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Introduction
In Part 1, we introduced the phased array concept, beam steering, and array gain.  
In Part 2, we presented the concept of grating lobes and beam squint. In this 
section, we begin with a discussion of antenna sidelobes and the effect of tapering 
across an array. Tapering is simply the manipulation of the amplitude contribution 
of an individual element to the overall antenna response.

In Part 1, no tapering was applied and the first sidelobes were –13 dBc as seen 
in the figures. Tapering provides a method to reduce antenna sidelobes at some 
expense to the antenna gain and main lobe beamwidth. Following an introduction 
to tapering, we will elaborate on a few points relative to antenna gain.

Fourier Transform: Rect ↔ Sinc
The transformation of a rectangular function in one domain to a sinc function in 
another domain comes up in different forms in electrical engineering. The most 
common form is a rectangular pulse, in time, emits the spectral content of a 
sinc function. It is also used in reverse, where wideband applications transform 
a wideband waveform to a narrow pulse in time. Phased array antennas have a 
similar property: a rectangular weighting along the planar axis of the array radi-
ates a pattern following a sinc function.

For applications subjected to this property, the sidelobes of the sinc function  
are problematic with the first sidelobe being only –13 dBc. Figure 1 illustrates  
this principle.

Tapering (or Weighting)
A solution to the sidelobe problem is to apply a weighting across the rectangular 
pulse. This is common in FFTs, and tapering options in phased arrays are directly 
analogous to weighting applied in FFTs. The unfortunate drawback of weighting 
is that sidelobes are reduced at the expense of widening the main lobe. Some 
example weighting functions are shown in Figure 2.

Waveform vs. Antenna Analogy
The transformation from time to frequency is routine enough that it becomes 
natural for most electrical engineers to visualize. However, for engineers new to 
phased arrays, how to use the analogy for antenna patterns may not be initially 
apparent. To do so, we replace the time domain signal with the field domain 
excitation, and the frequency domain output is replaced with the spatial domain.

Time Domain → Field Domain

 X v(t)—voltage as a function of time
 X E(x)—field strength as a function of position in the aperture

Frequency Domain → Spatial Domain

 X Y(f)—power spectral density as a function of frequency
 X G(q)—antenna gain as a function of angle

Figure 3 illustrates the principle. Here we compare the radiated energy for 
two different weightings applied across the array. Figure 3a and Figure 3c 
illustrate the field domain. Each dot represents the amplitude of one element  
in this N = 16 array. Beyond the antenna, there is no radiated energy, and 
radiation begins at the antenna edge. In Figure 3a, there is an abrupt change  
in the field, while in Figure 3c, there is a gradual increase with distance from  
the antenna edge. The resulting impact on the radiated energy is shown in 
Figure 3b and Figure 3d, respectively.

In the next sections, we will introduce two additional error terms that impact 
the antenna pattern performance. The first is mutual coupling. For the purpose 
of this article, we merely acknowledge the problem and amount of EM modeling 
used to quantify the impact. The second is quantization sidelobes due to a finite 
number of bits in the phase shift control. Quantization errors are given a more 
in-depth treatment and quantization sidelobes are quantified.
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Figure 1. A rectangular pulse in time yields a sinc function in the frequency domain with the first sidelobe at only –13 dBc. 
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Figure 2. Example weighting functions. 
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Mutual Coupling Errors
All the equations and array factor plots discussed here have assumed that the 
elements are identical and each has the same radiation pattern. In practice, 
this is not the case. One of the reasons for this is mutual coupling, which is 
the coupling between adjacent elements. An element’s radiating performance 
may change significantly when it is widely separated in the array vs. when it is 
spaced more closely. The elements at the edge of the array have a different sur-
rounding environment than the elements in the middle of the array. Furthermore, 
as the beam is steered, the mutual coupling between elements changes. All 
these effects create an additional error term to be accounted for by the antenna 
designer and, in practice, much effort is spent with electromagnetic simulators 
to characterize the radiation effects under these conditions.

Beam Angle Resolution and Quantization 
Sidelobes
Another practical phased array antenna impairment is due to the finite resolu-
tion of the time delay unit, or phase shifter, used to steer the beam. This is 
typically digitally controlled with discrete time (or phase) steps. But how does 
one determine the resolution, or number of bits, required to achieve the beam 
quality goals?

Contrary to common misconceptions, beam angle resolution is not equivalent to 
the resolution of the phase shifters. In Equation 1 (Equation 2 in Part 2), we saw 
this relationship:

(1)θ = sin–1 ∆Φ λ
2� d
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Figure 3. Graphs showing element tapering transformed to radiated energy weighting; (a) uniform weighting applied to all elements; (b) sinc function radiated spatially; (c) Hamming weighting 
applied across the elements; and (d) radiated sidelobes reduced to 40 dBc at the expense of broadening the main beam. 
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We can express this in terms of the phase shift across the entire array by substi-
tuting the array width D for the element spacing d. If we then substitute the 
phase shifter ΦLSB for ∆Φ, we can approximate the beam angle resolution. For 
a linear array with N elements spaced at a half wavelength, the resolution of the 
beam angle is shown in Equation 2.

θRES ∝ sin–1 ΦLSB
N� (2)

This is the beam angle resolution off boresight and describes the beam angle 
when one half of the array has a phase shift of zero, and the other half has a 
phase shift of the LSB of the phase shifter. Smaller angles are possible if less 
than one half of the array is programmed to the phase LSB. Figure 4 plots the 
beam angle for a 30-element array using a 2-bit phase shifter, as the phase LSB  
is progressively switched into elements from left to right across the array. Note 
that the beam angle increases until half of the elements are shifted by an LSB, 
and then returns to zero when all elements are at the LSB. This makes sense as 
the beam angle changes through a difference in phase across the array. Note 
that the peak of this characteristic is θRES, as previously calculated.
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Figure 4. Beam angle vs. number of elements at LSB for a 30-element linear array.  
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Figure 5. Beam angle resolution vs. array size for phase shifter resolution of 2 bits to 8 bits. 

