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1​ Introduction 

 
e-NABLE is a global network of volunteers committed to combating the medical device 
inaccessibility gap by providing functional 3D-printed prosthetic devices at no charge to 
users. Over the last decade, this community has democratized access to low-cost, 
scalable, and customizable prosthetic devices through the development of open-source, 
3D-printed prosthesis designs. The University of Notre Dame chapter of this network, 
e-NABLE ND, has laid a strong foundation for this work here on campus, focusing 
mainly on manufacturing scaled versions of existing, mechanical prosthesis designs and 
creating devices specific to certain users or tasks.  
 
The ARM ProsthEEsis project seeks to build on e-NABLE ND’s past projects by 
addressing specific challenges in the design and desired functionality of these devices, 
pushing beyond existing designs through the implementation of advanced features such 
as myoelectric control. In addition to myoelectric integration, we intend to improve the 
overall actuation design to better accommodate typical functionalities while minimizing 
the weight and cost of the device. The ultimate goal of the project is to provide e-NABLE 
ND, and potentially the greater e-NABLE community, with a myoelectric prosthesis 
design which can be replicated and adapted to different users with a maximum degree 
of functionality at a minimal production cost. 
 

Problem Statement: 
For children in search of prosthetic devices, the current market presents several 
challenges. Traditional prostheses are costly and require frequent replacement as 
children grow. e-NABLE ND, an organization on campus dedicated to creating 
affordable, 3D-printed prosthetics, provides a solution to this problem. However, their 
designs are predominantly mechanical, which limits functionality for users who require 
more advanced, ergonomic solutions. These devices rely on body-powered 
mechanisms, which can require substantial effort to actuate. For example, 
elbow-actuated designs require the user to bend their arm to create a fist, limiting their 
ability to reach or grasp objects naturally. Additionally, the effort needed to keep a fist 
closed can lead to discomfort and fatigue, making daily tasks cumbersome and 
reducing the overall functionality of the prosthetic. 
 

Solution Overview: 
A promising alternative is the development of a myoelectric prosthesis that uses 
electromyography (EMG) sensors to detect muscle signals, interpret them, and use 
these to control the hand position.  
The input uses single-use adhesive electrodes that are commonly found in clinics for 
EKG and EMG studies.This sensing method allows for the ability to use the response of 
a single muscle, which can be chosen to be independent of elbow flexion. This allows 
more intuitive functionality with less effort for the user, in addition to a level of 
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customization based on the chosen muscle. Electrodes are attached to the user on 
either side of the center of the designated control muscle parallel to the muscle fibers. A 
reference electrode will be placed on a nearby bony area that should have little to no 
electrical signaling; this is essentially electrical ground. The exposed snaps on the 
outside of the electrodes allow snap wire connection to the processing center.  
 
A combination of hardware and software, including multiple filtering steps, are utilized to 
distill the signal and allow for clear interpretation of whether the user has flexed their 
muscle or not. We selected the ESP32-S3 for our project due to the fact that it has 
multiple GPIO pins and has processing characteristics conducive to signal processing. 
A calibration function was developed for the processor to confirm threshold values when 
the device is powered on. This ensures that the device properly responds to user input 
despite changes in the user’s muscles over time. An OLED display is used to quickly 
and efficiently walk the user through this process. 

 
Lastly, for the output, the microcontroller interfaces with a DC geared motor. A DC 
geared motor, as opposed to servo motors that have been used in the past, provides 
higher torque even at lower speeds due to gear reduction and allows for continuous 
rotation, which was necessary for our design as the stringing of the hand required 
significant torque to be pulled. A motor driver is used so that optimal speed and different 
directions (opening and closing) can be executed. The hand was 3-D printed using the 
EIH, and was a greatly modified design from what e-NABLE ND typically uses due to 
the unique nature of having a PCB, battery mount, motor mount, spool, and eye bolt 
needing to be held securely and compactly.  

 
Overall, this device is more accessible and more intuitively operated than existing 
prostheses. The device minimizes user fatigue in holding the hand closed when the 
motor is holding it in the closed position.This device is battery-powered, and throughout 
an entire semester of continuous testing, the batteries never needed recharging, 
another indicator of how practical our solution is. 
 

Project Success: 
Overall, the project was very successful, especially from an electrical design standpoint. 
Our goal was to integrate EMG sensing and calibration with a microcontroller and motor 
that could successfully be powered and actuate a modified design of existing 3-D 
printed hands to provide e-NABLE ND to further their powerful and very-needed 
mission. Our team was successfully able to present a device on demonstration day that 
achieved our goals: sense muscle signals using electromyography, filter and process 
the input, calibrate the device via setting threshold values based on the input, and use 
these signals to prompt a motor to actuate the hand to either the open or closed position 
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upon muscle flexion input. Furthermore, this was all held together and powered in a 
strong and smartly-designed 3-D printed hand and socket.  
 
From an electrical standpoint, our design met our expectations exceedingly well. The 
EMG sensors were able to successfully detect signals, and the microprocessor and 
filters were able to distinguish between them and move the motor in the proper direction 
at the proper speed when necessary. In the demonstration day room, Stinson-Remick 
109, there were abnormally high amounts of noise due to multiple projects, some with 
high-powered electrical components, running in a very tight, constrained environment. 
Aside from a few abnormalities, the device still sensed and actuated well. In a room with 
standard consumer electronics running only, it worked even better.  
 
From a mechanical standpoint, our project was still successful, though with room for 
improvement. Due to supply chain issues, we were forced to demonstrate our device 
utilizing our PCB that wasn’t our latest revision. We persevered and had a successful 
demonstration day, but it had an insufficient voltage regulator on it. Thus, we 
demonstrated using one battery instead of the design-required two. Since the motor 
was given less voltage than planned, it provided less torque than planned. Additionally, 
the joints in the hand were stiffer than expected. We worked hard to replace them with 
softer ones, but it still required a lot of torque to properly pull the string and close the 
hand. Furthermore, though softer joints made it easier to move the hand, it also made it 
easier for the hand to “flop around” when in the open position. On demonstration day, 
we were able to successfully demonstrate to multiple professors the ability for the hand 
to pick up and hold a can of Dr. Pepper. However, at times, the opening and closing of 
the fingers wasn’t as pronounced as we would have liked.  
 
Using one motor was a careful design decision made to reduce the amount of voltage 
needed to be provided by batteries and the weight of the device. However, in the future, 
having two motors or one stronger motor would provide more force in the right places to 
increase opening and closing power. Additionally, the PCB design provided to e-NABLE 
ND will have a working voltage regulator and allow for two batteries to be used, 
increasing torque on the one motor. 
 
Our team has succeeded in this goal and are proud to pass off our designs, code, PCB 
designs, and hardware component selections to e-NABLE so that they can be emulated 
and used for good and to improve the quality of life for a limitless amount of people in 
the process. Ultimately, e-NABLE ND is a club with lots of mechanical engineers and 
expertise in that area. However, they did not have the electrical engineering talent or 
manpower to integrate EMG sensing, power, user calibration, motors and actuation, and 
improved hand and socket design all together, end-to-end. Our team was able to 
accomplish this objective successfully and will be providing e-NABLE ND with 
much-needed tools for success.  
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2​ Detailed System Requirements 

2.1​ Overall System Requirements 

The prosthetic device must provide intuitive, reliable, and comfortable control of a 
prosthetic hand by utilizing electromyographic (EMG) signals captured from the user’s 
residual limb. It must operate continuously for at least a standard workday, ideally for 
more than eight hours, on a single battery charge. The system shall emphasize user 
safety, ease of use, accessibility, and long-term durability. All subsystems, including 
EMG acquisition, power management, motor control, mechanical structure, and user 
interface, should function cohesively to deliver a seamless user experience. 

 
Component compatibility across mechanical, electrical, and software domains is 
essential. The device must be lightweight and robust enough for daily use while also 
allowing easy maintenance and servicing by the user without specialized technical 
knowledge. Above all, the prosthetic must meet the fundamental goal of restoring 
functional hand movements to the user in a manner that is natural, dependable, and 
efficient. 

 
Additionally, the final design along with any and all design decisions, ideas, relevant 
files, etc. should be well-documented in a manner easy for the non-electrical engineer to 
understand, so that eNABLE ND can build upon and implement this project design for 
real users in the future.  

 

2.2​ EMG Signal Acquisition & Processing Requirements 

The system must be capable of reliably detecting electromyographic (EMG) signals 
generated by voluntary muscle contractions in the user's residual limb. Surface 
electrodes shall be positioned to maintain consistent contact with the skin, ensuring 
signal stability without impeding socket fit or user comfort. 

Following acquisition, the raw EMG signal must be processed through a series of 
hardware and software processing steps. Initially, the hardware must isolate the 
differential signal of the two input electrodes, and amplify the 0.1-1mV signal to a level 
suitable for further processing. After amplification, a bandpass filter must be applied to 
remove unwanted noise outside the typical EMG frequency range, particularly filtering 
out low-frequency motion artifacts and high-frequency electrical noise. Subsequently, an 
envelope detector must be used to extract the overall energy of the muscle signal over 
time, producing a smooth signal suitable for digital analysis. 

Upon digitization, the processed signal must be analyzed in real time on the 
microcontroller using software libraries to implement additional noise filtering. The 
software must determine the presence or absence of meaningful EMG activity, enabling 
appropriate control signals to be sent to the mechanical actuation subsystem. 
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2.3​ Power Subsystem Requirements 

The prosthetic must be powered in a manner that supports continuous operation for a 
reasonable amount of time under typical usage conditions. The power system must be 
built around batteries that are safely removable, allowing users to quickly swap batteries 
if necessary without requiring specialized tools or technical expertise. 

