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1 Introduction 
Satellites are a cornerstone of modern communication, navigation, and Earth observation, yet 
their utility is immediately challenged after deployment due to accumulating momentum across 
all three rotational axes. This uncontrolled angular velocity renders precise orientation—and 
therefore effective charging, communication, imaging, and sensing—impossible without a 
capable Attitude Determination and Control System (ADCS) that can critically detumble the 
spacecraft. If a satellite cannot slow its spin within a short timeframe and under strict power 
constraints, it risks entering an unrecoverable “spinning death,” terminating its mission before 
any meaningful operation can occur. 

For small satellites, which are increasingly prevalent in both academic and commercial missions, 
traditional detumbling and attitude control systems pose significant integration challenges. Most 
standard ADCS configurations rely on a combination of reaction wheels and magnetorquers, but 
these systems are often bulky, power-intensive, and require complex interfaces—making them 
difficult or impossible to incorporate into constrained form factors like 0.5U. While some 
magnetorquer-only systems for small satellites do exist, they are prohibitively expensive and 
often deliver limited performance. 

The Control of Hardware Attitude using Reliable Magnetorquer Satellite (CHARMS) is an 
innovative response to this challenge. Designed as a modular, low-power, and low-cost 
magnetorquer-only ADCS, CHARMS supports satellites as small as 0.5U (10 cm × 10 cm × 
5 cm). It offers a plug-and-play solution requiring only power and serial communication with the 
host satellite bus, with no dependence on system-external inputs. Its reduced yet sufficient sensor 
suite, compact architecture, and autonomous operation make it scalable, practical, and highly 
adaptable. CHARMS represents a critical advancement in democratizing access to space, 
enabling the next generation of small satellites to achieve precise attitude control without 
compromising size, cost, or power and ensuring mission viability beyond the moment of 
deployment. 

1.1  Problem Statement 
When satellites are deployed into low Earth orbit (LEO), they inherit significant angular 
momentum on all three axes from their separation event. This uncontrolled rotation renders 
essential operations such as communication, imaging, data collection, and power management 
impossible. To begin functional operations, satellites must first stabilize their orientation through 
a process known as detumbling, which applies counteracting torques to reduce spin. Successful 
detumbling is a critical prerequisite for mission success. 

Small satellites, constrained by tight limits on power, volume, and mass, often struggle to 
accommodate traditional detumbling systems. Solutions that rely on reaction wheels, thrusters, or 
extensive sensor suites are generally infeasible due to their size, complexity, and power 
demands, rendering them especially impractical for compact form factors like 0.5U satellites. 
Even after successful detumbling, maintaining precise attitude control remains essential for 
operations such as sensor alignment, data collection, and solar charging. This capability, 
provided by an Attitude Determination and Control System (ADCS), is critical to mission 
success. 



 

 

The problem is particularly sensitive during the earliest phases of a satellite’s mission. A 
significant number of small satellite failures occur shortly after deployment due to power 
depletion, failure to detumble, or instability introduced during detumbling. These early-stage 
vulnerabilities highlight the need for ADCS solutions that are lightweight, low-power, reliable, 
and simple to integrate. Without such systems, many small satellites risk becoming 
nonfunctional within minutes of deployment before they can fulfill their mission objectives. 

Unfortunately, many existing ADCS offerings for small satellites do not meet these needs. 
Reaction wheels consume considerable power and introduce mechanical failure modes. Thrusters 
are generally impractical for small platforms. Even commercially available magnetorquer-only 
systems are either underperforming or prohibitively expensive. As a result, there is a clear and 
pressing need for an ADCS architecture that minimizes complexity, maximizes efficiency, and 
remains cost-effective all without sacrificing core functionality. 

The challenge, then, is to design a system that can perform robust detumbling and basic attitude 
control using minimal hardware and computational resources. Such a solution would not only 
improve mission reliability but also expand opportunities for scientific and commercial 
operations on compact satellite platforms. 

1.2  The CHARMS Solution 
To address the challenge of low-cost, low-power satellite stabilization, the IrishSat Senior 
Design team developed Control of Hardware Attitude using Reliable Magnetorquers Satellite 
(CHARMS). CHARMS is a magnetorquer-only Attitude Determination and Control System 
(ADCS) designed specifically for compact platforms as small as 0.5U (10 cm × 10 cm × 5 cm) 
and capable of interfacing with any standard unit CubeSat. It provides a fully autonomous, plug-
and-play solution requiring only power and serial communication with the host satellite bus, with 
no reliance on GPS, star trackers, or external data sources. The CHARMS system is divided into 
four key subsystems: the PCB/Electronics Subsystem, the Magnetorquer Subsystem, the 
RTOS/Software Subsystem, and the Structural/Thermal Subsystem. 

1.2.1 PCB/Electronics Subsystem 

At the core of CHARMS is a custom-designed printed circuit board that integrates all control 
computation, sensor input, and actuation output. The CHARMS’s PCB employs a suite of 
sensors with outputs which provide the data which aid in determining the satellite’s orientation. 
These include: 

● Dual ICM-20948 Inertial Measurement Units (IMUs): Provide redundant gyroscopic 
and acceleration data to support real-time detumbling feedback. 

