12 Final Report

Group 12 56 EE Senior Design

 self.send_msg('4:1')

 # read in 8 bytes = sizeof(double) for Pi current
 status = bytearray()
 byte = self.bus.read_byte(self.addr)
 #print(f'Skipping: {byte} -> {hex(byte)} -> {chr(byte)}')
 time.sleep(0.25)
 for i in range(0, 8):
 #status.append(self.bus.read_byte(self.addr))
 byte = self.bus.read_byte(self.addr)
 status.append(byte)
 #print(f'{byte} -> {hex(byte)} -> {chr(byte)}')
 time.sleep(0.25)
 time.sleep(2)
 piIMUCurrent = struct.unpack('d', status)[0]

 # read in ESP's IMU's current
 status = bytearray()
 byte = self.bus.read_byte(self.addr)
 #print(f'Skipping:{byte} -> {hex(byte)} -> {chr(byte)}')
 time.sleep(0.25)
 for i in range(0, 8): # 8 bytes = sizeof(double)
 #status.append(self.bus.read_byte(self.addr))
 byte = self.bus.read_byte(self.addr)
 #print(byte)
 status.append(byte)
 #print(f'{byte} -> {hex(byte)} -> {chr(byte)}')
 time.sleep(0.25)
 time.sleep(2)
 espIMUCurrent = struct.unpack('d', status)[0]

 # read in Pi's IMU's current
 status = bytearray()
 byte = self.bus.read_byte(self.addr)
 #print(f'Skipping: {byte} -> {hex(byte)} -> {chr(byte)}')
 time.sleep(0.25)
 for i in range(0, 8):
 #status.append(self.bus.read_byte(self.addr))
 byte = self.bus.read_byte(self.addr)
 #print(byte)
 status.append(byte)
 #print(f'{byte} -> {hex(byte)} -> {chr(byte)}')
 time.sleep(0.25)
 time.sleep(2)
 piCurrent = struct.unpack('d', status)[0]

Spring 2022 Group 12 Final Report

Group 12 57 EE Senior Design

 # read in battery &
 status = bytearray()
 byte = self.bus.read_byte(self.addr)
 #print(f'Skipping: {byte} -> {hex(byte)} -> {chr(byte)}')
 time.sleep(0.25)
 for i in range(0, 8):
 status.append(self.bus.read_byte(self.addr))
 #print(f'{byte} -> {hex(byte)} -> {chr(byte)}')
 time.sleep(0.25)
 time.sleep(2)
 batteryPerc = struct.unpack('d', status)[0]

 return piIMUCurrent, espIMUCurrent, piCurrent,
batteryPerc

 def restart_sensor(self, sensor_id):
 print(f'Sending request to restart sensor {sensor_id}')
 msg = '1:' + str(sensor_id) + '\0'
 self.send_msg(msg)

 def shutdown_sensor(self, sensor_id):
 print(f'Sending request to shutdown sensor {sensor_id}')
 msg = '2:' + str(sensor_id) + '\0'
 self.send_msg(msg)

 def misc_msg(self, msg):
 print(f'Sending misc. message to ESP32: {msg}')
 opcode = '3'
 msg = '3:' + msg + '\0'
 self.send_msg(msg)

iv. Scripts utilizing this class for the demonstration

● messages.py

● onoff.py

8.3 Appendix C. Relevant Parts and Component Datasheets

Most recent BOM - please see for all capacitors and resistors used

List of Relevant Parts (Mouser/Digikey page with datasheet is linked)

● 1.8V DC-DC Buck Converter

● 3.3V DC-DC Buck Converter

● 5V DC-DC Boost Converter

https://github.com/bgoodwine/SeniorDesign/blob/main/Pi/messages.py
https://github.com/bgoodwine/SeniorDesign/blob/main/Pi/onoff.py
https://docs.google.com/spreadsheets/d/1ET4QRZTBqn2NHlDovS_aZmfU0LiGEl2pIKN__wE0EtQ/edit?usp=sharing
https://www.mouser.com/ProductDetail/Torex-Semiconductor/XCL210C181GR-G?qs=AsjdqWjXhJ9v1T189G2FAg%3D%3D
https://www.mouser.com/ProductDetail/RECOM-Power/RPM3.3-2.0?qs=qSfuJ%252Bfl%2Fd5DnUgeQnzUCQ%3D%3D
https://www.mouser.com/ProductDetail/RECOM-Power/RPM5.0-2.0?qs=qSfuJ%252Bfl%2Fd5ZoJchXFXdTg%3D%3D