To ensure operational safety and to maximize the longevity of the batteries, appropriate 
charging and discharging management protocols must be implemented. This includes 
protections against overcharging, over-discharging, and thermal damage. The power 
distribution architecture must account for and meet the demands of all integrated 
subsystems, including the microcontroller, signal processing circuits, motors, and any 
additional electronics. 

Accessibility considerations must ensure that the battery compartment is easily 
reachable and manageable by the user, allowing for efficient daily maintenance 
routines. 

 

2.4​ Motor Subsystem Requirements 

The prosthetic hand must utilize a tendon-based actuation system, relying on strong 
and durable materials such as high-strength string or fishing line. This material must 
withstand repeated mechanical stresses involved in opening and closing all five fingers 
during regular daily use, maintaining consistent performance without fraying, snapping, 
or excessive stretching. 

Motor selection must prioritize performance and reliability. A DC motor will be employed, 
featuring a spool mechanism connected to its shaft to securely manage the wrapping 
and unwrapping of the ‘tendons’ during actuation. The motor should reliably turn both 
directions to close and/or open the hand as the user desires. The motor must be 
capable of receiving command signals from the microcontroller with minimal latency. 

 

2.5​ Hand & Socket Design Requirements 

The mechanical design of the hand, forearm, and socket must prioritize functionality, 
structural integrity, and user comfort. The prosthetic hand must incorporate articulated 
joints that allow all five fingers to open and close effectively. Internal tunnels or 
pathways within each finger must be included to properly guide and protect the ‘tendon’ 
system, ensuring efficient force transmission and minimizing wear. 

The arm socket must serve as a secure housing for all major components, including the 
servo motors, batteries, microcontroller, and any associated printed circuit boards 
(PCBs). The arrangement of these components within the socket must consider thermal 
management, mass distribution, and ergonomic comfort. 
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The battery must be located in a manner that allows easy user access for charging or 
replacement, without requiring removal of the socket from the limb. 

Any controls such as buttons, switches, or sensors that facilitate operation, calibration, 
or locking functions must be positioned to be easily accessible by the user’s intact hand. 
Additionally, the entire mechanical assembly must be sufficiently lightweight to permit 
all-day wear without causing fatigue or discomfort. 

While the goal is to successfully hold objects which may be useful in day-to-day tasks, 
the focus of this project is primarily to assist eNABLE ND with the electrical design, 
applying electrical engineering skill sets which the club has reported difficulty with in the 
past. 

 

2.6​ User Interface Requirements 

The user interface must support straightforward and intuitive operation of the prosthetic 
device. Electrode placement must be carefully designed to ensure that electrodes do 
not interfere with the connection between the user's residual limb and the socket 
interior, while simultaneously ensuring strong and stable EMG signal detection. 
Strategic placement will help to minimize signal noise and maximize the system’s 
detection accuracy. The arm should be able to stay in a position without constant input 
from the user, minimizing user fatigue. 

 
A calibration process must be incorporated to tailor the device’s EMG signal detection 
thresholds to individual users. Calibration must be initiated either automatically at 
startup or through a simple user-initiated command. The system must guide the user 
through a series of clear and simple steps that collect resting and flexing EMG signal 
data. This collected data must then be used to dynamically adjust the detection 
thresholds, ensuring optimal sensitivity and reliability throughout daily use. 

 
Additionally, user manuals should be created for both the end-user and eNABLE ND. 
The end-user manual should include information regarding calibration, EMG sensor 
placement, battery information regarding recharging or replacement, and design 
information relevant to non-technical maintenance. The eNABLE user manual should 
include information relevant to those wishing to build upon the existing design (e.g., 
make updates to the mechanical housing), assembling the arm, and more technical 
maintenance procedures.  
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3​ Detailed Project Description 

3.1​ System Theory of Operation  

This section will summarize a high level overview of the system. The overall operation 
of the system is when the user flexes the targeted muscle, the arm prosthesis will 
actuate, causing the hand to open or close. Electrodes are placed on the user’s muscle, 
which are connected to a hardware processing circuit on the PCB. The circuit 
normalizes, filters, and amplifies the signal to optimize it for ADC conversion by the 
microcontroller. Once the signal reaches the microcontroller, it is further filtered in 
software. The MCU ultimately outputs a boolean, determining whether the muscle is 
currently contracted or not. The user is able to calibrate the prosthesis, tuning it to 
function reliably with their unique electrode placement and level of noise. 
 
Based on the MCU output, the MCU will actuate a motor placed within the 3D arm, 
which opens or closes the hand. To adequately power the motor, the supplied voltage is 
split into two lines, 8V for the motor, and 3V3 for the rest of the hardware. The 3D 
printed arm uses flexible resin for the finger joints, allowing for smoother hand 
movements. The PCB and motor are contained with the 3D printed forearm, with the 
batteries placed in an external holder for easier user access. 
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3.2​ System Block Diagram 

Figure 1 shows the overall system block diagram, illustrating how the system works 
from a high-level overview. The diagram shows the system divided into subsystems, as 
well as the interfaces between the subsystems. 
 
 
 
 

 

Figure 1. System Block Diagram 
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3.3​ Detailed Operation of Electromyogram (EMG) Sensing 
Subsystem 

Figure 2 shows the detection and processing of the EMG signal, focusing on the key 
areas of hardware and software processing. 

 

Figure 2. EMG Sensing Subsystem Overview 
 

Requirements 
The requirements of the EMG Sensing subsystem are: 

1.​ Acquire an EMG signal from the user’s muscle 
2.​ Process the EMG signal in hardware to ensure the input to the ESP32 is at a 

high resolution and within the specifications of the ADC 
➢​ Apply filters for noise 
➢​ Amplify the signal to improve ADC resolution 
➢​ Smooth the signal for easier ADC sampling 

3.​ Process the EMG signal in software to output a binary decision of whether the 
muscle is contracted or not 
➢​ Apply a notch filter to remove 60 Hz noise and harmonics 
➢​ Implement averaging or signal analysis to determine whether a signal is 

present 
➢​ Allow for an adjustable detection threshold for user calibration 

 

Hardware 
The usable frequency of EMG signals ranges from 20-500 Hz, so the instrumentation is 
very sensitive to power line noise at 60 Hz, in addition to electrocardiogram (ECG/EKG) 
interference around 60 Hz. The energy of the EMG signal is not evenly spread 
throughout the frequency band, and is instead concentrated towards lower frequencies. 

11 



Additionally, EMG signals are at very low amplitudes, a maximum of 0.1-1mV when 
using skin electrodes. The majority of hardware processing in the EMG Sensing 
subsystem aims to minimize noise and amplify the desired signal before it reaches the 
microcontroller. Initial breadboard versions of the subsystem were unreliable and very 
sensitive to external noise, demonstrating that minimizing wire and trace lengths should 
be a key factor in component selection and PCB design. Figure 3 shows the full 
schematic for the EMG sensing subsystem. 
 

 
Figure 3. Full Schematic of EMG Sensing Subsystem 

 
The following subsections describe the full hardware design of the EMG Sensing 
Subsystem. This subsystem utilizes the AD8232, an integrated circuit for heart rate 
monitoring. The AD8232 was selected because it contains all the necessary signal 
processing components in a compact, low-cost package. A single chip is only $6, and 
contains an instrumentation amplifier, driven ground circuit, leads off detection, and 
extra op-amps to construct a bandpass filter. Though the chip was created for ECG 
processing, the passive components to set frequency cutoffs are external to the chip, 
allowing us to tune the processing for EMG frequencies. 
 

a.​ Electrodes 
The standard configuration for detecting biopotential signals is to use a minimum 
of three electrodes, two for differential signal acquisition, and one as a driven 
ground. EMG sensing can also be implemented with a two electrode 
configuration, but the signal will be more noisy and less stable. Electrodes are 
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relatively standard, with minimal differences between different products. Note that 
ECG electrodes can also be used for EMG due to the overlap in frequency. This 
project utilized Covidien 31050522 electrodes, pictured in Figure 4, because 
they were the most available. The electrodes have an adhesive side, with a metal 
pad coated in an electrolyte jelly in the middle to improve the connection to the 
user. On the other side, the electrodes have a snap clip. 
 

 
Figure 4. Covidien 31050522 Electrodes 

 
The two signal electrodes should be placed about 1 cm apart along the direction 
of the muscle fiber. The ground electrode should be placed on electrically 
unrelated tissue, preferably close to a bone to minimize noise. The three 
electrodes are connected via snap clips to a three-wire cable, which connects to 
the board through a 3-pin audio jack. 
 
At the input terminals of the audio jack, shown in Figure 5, there are 180k 
resistors, recommended by the chip manufacturer to protect the user from fault 
conditions.  

 

 
Figure 5. Electrode Input Schematic 

 
The electrode connection to the user has high impedance, making it challenging 
to adequately ground the user. The input electrodes are biased to 3V3, which 
helps to ensure the input signal is operating in the same voltage range as the 
PCB. The 3V3 bias also allows for “leads off detection” where the AD8232 chip 
detects if the input electrodes are appropriately connected to the user. Pin 11 
(LOD-) of the AD8232 will be high when the IN- electrode is disconnected and is 
connected to GPIO 7 on the MCU. Similarly, Pin 12 (LOD+) of the AD8232 will be 
high when the IN+ electrode is disconnected and is connected to GPIO 6 on the 
MCU. The leads off detection feature is configured in the PCB hardware, but is 
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not currently implemented in the project software as it wasn’t a high priority 
feature. 
 

b.​ Driven Ground 
In a three electrode EMG setup, the third electrode is used to ground the user. 
However, the ground electrode cannot be directly connected to the ground plane 
of the PCB. Due to the high impedance of the electrode-user connection, there 
will be a voltage difference across the ground connection, which will drift over 
time. If the user is not adequately grounded, the input EMG signal may drift 
outside the operating range of the instrumentation amplifier within the AD8232, 
creating an unreliable output. Additionally, directly connecting the user to the 
board without a protection circuit could be dangerous for the user if any hardware 
faults occur, as current could travel back through the electrode into the user. 
 