● Magnetometer: Measures Earth’s local magnetic field to assist the magnetorquer control 
torque algorithms during detumbling and attitude control. 

● Dual MLX90640 Infrared Cameras: Orthogonally mounted to perform horizon sensing 
and sun sensing following image processing. Captures basic images to be relayed. 
Provides data on the satellite’s relative orientation compared to Earth.  



 

 

○ These sensors will be used in future iterations of CHARMS to do more complex 
control, including Earth and Sun pointing. 

In its current configuration, CHARMS is configured to be a technology demonstration of 
the most critical step of satellite deployment, detumbling. No other controls are ready for 
operation at this time. 

This reduced sensor suite was chosen to ensure accurate attitude awareness while minimizing 
volume, power, and complexity. Additional onboard hardware includes: 

● ESP32-S3 MCU: Executes all real-time software tasks, including control, telemetry 
packaging, and communication. 

● H-bridge Motor driver ICs: Regulate bidirectional current flow through the 
magnetorquers. 

● 20-pin bus interface: Supports 3.3 V, 5 V, ground, and full-duplex UART 
communication with the NSL flight computer. 

All payload functions are handled on this single PCB, which also acts as the physical interface 
wall between CHARMS and the bus. 

1.2.2 Magnetorquer Subsystem 

Detumbling and attitude control in satellites can be achieved through various methods, including 
reaction wheels and thrusters. However, these approaches are generally unsuitable for small 
satellites due to their significant size, weight, power consumption, and mechanical complexity. 
Instead, CHARMS relies exclusively on magnetorquers.  

These passive, lightweight, low-power devices are ideal for constrained platforms. By 
optimizing design choices, these simple solenoids can provide significant control 
capabilities. Magnetorquers work by generating a magnetic moment that interacts with 
Earth’s magnetic field to produce a reactionary torque (τ = m × B), enabling both 
detumbling and coarse attitude control.  

The CHARMS system employs three custom-built magnetorquers, one per axis, to achieve full 
three-axis control without exceeding power or volume constraints.  

● X and Y axes: utilize compact ferromagnetic-core (mu-metal) rods, which produce high 
dipole moments in small volumes.  

● Z axis: features a large-diameter air-core magnetorquer wrapped around the CHARMS 
structure to maximize its magnetic moment. 

All magnetorquers are precision-machined in-house, with windings applied using an automated 
wrapper to ensure uniformity and optimal performance. This design enables precise orientation 
adjustments for both detumbling and pointing, while remaining well within the satellite’s SWaP 
(Size, Weight, and Power) budget. 

 



 

 

1.2.3 RTOS/Software Subsystem 

The software architecture for CHARMS’s ADCS is designed to achieve precise, efficient, and 
autonomous control of the satellite’s attitude with high system reliability. The system is built 
around a real-time operating system (FreeRTOS) enabling deterministic task scheduling and 
modular operation, supporting seamless execution of multiple mission-critical functions. 

Key components of the software stack include: 

● Sensor polling and data filtering for IMUs, magnetometer, and IR cameras via I²C 

● Implementation of the B-dot detumble algorithm to calculate magnetic moment 
commands 

● Generation of actuation signals (PWM and direction) for the magnetorquer drivers 

● Real-time task management and prioritization of mission-critical processes 

● Telemetry packaging and bus communication over UART 

● Interpretation of ground commands and in-flight reconfiguration 

1.2.3.1 Controls Operation  

The CHARMS detumble software is designed to autonomously stabilize the satellite from its 
initial spin state using only magnetorquers. The heart of the real-time control architecture system 
is the B-dot control algorithm, which calculates the satellite's angular velocity by measuring the 
rate of change of the local magnetic field (dB/dt) via onboard sensors. Using this information, 
the algorithm computes the ideal magnetic moment to generate torque and counteract the spin. 
This desired moment is translated into direction and PWM signals that drive the magnetorquers, 
thereby reducing angular velocity on all axes. 

Sensor data acquisition and filtering form the foundation of the control loop. A dedicated RTOS 
task polls the onboard IMUs, magnetometer, and infrared cameras every 10 milliseconds. The 
data is passed through low-pass filters to reduce noise and is continuously updated in memory 
for use by the control algorithm. All sensor interfacing is performed over I²C and optimized for 
low power usage and real-time responsiveness. 

The CHARMS control system operates in three defined modes (IDLE, DETUMBLE, and 
SAFETY) each triggered via serial commands from the satellite bus. These modes define how 
sensor data is processed and how actuation signals are applied to the magnetorquers. 
DETUMBLE mode actively executes the B-dot algorithm while IDLE mode maintains power-
saving sensor monitoring without actuation. 

1.2.3.2 Firmware Operation  

In addition to sensor data handling and control, the RTOS enables deterministic task scheduling 
and resource allocation. It ensures that high-priority tasks (such as magnetorquer actuation and 
error handling) are executed promptly, while maintaining seamless execution of lower-priority 
tasks like data logging and telemetry. 



 

 

CHARMS is designed to interface seamlessly with NearSpace Launch’s proprietary 
communications protocol over a full-duplex UART connection with the satellite bus. The 
firmware supports this interface by: 

● Constructing data packets in a format recognizable and parsable to the NSL bus 
processor. 