Spring 2022 Group 12 Final Report

Group 12 58 EE Senior Design

● 9V DC-DC Boost Converter

● Ferrite Bead

● Raspberry Pi Zero 2W

● IMU

● ESP32-MINI-1U-H4 Module

● Level Shifter

● Battery Fuel Gauge

● Schottky Diode

● Unity Gain Op Amp - Quad input

● 3.3V Current Sensor

● 5V Current Sensor

● Unity Gain Op Amp - Single input

● pMOS

● nMOS

● MPPT Controller

● Photoresistor

https://www.digikey.com/en/products/detail/pololu-corporation/4015/16164502?s=N4IgTCBcDa4IwA4DMBaALABjgVhQOQBEQBdAXyA
https://www.mouser.com/ProductDetail/Wurth-Elektronik/742792510?qs=5twSNpOB8IABB9Afmrmq3A%3D%3D
https://datasheets.raspberrypi.com/rpizero2/raspberry-pi-zero-2-w-product-brief.pdf
https://www.mouser.com/ProductDetail/TDK-InvenSense/ICM-20948?qs=u4fy%2FsgLU9OtGc31yF%2Friw%3D%3D&utm_source=findchips&utm_medium=aggregator&utm_campaign=ICM-20948&utm_term=ICM-20948&utm_content=TDK
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-MINI-1U-H4/15222546?utm_adgroup=RF%20Transceiver%20Modules&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Product_RF%2FIF%20and%20RFID_NEW&utm_term=&utm_content=RF%20Transceiver%20Modules&gclid=CjwKCAiA0JKfBhBIEiwAPhZXD1cVk1sHI8VM50ej9UUYY7rVkKgTavNkScss18wcDm34XmwBnrSFwhoCjs0QAvD_BwE
https://www.mouser.com/ProductDetail/Texas-Instruments/TCA39306DCURQ1?qs=MyNHzdoqoQJIcXi5bs8pKg%3D%3D
https://www.digikey.com/en/products/detail/analog-devices-inc.-maxim-integrated/MAX17043G%2BT/15786769?utm_adgroup=Integrated%20Circuits%20%28ICs%29&utm_source=google&utm_medium=cpc&utm_campaign=Shopping_Supplier_Maxim%20Integrated_8022_Co-op&utm_term=&utm_content=Integrated%20Circuits%20%28ICs%29&gclid=Cj0KCQjwz6ShBhCMARIsAH9A0qXLWDZ2T75r6EXD4kJ2u2z-wkA0fKdtGQ5jXOSDcINleuwtV7YNkaYaAvzXEALw_wcB
https://www.mouser.com/ProductDetail/STMicroelectronics/BAT60JFILM?qs=GnFZssByvVVVnMaukcyLZg%3D%3D
https://www.mouser.com/ProductDetail/Texas-Instruments/LMV934MA-NOPB?qs=7lkVKPoqpbZaHtQ3adPahg%3D%3D&gclid=CjwKCAjw__ihBhADEiwAXEazJsIMoIa-PGFrimTG0mR4_hi3Vt495m0Yo1EF5V4raybmiH3PF4Lq1RoC9OcQAvD_BwE
https://www.mouser.com/ProductDetail/Allegro-MicroSystems/ACS725LLCTR-10AB-T?qs=pUKx8fyJudC6S87GJEgWrQ%3D%3D
https://www.mouser.com/ProductDetail/Allegro-MicroSystems/ACS724LLCTR-10AB-T?qs=pUKx8fyJudCo%252BI7rqO089Q%3D%3D
https://www.mouser.com/ProductDetail/Texas-Instruments/LM321MF-NOPB?qs=X1J7HmVL2ZEjaSKPrGsivQ%3D%3D
https://www.mouser.com/ProductDetail/onsemi-Fairchild/FDN352AP?qs=Z%2FTlMFUIvrEpiL2xbiyK5w%3D%3D&gclid=CjwKCAjw__ihBhADEiwAXEazJoGkneF6HDzbOLKwBpkxpHcBEt9xmkv9d2uMg0oIh-DHZzcxxMApLxoCW9sQAvD_BwE
https://www.mouser.com/ProductDetail/onsemi-Fairchild/FDN86501LZ?qs=GtmDRopnxzo08s289Gg5Yg%3D%3D
https://www.mouser.com/ProductDetail/Texas-Instruments/BQ24074RGTRG4?qs=drm0CCHqiV5LjyrmJlyFDQ%3D%3D
https://www.digikey.com/en/products/detail/advanced-photonix/PDV-P8104/480611

	● Table of Contents
	1 Introduction
	2 Detailed System Requirements
	3 Detailed project description
	3.1 System theory of operation
	3.2 System Block diagram
	3.3 Power
	3.4 Anomaly and State Detection
	○
	3.5 Flight Computer Communication
	3.6 Interfaces
	3.7 Communications

	4 System Integration Testing
	4.1 Subsystem Testing
	4.2 Testing Outcomes

	5 Users Manual/Installation manual
	5.1 Installation
	5.2 Setup
	5.3 Signs of a Working Product
	5.4 Troubleshooting

	6 To-Market Design Changes
	7 Conclusions
	8 Appendices
	8.1 Appendix A. Complete Hardware Schematics
	8.2 Appendix B. Complete Software Listings
	8.3 Appendix C. Relevant Parts and Component Datasheets