Our design utilizes the third electrode as a driven ground, also referred to as an 
active ground or a Right-Leg Drive (RLD) circuit. The RLD terminology originates 
from ECG configurations, where the ground electrode is typically placed on the 
patient’s right leg, which is the furthest body part from the patient’s heart. The 
RLD circuit takes the common-mode signal from the instrumentation amplifier, 
which is the noise common to both input electrodes, and feeds it back into the 
user’s body through the third electrode, reducing the noise variations within the 
user. 

 
For user safety, the output of the right-leg drive circuit has a 400k resistor, which 
limits the maximum current to the user to 8.25uA when the chip is powered by 
3V3. 
 
The driven ground circuit also includes a 1 nF capacitor, which forms an 
integrator when connected between the RLD FB and RLD pins on the AD8232. 
The capacitor value can be varied to balance gain and noise rejection, but 1 nF is 
optimal to reject noise in the range of 50-60 Hz. 

 
c.​ Instrumentation Amplifier 

The signal from the two input electrodes are passed through an instrumentation 
amplifier, which outputs the difference between the two signals. Because the two 
electrodes are at different distances along the muscle fiber, the EMG signal will 
be contained within the differential signal, while the common-mode signal is 
common noise. The instrumentation amplifier is within the AD8232, with the 
differential signal output on pin IAOUT. It is configured with 100x gain. Figure 6 
depicts the signal at the output of the instrumentation amplifier. 
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Figure 6. Relaxed vs. Flexed Signal at Output of Instrumentation Amplifier 

 
d.​ Reference Buffer 

The AD8232 allows the configuration of an internal reference buffer, shown in 
Figure 7, enabling all the op-amps to receive a positive and negative voltage 
input from the supplied system power. As a result, the output of the bandpass 
filter has a DC bias of half of the supply voltage. The AD8232 datasheet 
recommends using high resistor values, specifically 10 MΩ, to minimize the 
power consumption of the reference buffer voltage divider. However, higher 
resistor values also increase the likelihood of interference at the input of the 
reference buffer. 
 

 
Figure 7. Input to Reference Buffer 

 
To minimize noise, the AD8232 datasheet advises placing the resistors close to 
each other and the REFIN terminal on the PCB, in addition to adding a capacitor 
for additional filtering. The proximity of the voltage divider components to the 
AD8232 is shown in Figure 8. A higher capacitor value improves the noise 
filtering capabilities, but also increases the buffer’s settling time after the chip is 
turned on. The settling time can be estimated using the formula below: 
 

 𝑡
𝑠𝑒𝑡𝑡𝑙𝑒

 =  5 × (
𝑅
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𝑅
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𝐶
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Figure 8. PCB Layout of Reference Buffer Components 

 
e.​ Bandpass Filter 

To filter baseband and higher frequency noise, the design applies a bandpass 
filter to the differential signal, with a passband range of 17-500 Hz. These 
frequencies were selected based on the usable frequency range of EMG signals, 
which is 20-500 Hz. The op-amps used in the bandpass filter are internal to the 
AD8232.  
 
The cutoff of the highpass filter is set by the following equation: 

 𝑓
−3𝑑𝐵

 =  100
2π𝑅𝐶  𝐻𝑧

 
The passive components utilized in our design are pictured in Figure 9. Note that 
due to the internal circuitry of the AD8232 chip, the cutoff frequency is affected by 
the internal 100x gain of the instrumentation amplifier. The AD8232 also allows 
the implementation of higher order high-pass filters, which were not used in this 
design. The purpose of the high pass filter is primarily to filter out noise at 
baseband. 
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Figure 9. Passive Components of High-Pass Filter 

 
The lowpass filter cutoff is set by the passive components pictured in Figure 10, 
based on the following equation: 

 𝑓
−3𝑑𝐵

 =  1
2π𝑅𝐶  𝐻𝑧

 

 
Figure 10. Passive Components in Low-Pass Filter 

 
This filter can also be used to amplify the signal, based on the following equation: 

 𝐺 =  (1 +
𝑅

2

𝑅
1

)

 
For our design, the internal 100x gain of the instrumentation amplifier provided 
sufficient ADC resolution for reliable EMG detection. Note that the maximum 
input signal to the ESP32-S3 cannot exceed the specifications of the ADC pin, 
which is rated for a voltage range of 0-3V3. 
 
If a higher order filter is deemed necessary for further product improvements, the 
AD8232 datasheet provides specifications for the design of a Sallen-Key filter, 
which would provide a sharper roll off. As previously stated, the majority of 
energy within the EMG band is centered around the lower frequency range, and 
the primary noise is at 60 Hz, so the high pass filter is primarily for extraneous 
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noise, and it is not necessary to have a sharp cutoff for high frequencies. Figure 
11 shows the signal at the output of the low-pass filter. 
 

 
Figure 11. Relaxed vs. Flexed Signal at Output of Low-Pass Filter 

 
f.​ Envelope Detector 

The envelope detector implemented in the PCB design is not fully functioning, 
but this section describes the ideal behavior of the envelope detector. The 
envelope detector ideally smooths the output of the bandpass filter, reducing the 
required sampling rate at the microcontroller. The diode in the envelope detector 
rectifies the signal, filtering out any negative elements to ensure the signal stays 
within the range of the ESP32 ADC pin, which is 0-3V3. The time constant of the 
envelope detector is calculated using the following equation: 

 
 τ =  𝑅𝐶 =  (100 𝑛𝐹)(4. 7 𝑘Ω) =  0. 47 𝑚𝑠

 
 
The greater the time constant, the smoother the output signal will be. However, 
increasing the time constant too much could cause the desired signal to be lost 
because the detector sensitivity is too low. 
 
In the current design, pictured in Figure 12, the signal input to the envelope 
detector has a DC bias and is centered around 1.8V. Additionally, the time 
constant is not properly tuned to the desired response. The envelope detector in 
the PCB circuit is acting as a second low pass filter with a cutoff frequency 
calculated below: 
 

 𝑓
𝑐
 =  1

2π𝑅𝐶  =  1
2π(4.7 𝑘Ω)(100 𝑛𝐹)  =  338. 63 𝐻𝑧

 

18 



 
Figure 12. Envelope Detector 

 
Due to the misconfigured envelope detector, some of the higher frequency 
components of the signal are lost. However, as previously mentioned, the energy 
of an EMG signal is concentrated to the lower frequencies, so the impact is 
minimal. The EMG processing software is tuned to function reliably with the 
existing envelope detector, so no changes were made to the final product. In 
future revisions, the envelope detector could effectively be removed to save 
space on the PCB. Figure 13 shows the signal at the output of the envelope 
detector, which is the input to the ADC pin of the MCU. 
 

 

Figure 13. Relaxed vs. Flexed Signal at Output of Envelope Detector 
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Software 
 
Each sample from the ADC pin of the microcontroller is passed through two notch 
filters, one at 60 Hz, and the second at the harmonic, 120 Hz. We utilized the Arduino 
Filters library because it has more extensive documentation and examples, and it is 
more user-friendly than the ESP-DSP library. The filtered input signal is analyzed in time 
blocks of 200 ms. The software was initially designed to average the signal within each 
time increment, but due to the DC bias on the input signal, the “negative” peaks are not 
filtered by the envelope detector. As a result, when muscle is contracted, the input 
signal has higher maximums and lower minimums, which average out to the same as a 
non-contracted signal input. Instead of averaging the time increment, the software 
analyzes the maximum signal amplitudes within each 200 ms block, and compares it to 
a threshold set by the User Interface software. The flow chart in Figure 14 describes 
the EMG Sensing software. 
 

 

Figure 14. Software Flowchart for EMG Sensing Subsystem 
 
The software was tested by printing the digitized value of the ADC signal, and observing 
how the value changed under different conditions. When implementing the filter, both 
the pre and post filter values were printed, and we observed a greater difference 
between the flexed and relaxed signals in the filtered values. The overall software 
analysis was tested in a variety of rooms to confirm reliability under different noise 
levels, in addition to testing on multiple different muscles and users. The calibration 
software, discussed in the User Interface subsection, was also tested concurrently with 
the EMG software to ensure the signal detection was flexible enough to accommodate 
different users, muscles, and noise levels. 
 
The testing demonstrated that peak detection was a reliable determination of whether 
the muscle is contracted. The difference between the maximum of contracted and 
non-contracted signals is consistent, and large enough that no false positives or false 
negatives were observed during software testing. 
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3.4​ Detailed Operation of Motor Subsystem 

Subsystem Summary 
For the end-to-end functioning of our team’s prosthetic device, something needs to be 
the bridge between the EMG sensing and processing and the actual opening/closing of 
the 3-D printed hand. That “bridge” is the motor and its related components. When 
activated by a command signal from the microcontroller after the user flexes their 
muscle, a motor shaft will turn and change the tension in strings that are attached to the 
finger joints. Originally, the design called for use of a servo motor due to their 
commonality and ease of use. However, due to the need for continuous rotation and 
and increased torque, a DC geared motor was chosen instead. Additionally, a motor 
driver compatible with our power system and with the ability to move the motor at 
varying speeds, both clockwise and counterclockwise. The tension in the string either 
reels it in around a 3-D printed spool, or it releases it allowing it to reel out of the spool. 
The primary string, fishing line, is connected to a network of strings within the fingers. 
Applying tension, especially at the right speed, at the right time, and in the right 
direction, is crucial for the operation of the device. 
 