● Sending requests to the bus when information like health and safety information, battery 
levels, or data downlinks through Iridium comms networks is needed. 

● Receiving and interpreting responses from the bus and extracting useful information 
from the packets sent to CHARMS over the serial connection, including receiving ground 
commands to change the configuration or parameters of the system. 

All packet formatting, transmission, and parsing are performed autonomously, ensuring robust 
and reliable communication throughout the mission lifecycle. This interface is essential to the 
payload’s ability to operate and adapt in orbit. 

Execution on the ESP32-S3 microcontroller allows the firmware to leverage its built-in 
hardware features, including I²C and UART peripherals, dual-core processing, and PWM 
outputs, to support real-time, low-latency operation. This tight integration between hardware and 
software results in a self-contained, autonomous ADCS capable of performing all essential 
detumbling, telemetry, and configuration tasks in orbit without dependence on external 
processors or manual intervention. 

1.2.4 Structures and Thermal Subsystem 

The CHARMS payload must be structurally robust to withstand launch loads and maintain 
secure mechanical integration with the NSL bus throughout the mission. Mechanical design 
considerations ensure compatibility with the 0.5U ThinSat frame and compliance with interface 
standards specified by NearSpace Launch. Thermal reliability is equally critical; the internal 
environment must remain within the operating temperature ranges of all electronic components. 
This is achieved through passive thermal design and strategic component placement to minimize 
thermal hotspots. 

Structural integration and detailed thermal management are primarily handled by the broader 
IrishSat team, with the Senior Design team's contributions focused on ensuring mechanical 
compatibility and thermal awareness within the electrical design. 

1.3  Expectations and Results 
At the outset of the CHARMS project, the team defined a clear set of expectations encompassing 
system performance, learning outcomes, and compliance with industry standards. These 
expectations informed every phase of development, from early architecture decisions to 
subsystem tradeoffs and final integration. Our primary objective was to deliver a low-power, 
magnetorquer-only ADCS capable of autonomous detumbling on a 0.5U satellite platform that 
could operate independently, within a strict power budget, and remain compatible with the 
NearSpace Launch (NSL) ThinSat bus. While not every target was perfectly met, the system 



 

 

performed exceptionally in nearly all categories, achieving core functionality and demonstrating 
both technical viability and engineering excellence. 

1.3.1 System Performance Objectives and Outcomes 

CHARMS was evaluated against a set of high-level operational criteria: 

Objective Target Specification CHARMS Performance Status 

Detumbling Success Reduce spin to < 0.5°/s ~2°/s achieved after 15°/s initial Partial 
Success 

Detumbling Time < 75 minutes 17 minutes minimum Exceeded 

Precise Actuation Produce expected B-field from 
magnetorquers 

~4000 magnitude achieved Met 

Magnetorquers 
Functionality 

All three magnetorquers operate All 3 verified and functional Met 

Sensor Suite 
Performance 

Accurate magnetometer and 
gyro readings 

All axes accurately read, 
decreasing ω detected 

Met 

Reduced Sensor Suite Use minimal sensors for 
functionality 

Magnetometer & IMU only Met 

Image Processing IR cameras perform 
sun/horizon tracking 

Horizon images successfully 
captured 

Met 

Dipole Strength 
(MuMetal) 

> 5 Am² ~1.06 Am² Partial 
Success 

Dipole Strength (Air 
Core) 

> 0.1 Am² ~1.67 Am² Exceeded 

Power Consumption < 7 Wh ~0.2087 Wh during detumble Exceeded 

PWM Control PWM scaled based on sensor 
feedback 

Gain-varying PWM confirmed Met 

UART Communication Interface with NSL serial 
packet structure 

Verified with emulator Met 



 

 

Telemetry and 
Commanding 

Send/receive data and 
commands over UART 

Confirmed autonomous packet 
exchange 

Met 

Autonomous Operation Self-contained RTOS + control 
architecture 

Fully autonomous detumble 
mode 

Met 

Cost Reduction Significantly lower than COTS 
solutions 

~$550 total, ~1/40 of 
comparable COTS systems 

Exceeded 

Power Efficiency Operates under tight energy 
budget 

~0.2087 Wh detumble (<< 7 
Wh) 

Exceeded 

Software Robustness Real-time scheduling, modular 
RTOS 

FreeRTOS running multi-mode 
architecture 

Met 

System Independence Minimal reliance on bus for 
control 

Operates fully on onboard 
ESP32-S3 

Met 

 

CHARMS met or exceeded nearly all performance objectives, especially in power efficiency, 
hardware integration, and autonomous control.  

1.3.1.1 Physical Testing and Experimental Validation 

Testing was conducted using a custom-built Helmholtz cage to simulate magnetic field 
environments. For isolated magnetorquer validation, the magnetic center was zeroed and field 
strength measured across multiple axis-specific configurations. To evaluate full-system 
performance, PySol was used to recreate low-Earth orbit (LEO) magnetic field conditions within 
the cage. 

The CHARMS payload was mounted atop a hemispherical bowling ball resting on an air 
bearing, enabling low-friction, multi-axis rotational movement. The system was externally 
powered via 5V and 3.3V rails, mass-matched to reflect the full NSL bus, and manually spun 
prior to operation. Telemetry and health data were transmitted via Bluetooth throughout each 
test. 