Figure 5 plots θRES as a function of array diameter (at λ/2 element spacing) 
for different phase shifter resolutions. This shows that even a very coarse 2-bit 
phase shifter with a 90° LSB can achieve 1° resolution for an array diameter of 30 
elements. Solving Equation 10 in Part 1 for 30 elements at λ/2 spacing, the main 
lobe beamwidth is approximately 3.3°, suggesting that we have ample resolution 
even with this very coarse phase shifter. So, what do we get for a higher resolu-
tion phase shifter? Drawing from analogies between time sampled systems (data 
converters) and space sampled systems (phased array antennas), a higher resolu-
tion data converter produces a lower quantization noise floor. Higher resolution 
phase/time shifters result in lower quantization sidelobe levels (QSLL).

Figure 6 shows the phase shifter settings and phase error across the 2-bit, 
30-element linear array previously described, programmed to the beam resolu-
tion angle θRES. Half of the array is set to zero phase shift, and the other half 
is set to the 90° LSB. Note that the error, the difference between the ideal and 
actual quantized phase shift is sawtooth in shape.
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Figure 6. Element phase shift and error across an array. 

The antenna patterns for the same antenna steered to 0° and to the beam 
resolution angle are shown in Figure 7. Note that there is a severe degradation  
of the pattern due to the quantization error of the phase shifter.
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Figure 7. Antenna pattern with quantization sidelobes at minimum beam angle. 
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The worst-case quantization sidelobes occur when the maximum quantization 
error occurs across the aperture, when every other element is at zero error, and 
the neighbor is at LSB/2. This represents both the maximum possible quantiza-
tion error and the maximum periodicity of the error across the aperture. This 
condition is shown for the 2-bit, 30-element case in Figure 8.
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Figure 8. Worst-case antenna quantization sidelobes—2 bits. 

This situation occurs at predictable beam angles as shown in Equation 3.
±n

2BITS (3)θMAX QSLL = sin–1 

where n < 2BITS, and n is odd. For a 2-bit system, this condition is satisfied four 
times between horizons, at ±14.5° and ±48.6°. Figure 9 shows the antenna pattern 
for this system for n = 1, q = +14.5°. Note the substantial –7.5 dB quantization 
sidelobe at –50°.
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Figure 9. Worst-case antenna quantization sidelobes: 2 bits, n = 1, 30 elements. 

At beam angles other than the special cases where the quantization error is 
sequentially 0 and LSB/2, the rms error is reduced as it is spread across the 
aperture. In fact, for the angle equation (Equation 3) for even values of n, the 
quantization error is zero. If we plot the relative level of the highest quantization 
sidelobe for various phase shifter resolutions, some interesting patterns emerge. 
Figure 9 shows the worst-case QSLL for a 100-element linear array, employing a 
Hamming taper so that the quantization sidelobes can be differentiated from the 
classical windowing sidelobes discussed earlier in this section.

Note that at 30°, all quantization error goes to zero, which can be shown to be 
a consequence of sin(30°) = 0.5. Notice that the beam angle of the worst-case 
level for any particular n-bit phase shifter exhibits zero quantization error at any 
higher resolution n. The beam angles for worst-case sidelobe levels described 
here can be seen, as well as the 6 dB improvement in QSLL per bit of resolution.
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The maximum quantization sidelobe levels, QSLL, for 2-bit to 8-bit phase shifter 
resolutions are shown in Figure 11, which follows the familiar quantization noise 
law for data converters,

(4)QSLL α  20 log10 2–BITS

or about 6 dB per bit of resolution. At 2 bits, the QSLL levels are about –7.5 dB, 
higher than the classical +12 dB for a data converter sampling a random signal. 
This discrepancy can be viewed as a consequence of the periodically occurring 
sawtooth error being sampled across the aperture, where the spatial harmonics 
add in phase. Note that the QSLL is not a function of the aperture size. 
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Closing Comments
We can now summarize some of the challenge’s antenna engineers face relative 
to beamwidth and sidelobes:

 X Angular resolution requires a narrow beam. A narrow beam requires a large 
aperture, which requires many elements. Furthermore, the beam widens 
when steered off boresight, so extra elements are required to maintain the 
beamwidth as scan angles increase.

 X It may seem possible to increase the element spacing to increase the overall 
antenna area without adding extra elements. This would narrow the beam, 
but, unfortunately, introduces grating lobes if the elements are uniformly 
spaced. Reduction of scan angle, along with aperiodic arrays implement-
ing an intentionally randomized element pattern, can be explored to exploit 
increased antenna area while minimizing the grating lobe issue.

 X Sidelobes are another problem, which we learned can be mitigated by taper-
ing the gain of the array toward the edges. However, tapering comes at the 
expense of widening the beam, again requiring more elements. Phase shifter 
resolution can introduce quantization sidelobes that also must be factored 
into the antenna design. For antennas implemented with phase shifters, the 
beam squint phenomenon causes an angular shift vs. frequency limiting the 
bandwidth available for a high angular resolution.

This concludes a three-part series on phased array antenna patterns. In Part 1, 
we introduced beam pointing, array factor, and antenna gain. In Part 2, we intro-
duced imperfections of grating lobes and beam squint. In Part 3, we discussed 
tapering and quantization errors. The intention is aimed not for antenna design 
engineers fluent in electromagnetic and radiating element design, but rather the 
large number of engineers in adjacent disciplines working on phased arrays who 
may benefit from an intuitive explanation of the varied impacts affecting the 
overall antenna pattern performance.
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