Requirements 
1.​ The closed-position grip of the hand must be able to hold objects without 

slippage. 
2.​ Hand and socket must be reasonably lightweight for realistic, daily use, so the 

motor and related hardware cannot be too heavy or imposing. 
3.​ The motor must consume an amount of voltage that is easily provided by battery 

power. 
4.​ Bi-directional movement and variable speed of the motor must be possible so 

that the hand can both open and close and do so at speeds optimized to the 
physical design of the hand and socket. 

5.​ The motor must provide enough torque so that the string can overcome the 
stiffness of the joints and actually move the hand.  

 

Hardware 
a.​ Metal DC Geared Motor with Encoder:  

Sourced from DFRobot, this motor was selected after extensive searching and 
comparison with other robots in the market. While a multitude of options exist, 
finding options that put out larger amounts of torque without being too large or so 
heavy that they would weigh the entire device down was a challenge. 
Additionally, finding options that didn’t require an excessive amount of voltage 
while still putting out enough torque providing increased complexity. Rated at 6V, 
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this motor could easily be powered by two batteries and would still spin and 
provide some torque at voltages as low as 1V. The reducer reduction ratio is 
1:75, a prime consideration as this gear reduction provides much more torque in 
comparison to a servo motor. Additionally, the stall torque of 6.5kg-cm, while it 
could be higher, is respectable given the size and voltage requirements. Figure 
15 below shows related force calculations and Figure 16 shows the dimensions 
of the motor.   
 

 
Figure 15. Calculation of force that the motor is capable of pulling the string with.  

 

 
Figure 16. Dimensions of the motor. 

 
Furthermore, while we determined that it wasn’t necessary to meet the 
requirements of our design, the motor has an encoder, which allows for the 
possibility of feedback should future design improvements require it. Finally, and 
most importantly, the motor weighs 96 grams, which is about the weight of a 
tennis ball.  
 

b.​ Motor Driver 
The Toshiba TB6612FNG was selected as it can control the DC motor at a 
constant current of 1.2 A and in four modes. It utilizes a PWM input signal to 
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control the speed of the motor. On demonstration day, we utilized a motor driver 
purchased with male header pins already soldered on. This was done with the 
intention of having an easier time debugging and troubleshooting issues. 
However, for the newest board revision that did not arrive on time, the same 
motor driver is used but integrated right into the PCB. The VM pin is given 
around 7.4 V (though it was closer to 3.7 V on demo day due to only being able 
to utilize one battery) and the VCC pin, used for logic control, is simply pulled 
HIGH at 3.3 V.  
 
Below, Figure 17 shows the connections made between the ESP32 
microcontroller, the motor driver, and the motor on both revisions of our final PCB 
design.  

 

 
Figure 17. PCB layouts showing relevant motor components and electrical connections 

between the ESP32 microcontroller, the motor driver, and the motor.  
 
 

A Note on Demo Day:  
On Demo Day, we used PCB Rev. 0 due to supply chain issues. On the ESP32 
microcontroller on this board, Pin 35 AIN2_Motor (GPIO 42) was blown out. This was 
determined after extensive troubleshooting, including analysis of the effect of PSRAM 
on the different GPIO pins. However, it was determined to be an issue affecting only that 
one piece of hardware, likely caused by excessive voltage being applied straight to the 
pin at some point in the testing and development process. Thus, we utilized GPIO 2 for 
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AIN2 and soldered this connection using a jumper between that pin and the AIN2_Motor 
pin on the motor driver.  
 

Software 
The motor-related software is the key link between the EMG sensing and the actuation 
of the device. First, four GPIO pins, one for motor standby, one for PWM speed control, 
and two for motor direction control, are defined as output pins. The standby pin is pulled 
HIGH to enable motor usage. Two primary functions are utilized in the code. One, 
entitled runMotor, keeps track of the state of the hand as a boolean variable (either 
open or closed). It calls the moveMotor function, which takes in two variables: an integer 
representing speed and a boolean value representing direction. If the hand state is 
currently closed, it calls the move motor and sends a speed and the direction as false. 
Inside the function, pin AIN1 is digitally written to the LOW, and pin AIN2 is written 
HIGH. This causes the motor to spin clockwise and the spool to unravel. The speed is 
analog written as a PWM signal between 0 and 255. For closing, the AIN1 is written 
HIGH and AIN2 is written LOW, causing the motor to spin counterclockwise and the 
spool to reel in. The motor spins in different directions when the voltage difference 
between the Motor + and Motor - on the motor (connected to AO1 and AO2 on the 
motor driver, respectively) is either 3.3 V or -3.3V.  
 
Testing with our physical hand and socket was used to determine the best speeds and 
duration of turning for both opening and closing. With our design, a speed of about 
120/255 for 4.0 seconds was best for closing. The slower speed allows for the spool to 
stay intact and prevents the user from dropping whatever they are holding. However, for 
opening the hand, a speed of about 180/255 for 5 seconds was optimal. A faster speed 
allowed for more torque, but wasn’t so rapid that the string would snap. The software 
was designed this way on purpose so that e-NABLE can easily change the speed and 
opening/closing times to adapt to the exact hand and socket designs that they are 
using. 
 

Subsystem Testing 
The motor was first tested utilizing a kit board and motor testing code prior to being 
integrated with the rest of the code and with the designed PCB. Ensuring proper wiring 
was a consistent priority as 11 header pin connections were needed on the motor driver 
alone for proper operation. Furthermore, throughout the testing and development 
process, use of the encoder on the motor was considered. However, at no point during 
the engineering design process was it determined that the encoder would provide an 
enhancement to capabilities, so it was decided that it would not be used. 
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One of the largest testing challenges was figuring out why the motor would not turn in 
both directions, an issue discovered after a Design Review meeting. Around 14 hours 
was spent using a voltmeter and ammeter at each input/output of the motor, motor 
driver, and ESP32 microcontroller. Additionally, research was done on the effect of 
PSRAM, which is used to expand memory, and JTAG (Joint Test Action Group) 
debugger on different GPIO pins on the ESP32-S3-WROOM-1U. It was determined that 
these were not negatively affecting GPIO pins, specifically GPIO 42 (Pin 35), and that 
the motor driver and motor were functioning properly. The conclusion that GPIO 42, 
which corresponded to AIN2 on the motor driver, was shot, likely from excessive voltage 
being applied earlier in testing, was reached. However, a jumper wire was soldered to 
GPIO2 and the code was adjusted in the interim. 
 
The last major part of testing was integration of the motor in the socket of the hand, as 
well as determining the proper speed and duration for opening and closing the hand. 
This was extensive and took a lot of trial and error, but ultimately, we were successful in 
attaching it and the spool so that proper operation of the hand could be achieved. The 
light weight of the motor was especially important here, as it was able to be anchored 
down successfully without slippage. On demonstration day, we were able to 
successfully show Requirement #1, the ability to hold objects without slippage, because 
of this.  
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3.5​ Detailed Operation of Power Subsystem 

Requirements 
The requirements for the power subsystem are: 

1.​ Provide necessary power to operate the motor 
2.​ Provide necessary power to operate the signal processing hardware and 

microcontroller 
3.​ Simultaneously fulfill the previous two requirements, which require different 

operating points 
4.​ Offer a removable battery for minimal user downtime in the event of full battery 

discharge 
5.​ Offer a rechargeable battery for user convenience 
6.​ Communicate low battery level to the user 
7.​ Offer protection from overcharging, over-discharging, and short circuits 

 

Hardware 
The power system uses two protected 18650 lithium ion batteries in series. The system 
uses Epoch 18650 2600mAh 8A batteries with built in protection. They are rechargeable 
via a standard 18650 lithium ion charger and removable. The batteries are 3.7 V, 
nominally, with a maximum charge voltage of 4.2 V and a minimum safe discharge 
voltage of 2.5 V. In series, the output is 7.4 V, with a maximum of 8.2 V and discharge 
cutoff of 5 V. To fulfill the requirement to power the motor, the batteries directly provide 
power to the motor driver. To power the signal processing hardware and the 
microcontroller, the voltage is regulated by the stocked AZ1117 voltage regulator. It has 
a maximum input voltage of 18 V and maximum current of 1 A. There is a large margin 
between the maximum safe input voltage and the output of the batteries. The maximum 
current draw that the ESP32-S3 will require is 355 mA while actively using the highest 
gain RF mode. We only utilize modes with lower power, so there is also a good margin 
between the maximum safe current of the regulator and the microcontroller. Finally, to 
monitor the battery charge level, we use a MCP602-E/P operational amplifier as a 
voltage follower. First, the battery voltage is scaled by a factor of 22 kΩ/69 kΩ via a 
simple voltage divider. Then, the op-amp follows the reduced voltage, protecting the 
input of the ESP32 from any spikes in current from the battery. Since the lithium 
batteries tend to retain their nominal voltage for most of their charge cycle, we illuminate 
a low power LED when the output voltage is less than or equal to 3.5V. A schematic of 
the system is below in Figure 18.  
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Figure 18. Power board schematic 

 
An additional consideration for the power hardware is the mechanical battery holder. 
The user needs to be able to access the batteries and the ease of removing them 
should be reasonable to perform with one hand. Due to the built in protection circuit 
boards in each battery, they are slightly longer than standard 18650 batteries. To 
accommodate this, the power system uses a custom made battery holder board that 
better fits the dimensions of the batteries. The board also features a slide switch to 
connect and disconnect the batteries from the rest of the system. To connect the 
external power board to the main board, we use a JST connector. A CAD image of the 
power board is below in Figure 19.  
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Figure 19. Power Board 3D render 

 

Software 
The software component of the power subsystem’s main requirement is to monitor the 
battery voltage. The software needs to notify the user when the charge is low and then 
shut down the entire arm if the batteries reach their discharge cutoff voltage. To do this, 
we configure a hardware timer interrupt to set a flag every minute that will trigger a 
service routine. The service routine will be performed directly after gathering EMG data 
so that it does not interfere with the reading. During the routine, calling analogRead 
maps the output of the voltage follower (0-3.3 V) to an integer, x ∈ 0-4095. From this 
value, we can calculate the battery voltage as follows:  If 𝑉

𝑏𝑎𝑡𝑡𝑒𝑟𝑦
= 22+47

22 × 3. 3 × 𝑥
4095

the battery voltage is below 7 V, a red LED turns on, indicating that charging is needed. 
Once the battery charge reaches 5 V, the built in protection circuitry in the batteries will 
disconnect them from the arm.   
 