A range of trials were conducted with varying gains, timing intervals, and control configurations. 
Notably, in a control-disabled trial, the system took over 90 minutes to decelerate from 20°/s to 
an asymptotic ~7°/s, highlighting the natural damping baseline of the testbed. 

The plot included in Section 4.1.2.5.1 Successful Autonomous Detumble in Simulated Orbit 
in Figure 44 compares angular velocity reduction for two test conditions—active detumbling 
(blue) and idle (red)—both beginning at 15°/s. Under active control, CHARMS reduced spin to 
~2°/s in under 18 minutes, while the idle condition plateaued around 7°/s after more than 90 
minutes. The testbed itself induces some passive damping, but CHARMS’s control system 
clearly accelerates the detumble process. 



 

 

While the target spin rate of <0.5°/s was not reached, the experiment validated functional 
detumbling and energy efficiency (~0.2087 Wh). The shortfall may be due to sensor noise from 
the low-cost IMU, residual torques from the air bearing (which, though low-friction, is not 
torque-neutral), limitations in the current proportional control implementation, or other 
constraints inherent to Earth-based simulation. Still, the results substantiate CHARMS’s 
capability to deliver real-time detumbling under aggressive SWaP limitations. 

1.3.1.2 Learning and Development Goals 

CHARMS was conceived as both a technical demonstrator and a learning platform. The team 
worked across disciplines to design a novel system under real-world aerospace standards, 
achieving the following development goals: 

● Designing a complete, low-power ADCS 
 → Implemented a fully functional, magnetorquer-only detumble system operating at 
~0.2087 Wh. 

● Developing a space-capable, single-board PCB 
 → Created, assembled, and tested an integrated flight computer optimized for 
thermal and spatial efficiency. 

● Creating robust autonomous software 
 → Built a FreeRTOS-based architecture supporting real-time task execution, 
telemetry handling, and motor control. 

● Collaborating with a commercial launch provider 
 → Worked directly with NSL, interfacing with their bus protocol and following 
their integration pipeline. 

● Working interdisciplinarily across subsystems 
 → Integrated electrical, software, mechanical, and systems components into a 
cohesive, flight-ready payload. 

● Meeting stringent aerospace requirements 
 → Followed NSL’s ICD guidelines for power, firmware, mechanical, and thermal 
standards. 

● Designing and fabricating novel magnetorquers 
 → Produced in-house magnetorquers using automated winding tools, surpassing 
COTS alternatives. 

● Delivering within a fixed budget 
 → Final cost was ~$550—roughly 1/40th the price of commercial equivalents. 



 

 

● Enabling future extensibility 
 → Built a modular platform expandable for full attitude pointing using onboard IR 
sensors and vision algorithms. 

Each goal was achieved or exceeded. The project provided the team with experience in 
aerospace design, embedded systems, and spaceflight hardware development—preparing them 
for future technical leadership in the space sector. 

1.3.1.3 Testing and Compliance 

CHARMS addressed all NSL-defined requirements through a structured testing and review 
pipeline: 

● Passed Integration Readiness Review (IRR), including power, continuity, and 
communication checks 

● Conducted mode-based functionality tests with emulator integration 

● Verified power resilience (0V startup, watchdog timers, power cycling) 

● Developed an environmental testing plan aligned with GEVS guidelines (TVAC, 
bakeout, vibration); post-environmental tests are in progress 

While CHARMS did not meet its most ambitious spin-rate target, it unequivocally succeeded in 
its core mission: delivering a fully autonomous, low-power, magnetorquer-only ADCS for small 
satellites. The system met rigorous performance standards and integration constraints, while 
offering a scalable, cost-effective alternative to commercial systems. Perhaps most significantly, 
it equipped the team with firsthand experience in end-to-end aerospace system design—
balancing innovation, precision, and practicality to deliver a flight-ready solution. 

  



 

 

2 System Requirements 
This project is in collaboration with a commercial partner, NearSpace Launch (NSL), whose 
education branch, NearSpace Education (NSE), sponsors the CHARMS project. The other half 
of the thinsat, the satellite bus, is built by NSL. Because the payload is one half of an integrated 
satellite system CHARMS had to meet both internally defined engineering goals and externally 
imposed integration, interface, and qualification requirements outlined by NSL. This section 
details the requirements framework that guided CHARMS’s development, spanning performance 
expectations, risk mitigation, and compliance with launch provider standards. 

2.1  Internal Requirements 
The internal system requirements for CHARMS were derived from mission objectives, 
subsystem design constraints, and innovation goals. These requirements shaped system 
architecture, drove design tradeoffs, and informed testing protocols. 

2.1.1 Required Features and Performance Goals 

CHARMS’s mission was structured around three core objectives: data generation, team learning, 
and technical innovation. These drive many of the flow-down requirements of the full system 
and subsystems. The high-level objectives for the team are: 

Data Objectives  

• Demonstrate torque authority and control fidelity using onboard gyroscopes, 
accelerometers, and magnetometers. 

• Construct and transmit operational telemetry packets from LEO using the Iridium 
communications network. 

Learning Goals  

• Design and validate a low-power ADCS. 

• Explore optimal material and geometry choices for magnetorquer design. 

• Implement a robust, autonomous software architecture for real-time control. 

Innovation Goals  

• Develop a custom, in-house magnetorquer architecture using novel form factors and 
materials. 

• Deliver an ultra-low-power, low-cost attitude control system operable within strict SWaP 
constraints. 

High-level features that realize these objectives of the CHARMS mission are as follows: 

1. CHARMS's ability to “detumble” or reduce angular velocity along all three axes, 
autonomously slowing rotation to below 0.5°/s. 



 

 

2. Precise actuation of the custom-built magnetorquers to produce expected magnetic 
dipole moments and achieve commanded B-fields using less than 7 Wh of energy. 

3. A real-time control algorithm (B-dot) that calculates and outputs direction and PWM 
signals based on filtered sensor input, enabling adaptive control through detumble and 
pointing. 

4. Interface with NSL’s novel packet structure and serial communication protocol to 
request data from the bus and send information to Iridium comms (this is done through an 
emulator given to us by NSL). 

5. Sensor data acquisition and filtering pipeline that collects IMU, magnetometer, and IR 
sensor data, enabling both B-dot control and horizon/sun tracking through image 
processing. 

6. Embedded software capable of autonomous operation across multiple modes (IDLE, 
DETUMBLE, SAFETY), each managing power consumption and control behavior 
accordingly. 

CHARMS has performance goals relating to particular features. Performance goals, set at the 
beginning of the CHARMS program, are as follows: 

Table 1. Measurement Performance Goals, Tiered 

Precision for Measurements Base Tier Middle Tier Stretch Tier 

Mu-metal Dipole Moment 5 Am2 10 Am2 20 Am2 

Air Core Dipole Moment 0.1 Am2 0.2 Am2 0.3 Am2 

 

Table 2. Detumble Performance Goals, Tiered 

Operational Metrics Base Tier Middle Tier Stretch Tier 

Detumble Power Consumption 5 Wh 2 Wh 1 Wh 

Detumble Time (mins) 1 hr 15 mins 45 mins 30 mins 



 

 

Final Angular Velocity +/- 2 deg/s +/- 1 deg/s +/- 0.5 deg/s 

 

Reference Section 4.1.2 Functional Testing to find deeper analysis of CHARMS’s empirical 
performance compared to these goals. 

2.1.2 Risk Mitigation Requirements 

In order to be proactive in the design phase of the system, the CHARMS team performed a 
comprehensive risk analysis and developed different mitigation measures to assist the mission in 
meeting its requirements and mission objectives. 

Table 3. CHARMS Risk Analysis and Corresponding Design Requirements 

Risk Potential Effect Design Requirement 

MEMS Sensor 
Helium Effect 

Sensor performance drift or 
failure due to helium 
permeation 

Use helium-resistant packaging options or select 
alternative sensors less susceptible to helium exposure. 
Test and monitor sensor performance during 
environmental testing. 

Sensor anomaly due 
to radiation 

Each sensor could be a single 
point of failure 

Implement ground commands allowing the 
payload to switch between redundant sensors 
to continue operation. 

Structural Failure Physical damage to the board, 
connections, or magnetorquers 
during launch or operation 

Conduct extensive vibration testing to aerospace 
standards. Use robust design and secure mounting 
techniques to avoid physical breakage. 

Circuitry 
Incorrectness  

Non-functional or suboptimal 
performance limiting mission 
success 

Validate circuits through breadboarding, logic 
analyzers, and in-depth testing with test pads before 
final assembly to ensure performance. 

Power 
Overconsumption 

Exceeding the power budget 
leading to mission failure 

Perform detailed power budgeting, implement low-
power modes, power cycling, and optimize component 
usage to stay within power constraints. 



 

 

Sensor Data 
Inaccuracy 

Inaccurate sensor readings 
affecting ADCS performance 

Apply sensor calibration before flight, and implement 
filtering algorithms (e.g., low-pass filters) to improve 
sensor data in real-time. 

Software Bugs Unexpected software behavior 
leading to mission degradation 

Thorough testing of software in simulation and HIL 
environments. 

Communication 
Failure 

Loss of link between payload 
and bus 

Periodic communication checks and self-reset 
protocols to restore the communications connection. 

 

2.2 External NearSpace Launch Requirements 
CHARMS is hosted aboard and must interface with NSL’s “0.5U” ThinSat platform, it must 
comply with interface, integration, and test requirements provided by NSL through their 
Interface Control Document (ICD) [1]. A significant amount of system and subsystem 
requirements span mechanical compatibility, electrical specifications, firmware standards, and 
environmental qualification. to ensure that the satellite as a whole remains operational through 
all phases of the mission. They are as follows: 

2.2.1 Mechanical Requirements 

Table 4. Mechanical/Workmanship Requirements from NSL ICD [1] 



 

 

  



 

 

2.2.2 Electrical Requirements 

Table 5. Electrical Requirements from NSL ICD [1] 

  



 

 

2.2.3 Firmware/Protocol Requirements 

Table 6. Firmware/Protocol Requirements from NSL ICD [1] 

 

2.2.4 Testing Requirements  

In addition to payload specifications and requirements given to us from NSL, they have also 
given us testing requirements with which to create a testing plan for the finished payload before 
integration. They are given below: 

Table 7. Testing Requirements from NSL ICD [1] 

 

Beyond the required testing, NSL also had recommended testing that the teams should pursue, 
but is not necessary [1]: 

● Perform random vibration testing at NASA GEVS Qualification levels (14.1 GRMS) on 
an EM unit or Acceptance levels (10.0 GRMS) on the FM unit. 