Subsystem Testing 
There are three main tests that need to be performed to ensure that the power 
subsystem is working. First, we need to ensure that the linear regulator is outputting 
3.3V. Second, we need to ensure that the voltage follower tracks its input voltage. 
Finally, we need to test that the hardware can correctly recognize a low battery voltage 
event and issue a response to the system.  
 
Since the linear regulator only consists of one part, it was not tested independently and 
first tested during integration. Our first iteration of the board utilized the AP2112K stock 
regulator, which could not handle the full charge voltage of the batteries. So, for the first 
integration test, we relied only on the input from one battery instead of two in series to 
power the main board. To make up for the higher voltage required for the motor, we 
utilized an external power source. Moving to the final iteration of the board, we are using 
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the AZ1117. The two regulators have a nearly identical footprint, so the changes made 
as a result of the integration test were minimal.  
 
To test the voltage follower, we wired the battery to input across a potentiometer. By 
sweeping the potentiometer and measuring the input voltage to the voltage follower, we 
found the following output curve shown in Figure 20.  

 
Figure 20. MCP602 op amp curve configured as a voltage follower 

 
The output closely follows the input up to a saturation threshold at 2.55 volts. This test 
informed the selection of the resistors for the voltage divider. The divider needs to map 
8.4 V (maximum battery voltage) to 2.55 V on the voltage follower input. Using two 
stock SMT resistors, the closest ratio achievable is 22 kΩ to 47 kΩ for a dividing factor 
of . This maps the maximum voltage to 2.68 V. This is slightly above the 22

22+47 =. 319
saturation threshold for the voltage follower, but this was an acceptable tradeoff for 
using only two SMT resistors. The nominal, low battery, and shutoff voltages are all 
within the linear region of the voltage follower.  
 
The final test is the code. To test that the system can recognize important battery 
thresholds (7 V and 5 V), we connected the DC power supply across the battery holder 
terminals and varied the voltage. The system successfully recognized low voltages and 
turned on the LED.  

A Note on Demo Day 
Due to delayed shipping of the final board from OSH Park, the demo day product used 
an older variation of the board that featured the AP2112K linear regulator, only capable 
of handling a 6 V input. Because of this, we only used one battery. The board also used 
a green low battery LED as opposed to the red LED intended for the final design.  
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3.6​ Detailed Operation of Hand & Socket Design 

Subsystem Summary:  
The physical design of the prosthesis should allow for an able-bodied person to demonstrate 
full functionality on EE Senior Design Demo Day. Additionally, the design should allow for easy 
adaptability for real-user applications in the future. The main goal of this subsystem is to build 
upon existing eNABLE designs to provide housing for all necessary electronic hardware and 
wiring, in addition to means for string-based actuation. User experience should be kept in mind 
throughout the design process. The final physical design is shown in Figure 21. 
 

 
Figure 21. Final Physical Design 

 

Requirements: 
The requirements for the physical hand and socket design are: 

1.​ Hand must be designed to include joints which allow for easy opening and closing of all 
five fingers. Fingers must include hollow tunnels for stringing. 

2.​ Arm socket must include housing for motor(s), batteries, microcontroller and any 
additional PCB dimensions, as well as any other additional hardware required.  

3.​ Battery location must be accessible by the user for changing or charging batteries. 
4.​ The closed-position grip of the hand must be able to hold objects without slippage. 
5.​ Any buttons, switches, or sensors for locking or calibration purposes must be in a 

position accessible to the user. 
6.​ Hand and socket must be reasonably lightweight for realistic daily use. 

 

Theory of Design: 
The basic theory of operation for most existing eNABLE hand designs utilizes a stringing 
mechanism within a 3D-printed hand to facilitate the closing of the hand. As shown in Figure 
22 below, string is threaded through hollow tracks in the printed fingers, the ends of which are 
then tied to a whippletree, so that actuation may be performed using a single string.  
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Figure 22. Hand/Stringing Diagram 

 
Since the goal of the project is to leverage electrical engineering expertise to create a design 
which eNABLE ND can build upon further, we elected to build our hand and arm design off of 
an existing open-source eNABLE design: the Kwawu 3.0 Socket-Version prosthesis, shown in 
Figure 23 below. 

 

 
Figure 23. Image of Overall Hand/Socket Basis Design 

 
This design was selected mainly due to the full-circumference socket, which allows optimal 
space to add means of housing the electronic parts. eNABLE-ND has used the Kwawu Arm 
design in recent years, with a team successfully printing and assembling the Kwawu 3.0 within 
the last year. Thus, due to the familiarity and space for housing/mounting which the design 
provides, the Kwawu 3.0 was selected as the basis for our physical design. 
 
It should be noted that other basis designs from the eNABLE open-source catalog were 
considered. The assessment of these designs is summarized in the trade study chart in Table 
1 below. Ultimately, our decision relied primarily on documentation of a precedent of former 
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device success if used previously by eNABLE ND, arm volume for potential electronics 
housing, and some aesthetic preference. 
 

Table 1. Basis Design Trade Study 

 
 

The Kwawu 3.0 files are designed in the OpenSCAD software for ease of scaling to user fit. 
We were able to leverage this scaling feature to create a hand of a reasonable adult hand size, 
which still allows for proper housing of all parts. The OpenSCAD software files allow for input 
of features such as the width of the hand, desired length of the forearm, etc. The scaling 
parameters which were chosen are shown in Figure 24 below. 
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Figure 24. OpenSCAD Scaling Parameters 
 

Making adjustments in the right-hand parameters column will scale all parts of the arm, but the 
files need to be individually rendered and then exported as .stl files. The LowerArm part is the 
part subject to further modifications in SOLIDWORKS, as this part is providing housing for the 
electronics. The remaining parts can be sent straight to print.  The exception to this may be the 
Hinges file, which may need to be slightly scaled up to fit tightly in the finger joint holes of the 
hand. Scaling can either be done in SOLIDWORKS, or by increasing the HandWidth 
parameter and then exporting the Hinge file again. 
 

CAD Design - Modifications:  
Having scaled the ARM design to a reasonable size in OpenSCAD to accommodate housing 
and mounting mechanisms for the electronic components, the design of the lower arm needed 
to be modified in CAD to provide actual housing components. The initial upload of the 
LowerArm file in SOLIDWORKS, is shown in Figure 25.  

 

33 



 
Figure 25. Lower Arm in SOLIDWORKS 

 
While the original lower arm design is meant to mimic the shape of a human forearm, this 
portion of the arm was ultimately replaced with a hexagonal, geometric-style lower arm. This 
decision was made in order to improve ease of making modifications, mounting the boards and 
motor by minimizing curved surfaces within the arm. To do this, the section of the arm between 
the connection ends was removed. It is essential to preserve at least ~10mm on either end of 
the original solid body in order to preserve the means of connecting the LowerArm to the 
UpperArm and Palm. These ends can then be saved as separate solid bodies, and the 
distance between them can then be adjusted to increase the length available for parts housing. 
Ultimately, an additional 16mm was added between the ends to make room for the motor and 
gear mechanism. 
 
In order to create the replacement geometric forearm, we opted to implement a hexagonal 
shape to abstractly retain the overall round shape of the LowerArm, while also being able to 
work with substantially tall flat surfaces for mounting. To do this, a hexagon of the same 
approximate radius of the wrist connection was extruded from the wrist to the LowerArm 
center. Another extrude feature was then used to add a drafted hexagon from the end of the 
former section to the socket connection end. The length of the upper section must be long 
enough and have a diameter wide enough to accommodate the main PCB dimensions. The 
lower section (closer to the wrist) must be long enough to house the motor, in addition to any 
string-spooling mechanisms. The general hexagonal shape is shown in Figure 26. 
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Figure 26. Hexagonal LowerArm 

 

Part Integration: 
Figure 27 below shows the overall locations of the electronics within the final LowerArm 
design. The subsequent sections discuss the design decisions relevant to the integration of 
each subsystem in the final ARM design. 
 

 
Figure 27. Electronics Locations in Final Design 
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a.​ PCB Mounting 
The PCB also needs to be mounted within the arm, in a position where it is secure but 
in which the OLED on the board can be seen by the user and any relevant buttons 
included on the board for user interfacing can be pressed.  

 
For purposes of demonstrating the board design on Demo Day, we opted to leave the 
lower arm with an open section, so that the board layout and motor location is able to be 
viewed during demonstrations. A diagonal panel was extruded through the upper 
section of the lower arm, with mounting holes for securing the PCB in place. In the 
future, a rotating panel may be implemented for closure and safeguarding the 
electronics from external elements. Figure 28 offers a clear visualization of this panel 
location. 

 

 
Figure 28. PCB Mounting Panel 
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b.​ Battery Housing 
The power subsystem also requires means to be housed within the arm. For this 
purpose, an external box is included on the outside of the lower arm, inside which the 
power board can be mounted. In SOLIDWORKS, a hole was cut through the base of the 
power box to the main hollow section of the arm, so that the power cables could be 
threaded through said hole, and connected to the main PCB without any wiring 
externally observable. The external box is shown in Figure 29 and Figure 30 below. 
 