● Perform TVAC cycling between -30 and +60 °C or beyond; 1 hour dwell at each 
extreme; at least 4 hot/cold cycles. 

● Perform MIL-STD-461 RE102 radiated emissions test. 

From these requirements, the CHARMS team was able to construct a comprehensive test plan 
for the payload: 

Pre-environmental testing: 



 

 

- Test all operational modes of the satellite 

- Idle, Detumble, and Safety Modes 

- Interface with the emulator and test data interface with the bus in all modes 

TVAC testing: 

- Use the UND Nanofabrication TVAC system and run the payload through TVAC 
cycling meeting ICD testing requirements 

- 60 °C, 1E-4 Torr, 6 hours (Bake out) 

Vibration testing: 

- Use NASA GEVS Qual levels (14.1 GRMS) on EM units and Acceptance levels (10.0 
GRMS) on FM units 

- Utilize the NearSpace Launch vibration table or the IrishSat vibration table for testing. 

Post-environmental testing: 

- After all environmental testing, make sure the system still functions. Repeat pre-
environmental testing. 

This test plan was found to be sufficient, covering all testing requirements, in a Critical Design 
Review and Integration Readiness Review with NSL. 

 

  



 

 

3 Detailed Project Description 
3.1 System Theory of Operation 
CHARMS functions as an autonomous detumbling system for satellite stabilization, built around 
a closed-loop sensor-to-actuation feedback architecture. It operates by continuously collecting 
sensor data, performing fusion and filtering, executing control algorithms, and driving magnetic 
actuation accordingly. At the core of the system is a real-time operating system (RTOS), which 
manages deterministic task scheduling and ensures reliable execution of time-critical operations. 

The system can be conceptually divided into three core functional domains: input, processing, 
and output. The input domain consists of the sensor suite, which includes IMUs, a 
magnetometer, and infrared cameras; these sensors collect real-time environmental data such as 
angular velocity, acceleration, and Earth’s magnetic field. The processing domain is managed by 
the onboard microcontroller, which executes sensor fusion, applies calibration, and runs the B-
dot control algorithm to determine required magnetic actuation. The output domain includes the 
custom magnetorquers, which produce controlled magnetic dipole moments to generate torque 
via interaction with Earth’s magnetic field. 

CHARMS interfaces with its host satellite exclusively through a 20-pin connection to the 
NearSpace Launch (NSL) ThinSat bus. This connection provides regulated 5 V and 3.3 V power 
lines as well as UART-based full-duplex serial communication. All mission telemetry, ground 
commands, and power are handled through this single bus interface. The bus itself is responsible 
for Iridium communication and power regulation for the entire spacecraft, while CHARMS 
remains a self-contained, plug-and-play payload module responsible solely for attitude control. 

3.2 System Block Diagram 
As illustrated in Figure 1, the CHARMS architecture is divided into three core physical 
subsystems: the Sensor Suite (input), the Command and Data Handling (C&DH) PCB 
(processing), and the Magnetorquer System (output). These subsystems work together in a 
closed-loop control configuration to achieve autonomous detumbling and support future attitude 
pointing functionalities. 



 

 

 

Figure 1. Overall System Block Diagram 

● Sensor Suite: includes the ICM-20948 Inertial Measurement Units (IMUs) and HM01B0 
infrared horizon sensors. The IMUs provide critical gyroscopic, accelerometer, and 
magnetometer data used in detumbling. The IR sensors, while not used in the current 
detumble routine, are integrated for future horizon detection and Earth imaging tasks. All 
sensors communicate with the microcontroller over I²C and are powered by the regulated 
3.3 V and 5 V lines from the power subsystem. 

● C&DH PCB: hosts the ESP32-S3 microcontroller and power distribution circuitry 
(EPS). The microcontroller executes the RTOS-based control software, including the B-
dot algorithm, sensor polling, telemetry generation, and packet communication with the 
NSL bus. The EPS handles regulated power delivery to all onboard components and 
includes features such as inrush current protection and debugging support. 

● Magnetorquer System: consists of three custom-wound torquers (two with mu-metal 
cores and one air-core), driven by dedicated current driver ICs. These are controlled via 
PWM and GPIO signals from the microcontroller, and their power is sourced and gated 
via the EPS. 

The CHARMS system connects to the NSL ThinSat via a 20-pin interface, which provides: 

1. Dual-voltage power lines (3.3 V and 5 V) 

2. Full-duplex UART for serial communication with the NSL bus 

3. Four analog outputs (currently unused) 

4. Four discrete power control lines (used for power gating and debugging) 

This streamlined interface design supports CHARMS’s plug-and-play integration philosophy, 
minimizing bus-side dependencies while maximizing modularity, electrical isolation, and ease of 
system replacement. 