 
Figure 29. External Box for Power Board 

 
 

 
Figure 30. Power Board in External Box 
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c.​ Motor Mounting 
One challenge of the design was finding a mechanism to mount the motor which would 
allow the motor to not only fit in the arm, but to also allow for correct tension to be 
applied to the string from the hand. Ultimately, we opted for a circular clamp which 
would hold the motor in place and could be mounted with screws on  an inner-edge of 
the hexagonal lower arm piece. This clamp design is shown in Figures 31 and 32 
below. 

 

 
Figure 31. Motor Clamp 

 

 
Figure 32. DC Motor in Motor Clamp 
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d.​ Stringing Mechanism Integration with Motor 
The most challenging part of the physical design was integrating the stringing 
mechanism of the hand with the motor shaft. This process required iterative designs, as 
some failed or proved not to be as robust as originally anticipated. Several variables 
influence the success of the hand-closing mechanism, including the robustness of the 
knots in the hands, the torque provided by the motor, the flexibility of the material used 
in the hinges of the fingers, and the technique of translating the rotational motion (roll to 
pitch).  
 
The initial concept, shown in Figure 33, used a bevel gear mechanism to redirect 
rotation. While functional (see Figure 34), the 3D-printed spool lacked mechanical 
durability under load. The design was revised to incorporate an eye bolt and the 
repurposed spool (Figure 35), allowing reliable string tensioning directly from the motor 
shaft. This final configuration was mechanically stable and effective in operation 
 

 

Figure 33. Initial Conceptualization of Spooling Mechanism 
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Figure 34. Set-up of Failed Spooling Mechanism 

 
 

 
Figure 35. Final Spooling Mechanism 
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3.7​ Detailed operation of User Interface Subsystem 

Requirements 
The requirements of the User Interface Subsystem are: 

●​ There must be a calibration process so the device can be tuned to the user. 
●​ There must be user manuals for both the end-user and eNABLE members. 

○​ For the user, this will include information on electrode placement and the 
calibration process. 

○​ For eNABLE, this will include a description of the code and information 
about the board and CAD files. 

 
The calibration process was designed to use a screen to prompt the user on what to do 
and a button for the user to start calibration/ move to the next step. In the final board 
version, a larger green button was selected to make it more obvious which button 
should be pressed for calibration. The boot and enable buttons that are needed for the 
eNABLE team members are much smaller than the user button.  
 
A screen also needed to be selected. The screen did not need to have multiple colors, 
and it needed to be compact to fit in the arm. Additionally, many screens have ribbon 
cable PCB connectors. These seemed quite tedious to work with and difficult to connect 
successfully, so I decided to select a screen already on a board. To permanently affix 
the screen board to the main board, the screen board’s header pins can be soldered on 
the main board. Since the functions in Arduino’s SSD1306 library are quite intuitively 
named, I also wanted to use a screen that would be compatible with the library. This led 
me to select the Hosyond OLED 5 pk, as it fits these requirements, is affordable, and 
readily available. 
 
Details of the code for the user interface subsystem are detailed in section 3.8: 
Interfaces: Software Interface and section 5: User Manual/ Installation Manual. 
 
 

3.8​ Interfaces 

Software Interface 
The majority of code operations are mutually exclusive functions, which are time 
sensitive, run for a finite duration, and should not be interrupted. When a muscle flexion 
is sensed, EMG sensing is temporarily suspended to avoid multiple motor activations 
from the same muscle contraction. Furthermore, the prosthetic hand only has two 
discrete states: open or closed. The motor should not be interrupted while changing the 
hand between states because the software does not track partial states. Additionally, 
while the hand is calibrating, the normal operation (EMG sensing and motor activation) 
should be suspended because the software is in the process of updating the threshold. 
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Considering the desired operation of the prosthesis, the software is configured as a 
superloop with discrete states. The software states are: 

●​ EMG Sensing 
●​ Motor Activation 
●​ Calibration 
●​ Power Tracking 

 
The software is primarily sampling the EMG signal until an event occurs. When an event 
occurs, the software temporarily pauses EMG processing to handle a different 
operation. The potential events and their corresponding operations are: 

●​ Threshold detected → Activate motor  
●​ User button pressed → Enter calibration 
●​ Timer flag → Check battery power 

○​ Battery is low → Activate warning LED 
 
Figure 36 depicts the entire decision tree of the project software. 
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Figure 36. ARM ProsthEEsis Software Operation 
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PCB Layout 
The full PCB layout is depicted in Figure 37. The primary design considerations for the 
PCB layout were: 
 

1.​ EMG and Motor Separation: The motor components were placed on the 
opposite side of the board from the EMG sensing components to minimize noise 
in the EMG signal due to the motor sharing a ground with the sensing 
components. 

2.​ Motor and Battery Proximity: Because the motor is the only component 
powered by the full 8V battery supply, the battery input was placed next to the 
motor components. 

3.​ Minimizing Size: The PCB must fit within the 3D printed forearm, which 
informed the following decisions: 

a.​ Board Dimensions: The PCB is rectangular to ensure the width is narrow 
enough to fit within the forearm. 

b.​ Audio Jack Orientation: Rather than facing the outside of the board, the 
audio jack input is oriented towards the center of the board, allowing the 
EMG electrodes to be connected without the cable hanging over the side 
of the board. 

c.​ OLED Orientation: The OLED is oriented to be above the MCU on the 
board, ensuring it doesn’t extrude beyond the board dimensions. 

 

 
Figure 37. PCB Layout 

 

MCU Selection 
We have selected the ESP32-S3 for our project because it has Successive 
Approximation Register (SAR) ADC pins, which can operate more efficiently with lower 
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power consumption than the standard ADC pins on the ESP32. In addition to having 
optimized ADC pins, the Espressif ESP-DSP library is also optimized for the S3. In 
earlier design revisions, we anticipated utilizing this library for software processing, 
motivating our MCU choice. The ESP32-S3 meets our other listed requirements, 
including minimum required input/output pins. 
 
The ESP32-S3 variation selected was the WROOM-1U because the chip comes without 
the antenna module, saving space on the PCB. The antenna module is unnecessary for 
this project, as the software does not utilize Bluetooth or WiFi.  
 
Any of the ESP32-S3-WROOM-1U memory variations are sufficient as the software only 
utilizes 1 MB of flash, 2 MB of RAM, and no PSRAM. Note that the Platformio file in the 
final software version is configured for the memory partition of the 
ESP32-S3-WROOM-1U-N16R8, which has 16 MB of flash, and 8 MB of RAM. 
 

4​ System Integration Testing 

4.1​ Describe how the integrated set of subsystems was tested. 

The overall set of subsystems was tested in a logical, iterative manner. The first step 
was transitioning from each using breadboards and kit boards to using the PCB that we 
designed. First, we confirmed that EMG sensing was accurate, and the OLED display 
was operational. The next step was iterating the calibration code by using the serial 
monitor output to view EMG values as the calibration process was configured. 
Throughout this, power was being tested with the voltmeter to ensure that the right 
components were being powered correctly. Once all this was confirmed, the motor and 
its corresponding code were added to the mix to ensure that it could spin in the right 
direction, at the right speed, and at the right time without too much latency. The final 
step was integrating and securing each of the systems into the 3-D printed hand and 
socket. This was done last, as at this point, we had ensured proper code operation and 
confirmed the integrity of all electrical and power connections and components. 
 
The most difficult part of this integration process was securing the motor and connecting 
the spool of the fishing line so that it could effectively apply tension in the line and 
actuate the hand. The original plan called for the use of connecting gears and a plastic 
3-D printed rod to connect a spool of line with the top of the motor head. However, this 
turned out to be too complicated, and the plastic 3-D printed rod snapped because it 
was not strong enough to withstand the applied torque. However, the team came 
together and tested a new option, which used a 3-D printed spool glued to the head of 
the motor and an eye bolt to direct the spool and maintain tension when applied. This 
worked, and, along with some changes to the joints in the hand to soften them, allowed 
the project to come together.  
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4.2​ Show how the testing demonstrates that the overall system meets 
the design requirements 

In summary, the overall system requirements called for a device that provides “intuitive, 
reliable, and comfortable control of a prosthetic hand utilizing electromyographic (EMG) 
signals” and is safe and easy to use. Additionally, the device needed to be light enough 
for efficient use and able to be documented for e-NABLE ND to use in the future and 
apply to real users.  
 
On demonstration day, each of these criteria were demonstrated successfully. The 
device easily turned on when the power switch was flipped, and the user was easily and 
seamlessly able to go through the calibration steps and follow the directions provided on 
the OLED display. When that was complete, the user was able to open and close the 
hand by simply flexing their muscle. The hand opened and closed several times, and a 
Dr. Pepper can was picked up. Most importantly, though, all of the design decisions, 
component decisions and sourcing information, code, PCB files, and CAD files have 
been compiled together so that e-NABLE ND can easily and efficiently replicate our 
design for real users. 
 

5​ Users Manual/Installation Manual   

5.1​ User Manual 

1.1​ How to install your product 

The first step for using the prosthesis is placing the electrodes. Two electrodes should 
be placed near the muscle belly, in line with the muscle fibers. The third electrode acts 
as a ground, and it should be placed near a bone or electrically unrelated tissue. An 
example of electrode placement is shown in Figure 38.  
 

 
Figure 38. Electrode Placement Guide (source) 
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Next, the cables need to be snapped onto the electrodes. The green connector should 
snap onto the ground electrode. The yellow and red connectors should snap onto the 
muscle belly electrodes. 
 
Then, the arm & socket should be fitted onto the residual limb. Now, the device is ready 
for setup and subsequent use. 

1.2​ How to setup your product 

Before setting up the device, two 18650 lithium ion batteries with built-in protection 
should be placed between the snaps in the battery box in the orientation corresponding 
to the markings.  
 
To turn on the device, move the switch on the battery board to the “ON” position. 
 
Once the power is on, a blue LED should light up on the main board within the arm. If 
you see this light, you can proceed with calibration.  
 
To begin the calibration process, press the “USER” button on the circuit board. The 
OLED display will then provide instructions for the calibration process: 

●​ First, the calibration process will load. After loading, you will be prompted to 
press the “USER” button. 

●​ Then, you will be prompted to relax the target muscle. The device will take 
measurements during this time. After, you will be prompted to press the “USER” 
button. 

●​ Next, you will be prompted to flex the target muscle as the screen flashes. There 
will be a countdown before the flashing starts. When the screen is fully white, flex 
the target muscle as you will to change the hand position.  

○​ Note: The screen will flash three times, for varying amounts of time. 
Continue to flex the muscle until the screen goes dark again. 

○​ After, you will be prompted to press the “USER” button. 
●​ Two things may happen in the next stage: 

○​ If the calibration was successful, the display will let you know. Then, it will 
calculate and set the threshold value. You are now finished with calibration 
– hold the button to start the calibration process again. 

○​ If the calibration was not successful, you will get an error message. If this 
happens, hold the button to start the calibration process again. You will be 
prompted to do so. 

 
After successful calibration, setup is complete. 

1.3​ How the user can tell if the product is working 

You can tell the device is operating properly when: 
●​ The blue power LED is on. 
●​ The OLED display provides a prompt after holding the “USER” button. 
●​ The calibration process ends in success. 
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●​ The movement of the hand corresponds with the input from the target muscle. 

1.4​ How the user can troubleshoot the product 

●​ What if the blue power LED does not come after I flip the power switch? 
○​ This is likely due to an issue with the batteries. First, charge them and try 

again, ensuring proper orientation.  
○​ If this does not work, try another set of batteries. 

●​  What if the OLED display does not provide a prompt after holding the “USER” 
button. 

○​ First, ensure you are pressing the “USER” button: there are two other 
buttons present on the board.  

○​ Next, make sure you are holding the button when the hand is not moving. 
The button will not work during other processes, so if the hand is opening 
or closing, hold the button for at least 5 seconds. The prompt should 
appear when the motion stops. 

●​ What if the calibration process has an error? 
○​ First, try the calibration process one more time. There may have been 

temporary signal interruptions that interfered with the signals detected in 
calibration. 

○​ If this process fails again, check the metal cage on the inside of the 
device. This cage helps minimize the noise due to nearby electronic 
devices. If it is broken, wireless signals will variably interfere with signal 
processing: it needs to be repaired. 

●​ What if the hand does not move when I flex my muscle (or vice versa)? 
○​ This is likely due to a calibration issue. The calibration process may need 

to be repeated throughout the day if the muscle weakens quickly with use. 
Try repeating the calibration process. 

○​ Next, check the metal cage on the inside of the device. This cage helps 
minimize the noise due to nearby electronic devices. If it is broken, 
wireless signals will interfere with signal processing: it needs to be 
repaired. 

●​ If there is another issue or these solutions do not work, please contact eNABLE. 
They can further troubleshoot the hardware and software to resolve the problem. 

5.2​ e-NABLE Manual 

First, the relevant code, board, and CAD files are uploaded to the website. Here, you 
will also find the bill of materials (BOM) and copies of both user manuals. 
 
You will first want to purchase the necessary materials, which are listed in the BOM. 
Ensure the components are in stock before you order to avoid delays, and order a few 
weeks before you plan to assemble the device.   
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Code Files 
To adapt the device for each application, you will likely need to tinker with the code. 
Please refer back to Figure 36 to understand the overall code flow before diving in. 
 
First, download Visual Studio Code and install the PlatformIO package. This website 
may be helpful for guiding installation. 
 
To open the file, go to the PlatformIO home page in VS Code. Click “Open Folder”, then 
open the entire ARM_VX.X folder. The key code files are in the “src” folder. All the code 
is thoroughly commented, so with the following descriptions, it should be easier to 
understand and change as desired.. 
 
Some overarching comments: 

●​ You must connect the board to batteries in order to upload & test code! The 
USB port was not configured to also provide power, so the batteries are needed 
to troubleshoot. 

●​ .h files are for function declarations (which are required). These allow the multiple 
.cpp files to be used in main.cpp, making the code easier to read, understand, 
and manage. .h files are header files, and they are called at the beginning of a 
.cpp file. Header files allow the code to access libraries, which are essentially 
what the other .cpp files are. 

●​ delay() is often called after display functions: this allows the user time to read the 
message on the OLED before the program continues. 

●​ Everything that prints to the serial monitor is left in the code to ease the 
troubleshooting process. These are not vital to the function of the end-user 
device, and can be commented out before the device is given to the user. 

 
The calib.cpp file contains the function definitions for the calibration process.   

●​ calibBegin tells the user that the process is loading and prompts them to press 
the button to proceed.  

○​ It only consists of display functions from display.cpp. The delay gives time 
for the user to read the screen before changing the display. 

●​ relax will collect EMG signals when the muscle is relaxed to determine the 
average peak value in the resting state.  

○​ After initializing necessary variables, it prompts the user to relax the target 
muscle. Then, the for loop will collect values from the sample_200 function 
in sample.cpp and sum them together. Upon exit, it will divide this value by 
the number of samples. Then, the user will be prompted to press the 
button to proceed, and the function will return the calculated average. 

●​ flex will flash the screen and collect EMG signals when the muscle is flexed to 
determine the average peak value in the active state. 

○​ After initializing necessary variables, it prompts the user to flex the target 
muscle. A countdown will be displayed before the screen clears then 
flashes white. Then, the for loop will collect values from the sample_200 
function and sum them together. Upon exit, it will divide this value by the 
number of samples to get the average. This process will repeat two more 
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times, with the new average being added to the existing average. Finally, 
this sum is divided by 3 to get the flexed average that is returned at the 
end of the function. Then, the user will be prompted to press the button to 
proceed. 

●​ calibEnd will determine if the calibration process needs to be repeated. If it was 
successful, a threshold value is set and the calibration process ends. If there was 
an error, the user is notified to restart calibration, and a random threshold is 
returned. 

○​ The return variable is initialized. Then, the if statement corresponds to 
calibration success: the flexed value should be larger than the relaxed 
value. The user is notified of the success, then the threshold is calculated 
as an average of the relaxed value and the flexed value. Then, the user is 
notified how to recalibrate, the display is cleared, and the threshold is 
returned. 

○​ The else statement corresponds to a calibration failure. The user is 
notified of an error on the display and prompted to restart calibration by 
holding down the button. A random threshold value is returned.  

●​ senseEMG determines if an EMG sample exceeds the threshold. 
○​ First, the sample is collected. If the sample > threshold, the muscle is 

flexed, and the function returns true. If sample ≤ threshold, the function 
returns false. 

 
The display.cpp files contain the definitions for the functions that display text on the 
OLED. 
 
For all our sanity, I will not go through each display function, as they all follow the same 
architecture (except for the initialization function). 

●​ init_display checks to see if the OLED is connected properly. This is a pretty 
standard initialization function you will also find on code online. You shouldn’t 
need to change it: it’s not unique to our board. 

●​ All other display functions follow the same general set of functions within 
them, and they are all intuitively named.  

○​ First, the display will be cleared. If you do not do this, the new text will 
show up on top of the old text. If this changes or it’s the first display 
function used, formatting functions, such as for font and text size, will be 
called. Then, the cursor is set to the intended location on the OLED (ours 
is 64 x 128) and the text is set to display. The OLED won’t actually change 
until you call display.display(), so this is at the end of all the display 
functions. 

○​ All of these functions were created just to make the other functions (re: 
calibration functions) easier for you to read and understand.  

 
main.cpp is the file with the setup and the superloop: this is the main file (aptly named) 
that calls functions from the other files and follows the code flow diagram.  

●​ First, we are calling all the necessary header files and initializing the variables we 
need later in the code. Nothing too crazy here, and comments further explain 
what you’re looking at. 
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●​ At the end of the timer variables, we are also declaring a timer initialization 
function and creating a timer interrupt. 

●​ setup contains many functions that are needed to establish connections to allow 
the following code to run and interface with other board components & outlets. 
This function will set up the OLED, user button, EMG pins, motor pins, and timer 
pins and interrupt. You shouldn’t have to really change this unless you add 
another component to the board that you want to interact with. 

●​ loop is our main superloop!  
○​ First, it checks if the button was pressed. 
○​ If yes (i.e. low), we will enter the switch statement, which will place us at 

the correct calibration step, call the corresponding function, and increment 
our calibration step tracker variable. Then, there is a delay to minimize 
mechanical issues with the button. 

○​ If the button was not pressed, we go ahead and check to see if the target 
muscle was flexed. 

■​ If yes, we open or close the hand and reset the hand state variable. 
○​ If it’s time to check the battery voltage, we read the battery voltage. If the 

voltage is low, we turn the LED on. Then, we reset the timer flag. 
●​ onTimer is our timer interrupt handler: when the timer is up, we set a flag. This 

flag tells us to check the battery voltage. 
 
motor.cpp is the file that contains our two motor functions. 

●​ runMotor opens/ closes the hand for a set amount of time, then resets the hand 
state variable. 

○​ if the hand is closed, we turn the motor clockwise to open the hand. We 
delay so the motor can turn as much as needed before stopping the 
motor. The position variable is changed. Then we delay for the hand to 
adjust before returning the new position variable. 

○​ if the hand is open, we turn the motor counterclockwise to close the hand. 
We delay so the motor can turn as much as needed before stopping the 
motor. The position variable is changed. Then we delay for the hand to 
adjust before returning the new position variable. 

●​ moveMotor tells the motor pins which direction to go and how fast to move, 
actually sending the signal to run the motor. This is called within runMotor. 

 
sample.cpp is the file that contains the values for the digital filters for the EMG and the 
code to sample the EMG input. 