 

 

3.3 Detailed Design and Operation of Subsystem 1: PCB 
The CHARMS Printed Circuit Board (PCB) is the foundational platform upon which all 
subsystem functionality is built. It integrates sensing, computation, power regulation, 
magnetorquer actuation, and communication into a single, compact form factor that also serves 
as the structural and electrical interface to the NSL bus. Every subsystem—sensor input, control 
processing, motor driving, telemetry generation, and bus interfacing—relies on the reliable 
performance of this board, making its design and validation one of the most critical aspects of 
the CHARMS development process. 

To ensure maximum functionality, correctness, and fault tolerance, the team went through four 
full hardware design iterations, each fabricated, assembled, and tested. Each version incorporated 
lessons learned from prior tests—ranging from schematic-level signal corrections and sensor 
routing adjustments to major architectural changes like inrush current limiting, voltage regulation 
refinements, and modular debugging enhancements. The final iteration represents a highly 
optimized system that satisfies all power, size, and communication constraints imposed by the 
mission and the NSL Interface Control Document (ICD). 

The board supports dual-voltage operation (3.3 V and 5 V), houses all sensors required for 
detumbling, provides PWM-based current control for three custom magnetorquers, and includes 
UART communication lines for full integration with the NSL data bus. Mechanically, it also 
serves as the inner dividing wall between the CHARMS payload and the satellite bus, with 
precisely positioned mounting holes and edge clearances that support plug-and-play operation 
while maintaining electrical isolation. 

The following subsections break down the detailed design, functionality, and engineering 
rationale for each major component of the PCB. 

3.3.1 MCU 

At the heart of the CHARMS system is the ESP32-S3-WROOM-1, a dual-core microcontroller 
that balances high processing performance with low power consumption. The ESP32-S3 
supports both I²C and UART interfaces, enabling seamless communication with CHARMS’s 
sensor suite and the NSL satellite bus. It also includes integrated Wi-Fi and Bluetooth Low 
Energy (BLE) capabilities, which the team leveraged during development for wireless 
debugging and data logging. Programming is performed over USB 2.0, which was selected for 
its simplicity and sufficient bandwidth, as throughput is not a bottleneck for CHARMS’s 
operations. 

The microcontroller was selected after evaluating a wide range of candidates, with power 
efficiency, computational performance, and radiation resilience being key criteria. While the 
ESP32-S3 is not radiation-hardened, its cost-effectiveness, development simplicity, and strong 
ecosystem made it the most suitable COTS solution for CHARMS’s rapid development and 
educational mission. 

A radiation-hardened alternative, the SAM3X8ERT from Microchip, was considered. However, 
the cost, complexity, and development time associated with its integration would have 
compromised the CHARMS system’s goals of being low-cost, accessible, and modular. Since 



 

 

CHARMS’s mission lifetime is relatively short and will take place in Low Earth Orbit (LEO)—a 
radiation environment that is less severe than deep space—the team opted to accept this tradeoff 
in favor of rapid prototyping and deployment. To mitigate the ESP32-S3’s susceptibility to 
radiation-induced faults, CHARMS employs several design safeguards including fault-tolerant 
software and hardware redundancy. This design choice also mirrors the broader hardware 
philosophy of NearSpace Launch, which frequently deploys COTS components to reduce cost 
and broaden access to space experimentation. 

 

Figure 2. ESP32-S3-WROOM-1 placed on CHARMS PCB 

3.3.2 Sensors 

3.3.2.1 Magnetometer 

CHARMS uses a dedicated LIS2MDL 3-axis magnetometer as an independent reference for 
Earth’s magnetic field. This external sensor can supplement IMU readings and provides more 
flexibility over physical mounting location (important since CHARMS’s magnetorquers output 
high magnitude fields). The LIS2MDL was chosen for its low power consumption, high 
availability, and qualification in reading strong and precise field measurements. 

The magnetometer is critical to the operation of the satellite and needs to provide accurate 
readings, so a calibration process is required to ensure proper operation. CHARMS applies hard 
iron correction (which subtracts offsets based on experimentally collected fields) and soft iron 
correction (a 3x3 transformation matrix which offsets field shape distortions). These calculations 
are computed using a FOSS tool called MotionCal created by PJRC. MotionCal was meant to be 
used with a specific PJRC motion sensor PCBA, so serial data must be logged in a specific 
manner to ensure proper calibration. Rotating the ICM and printing data in a specific format 
(iterated in the tool’s Github) creates a 3D map of the distortions present in the sensor’s readings 
and maps these data points to a perfect sphere. Figure 3, below, shows an example image of a 
sensor’s hard iron (magnetic offset) and soft iron (magnetic mapping). 

https://github.com/PaulStoffregen/MotionCal


 

 

 

Figure 3. MotionCal Calibration Tool 

Once the hard and soft iron offsets are calculated, they can be stored in the software as indicated: 

float lisHardIron[3] = {6.47, 5.87, 20.30}; 

float lisSoftIron[3][3] =  { {1.021, -0.013, -0.041}, 

          {-0.013, 0.958, -0.011}, 

           {-0.041, 0.07, 1.024} }}; 

 

Once calibrated values are determined, the magnetometer data is used in CHARMS’s detumbling 
algorithm, where the magnetic field (B) and then the cross product (m = -k (ω × B)) is 
calculated. 