●​ After calling the necessary libraries, we set our frequencies and create simple 
FIR notch filters. We want to filter out the 60 Hz power line noise, so we do notch 
filters for 60 Hz and its first harmonic, 120 Hz. 

●​ sample_200 collects 200 EMG samples and outputs the sample max. In the for 
loop, we read in the EMG data, then we run the signal through both filters (to 
eliminate 60 Hz and 120 Hz noise). Next, we compare this sample to the ones 
already collected and keep the maximum value. We set a short delay to keep the 
sampling frequency we want. We repeat through this loop for 200 times, and the 
function will output the sample’s peak value.  
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That covers all the key code files. With these descriptions, you should be able to 
understand the code. This will allow you to make tweaks to accommodate design 
changes, such as different hand size. If you want to upload changes, click the → at the 
bottom of the screen to upload to the board.  

Board Files 
First, note that there are two boards: one board is for the batteries, and the other 
contains the processor and connections to other components. Both of these are needed 
in the final design. The power board components are easily hand soldered, but the 
components on the main board should be placed using both the automatic and the 
manual pick-and-place machines in the EIH. The proper file for the pick-and-place 
machine is posted on the website: be sure to upload this to an SD card before going to 
the EIH to put the boards together.  
 
In the earliest uses of the board, it will likely not need to be changed. However, the files 
need to be accessed for fabrication. To order boards, you will need to generate a gerber 
file, which this website provides instructions for. Feel free to use any company: we used 
OSH Park because they are based in the US and have faster shipping with less direct 
shipping cost - each board house will have slightly different specifications for the gerber 
file, which can be found on their website. 

CAD Files 
As you know, you will want to change the scale for each user. You’ll want to adjust your 
parameters in OpenSCAD just as you would for purely mechanical devices and export 
them as .stl files. You can send most of these to print as-is, with the exception of the 
hinges and the LowerArm. For a better fit, scaling the hinges a bit larger is likely helpful. 
The lower arm file, however, needs much more work. 
 
You will want to change the connection pieces of the corresponding file we have 
uploaded on the website. We want to keep the body of the arm with the proper housing, 
but we want the connection pieces to fit the new hand and socket. For a bit more 
information on how we created our file, refer to section 3.6: Detailed Operation of Hand 
& Socket Design in our final report.  
 
Next, you will likely want to change the length of the arm to be closer to the needs of the 
user. When you do this, it is to ensure that the mounting holes, and component 
housings are still compatible with the parts. The motor, main board, and battery board 
still need to fit on the arm. This may require repositioning of the battery holder and the 
main board: the motor has a bit less leeway.  

 

6​ To-Market Design Changes 

 
Each of the subsystems in the project can be improved in a few ways if the arm was to 
be taken to market. The first change made to the EMG system would be using a more 
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effective Faraday cage to eliminate electromagnetic interference. The arm currently 
uses aluminum foil, which reduces some of the noise, but is prone to mechanical gaps 
which limit its effectiveness. In practice, the user will need to access the inside of the 
hand to calibrate and change the batteries. This necessitates some type of opening to 
free space which EM waves can propagate through. Optimally, the Faraday cage would 
have no gaps in it during normal operation. With just aluminum foil, this is difficult to do. 
Although other metals, like copper are more conductive than aluminum, aluminum is 
very light, so we’d likely stick to aluminum as the material going to market. A better 
option to ensure continuity of the Faraday cage during normal operation would be using 
some form of sheet metal. Molding a layer of aluminum to the shape of the arm would 
be impractical, especially if we are trying to keep costs low. A happy medium could look 
like a solid aluminum lining around the opening in the arm that mates to another 
aluminum lining on the hatch. This solid aluminum would be fixed to a foil that lines the 
inside of the arm. To further improve the noise isolation, if needed, we could use a 
thicker foil or add more layers of foil. This would mainly benefit the operation in very 
noisy electromagnetic environments (near a generator etc.).  
 
Another additional feature that could be added to the EMG sensing system is an error 
detection code that recognizes if an electrode falls off of the user. All of the hardware for 
detecting an electrode disconnection event is already set up to support this system, so 
the only necessary modifications would be adding a new conditional to the EMG 
sensing loop. When the electrodes are attached to a person, the EMG hardware gives 
predictable readings, averaged over a sampling cycle. Adding a conditional to detect 
significant deviation from these readings would add the error detection functionality.  
 
For the power system design, a very convenient feature to offer to the user is more 
resolved battery charge tracking. The current system only can alert the user if the 
battery is “low.” This is because the system only monitors the battery’s voltage, not the 
amount of power it has used. There are battery monitoring ICs that can be used for this, 
such as TI’s Impedance Track technology or Coulomb counter ICs. The best way to 
communicate the charge to the user would be a series of LEDs, a multicolor LED, or a 
small screen visible from the outside of the arm. The main constraint of adding in more 
hardware quickly becomes space. During our design process, one of the main changes 
that we made from our proto-board to our final board was adjusting the layout to better 
accommodate the limited space available inside the arm. Especially if the end user of 
the arm is a small child, to have a realistically sized arm, space is extremely limited. 
Given the current design, the best solution to create more room for added peripherals 
would be creating a two-sided PCB and utilizing the area around the mounting screws. 
Due to the time constraint, drastically changing from the protoboard design to a new 
PCB with more layers would not have been possible. In addition, boards with more 
layers would drive up costs. Another place for the power system to improve is the 
electrical connections from the battery board to the main board. Our final design uses 
JST connectors. The connectors work fine, but aren’t very durable and wouldn’t be 
reliable. The user is inserting and removing batteries directly next to the JST connector 
and in general the arm will be subject to daily wear and tear, which could be significant, 
especially for a child. Opting for a more permanent solution that the user couldn’t 
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accidentally remove while servicing the batteries or during daily life would be best. An 
easy to market change here would be using Molex connectors instead.  
 
For the hand and socket design, the two main limitations were 3D print quality and joint 
hinge and threading design. First, the goal of improving print quality would be to make 
the arm look more like a human arm. The current design has a rough, stepped texture, 
which approximates the shape of a hand, but doesn’t look or feel much like a real 
biological hand. Using a 3D printer with a higher resolution between layers of material 
would reduce the stepped texture and casting the hand with a mold would completely 
eliminate the issue. Also, using a plastic that more closely matches human skin tone 
would make the hand and socket look more like a human hand. Due to the constraints 
of the EIH and our budget, these options were not possible. Another limitation of our 3D 
print was the texture of the inside of the hand. This texture is very important for how the 
hand grips objects. The smooth texture of the 3D print is not very sticky, and therefore 
not very good at picking things up. Using some sort of molded rubber or spray on rubber 
would improve this. Increased friction between the hand and objects also reduces the 
force output front he hand needed to successfully hold objects, which makes the system 
more energy efficient. Finally, having access to higher quality prints, in combination with 
better mechanical designs, would improve the joint resiliency. This would result in more 
fluid grasping and would require less torque from the motor to grasp and release the 
hand.  
 
Second, we experienced major difficulties with the hinges and the threading. For 
demonstration, the prototype that we present does not spring into an open position 
when it is not grasped. In other words, the original goal was for the hand to have two 
states: firmly closed and firmly open. However the demo day design’s states were firmly 
closed and slack. In the slack state the fingers can freely open and close. This 
shortcoming is due to a few things. First due to the delayed shipping for the final board, 
we could only use half of the voltage that we intended to provide the battery. This 
significantly reduced the maximum torque that the motor was capable of outputting. 
Second, even with full voltage, the motor likely wouldn’t be strong enough to grasp the 
fingers. This leads to the final cause: too much force required to close the hand. The 
cause of this is that the joints were too firm. The joint flexion requires deforming soft 
plastic pieces within each finger. The plastic pieces used in the final design were soft, 
but not soft enough that the motor could pull against them. To demonstrate the hand, we 
opted for very soft improvised joints constructed out of wires and duct tape. They allow 
flexion, but are not elastic enough to return the fingers to a firmly open state. The ideal 
joints would be somewhere between the original elasticity and the improvised joint 
elasticity.  

7​ Conclusions 

The ARM ProsthEEsis team was ultimately successful in the creation and 
demonstration of a working prototype of an EMG-controlled prosthetic hand. By 
integrating the EMG sensing, user interface, motors and actuation, hand and socket 
design, and power subsystems, a functioning end-to-end design was brought to life and 
successfully demonstrated. In line with the overall goal of this project, the lessons 
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learned and all engineering materials and documentation will be passed on to e-NABLE 
ND so that our work can be used to improve the functionality of low-cost prostheses for 
real users. 

8​ Appendices 

Hardware Schematics 

 
Figure A1. Schematic of MCU and Peripherals 
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Figure A2. Schematic of EMG Sensing Subsystem 

 

 
Figure A3. Schematic of Motor Subsystem 

 

56 



 
Figure A4. Schematic of Power Subsystem 

 

Software Listing 

 
Figure B1. Organization of Software Files 
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Platformio File 
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main.cpp 
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display.h 
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display.cpp 
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calib.h 
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calib.cpp 
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motor.h 
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motor.cpp 
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sample.h 

 

sample.cpp 

 

Additional Documentation 
●​ Arduino Filter Library Documentation 
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Component Data Sheets 

●​ Hosyond OLED 
●​ AD8232 (EMG IC) 
●​ ESP32-S3-WROOM-1U (MCU) 
●​ AP2112 (Linear Regulator - Demo Day Board) 
●​ AZ1117I (Linear Regulator - Final Board) 
●​ MCP602-E/P (Op-Amp) 
●​ DC Geared Motor 
●​ TB6612FNG (Motor Driver - Demo Day) 
●​ TB6612FNG (Motor Driver - Final Board) 
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https://www.diodes.com/assets/Datasheets/AZ1117I.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/21314g.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/2244/FIT0522_Web.pdf
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