The magnetometer wiring schematic is straightforward as depicted in its datasheet. The 
LIS2MDL supports both I2C and SPI communication, but I2C was selected since 
communication speed is not critical. The sensor is paired with a wakeup signal and provided with 
3.3V power and decoupling capacitors to ensure clean input. Figure 4 shows the wiring 
schematic for the magnetometer. 



 

 

 

Figure 4. LIS2MDL Magnetometer Schematic 

3.3.2.2 IMUs 

CHARMS is equipped with a dual-IMU setup featuring two ICM-20948s from TDK. These dual 
sensors ensure that CHARMS can implement motion tracking even if one IMU is damaged in 
flight. These IMUs also have built-in magnetometers, meaning that the critical magnetic field 
sensing is triple-redundant (along with the external dedicated LIS2MDL magnetometer). 

The ICM-20948 has a three-axis gyroscope and a three-axis accelerometer that interface over 
I2C to the ESP32-S3 and provide the main angular velocity required for the B-dot detumble 
algorithm. A calibration process similar to the magnetometer is used for accelerometer and gyro 
data to ensure accurate readings. This calibration process, performed for both IMUs, is applied at 
runtime before any control logic, ensuring calibrated vectors are used for attitude determination. 

float icmOffsets[3][2] = { {-0.503, -0.119, 0.096},    // Gyro X,Y,Z 

          {22.146, 7.236, 22.211}};    // Accel X,Y,Z 

Once calibrated values are determined, the IMU data is used in CHARMS’s detumbling 
algorithm, where the angular velocity (ω) and then the cross product (m = -k (ω × B)) is 
calculated. 

The ICM-20948s are wired as indicated in their datasheets and in Figure 5, with decoupling 
capacitors placed at all power inputs. The ICM-20948 requires 1.8V input power (contributing to 
its ultra-low power consumption), so CHARMS employs a 3.3V-1.8V LDO onboard to provide 



 

 

power to these critical components (shown in Figure 6). Transistor-based level shifters are also 
used onboard to ensure that data is sent at the proper 1.8V. 

 

Figure 5. ICM-20948 IMU Schematic with SDA Level Shifter 

 

Figure 6. 3.3V -> 1.8V LDO Schematic 

See Figure 7 below for the placement of the sensors. These were intentionally placed physically 
near each other to ensure that measured fields would be as close to each other as possible. 



 

 

 

Figure 7. IMUs and Magnetometer with 1.8V LDO placed on CHARMS PCB 

3.3.2.3 IR Cameras 

The CHARMS board includes support for dual MLX90640 IR cameras, which serve as non-
critical payload instruments for Earth observation (and eventually nadir pointing horizon 
detectors). These cameras are interfaced through generic JST I2C ports, meaning that external 
I2C accessories can be swapped in place of the cameras. This provides additional flexibility if 
CHARMS hardware requires another external sensor in future iterations, allowing previous 
board iterations to be retrofitted as necessary. I2C was selected as the communication protocol 
for these cameras since the resolution is only 24x32, meaning that only low throughput is 
necessary. For higher resolution cameras, faster protocols should be employed. 

 

Figure 8. IR Camera Breakouts on CHARMS PCB 



 

 

3.3.3 Current Drivers 

CHARMS’s magnetorquers are essentially coils of wire with low resistances (on the order of 
tens of ohms), so any solution to power them should be able to provide high currents. Previous 
iterations of CHARMS utilized a homemade H-bridge with power MOSFETs, allowing 
bidirectional control, but shoot-through current on startup caused many problems with 
unnecessarily high power consumption and difficulties with overloading the 5V rail, which 
CHARMS reserves for just the magnetorquers. Instead, CHARMS uses a dedicated TB6612FNG 
motor driver, which provides bidirectional current control, dual channel access, built-in 
protective diodes, and built-in power gating to minimize static draw. This proved to be an 
effective solution, providing simple PWM control and allowing any arbitrary current to be sent 
to the torquers. As a protective feature, 0-ohm resistors were added to the current path in case the 
torquer resistances were lower than expected and current draw was too high, but these did not 
need to be replaced. Figure 9, below, shows the schematic for the TB6612FNG. Note that this is 
a dual-channel chip, so one was used for the X and Y direction, and another was used just for the 
Z. 

 

Figure 9. TB6612FNG Magnetorquer Driver IC 

Interfacing with the torquers happens through 2-pin JST connectors, which were chosen because 
of their standard size and high current rating. The direction of each torquer is controlled by two 
opposite polarity GPIO signals, and the magnitude is controlled by a PWM signal. The 



 

 

TB6612FNG handles all protection and isolation, including protective diodes to stop voltage 
spikes often found in inductive loads like motors and magnetorquers. 

Layout for the drivers is shown in Figure 10, where large traces were selected for high current 
torquer power (up to 300 mA) and small traces were used for GPIO signals and 3.3V power 
(used just for logic level comparison). Note the large decoupling capacitors to ensure consistent 
input power to the torquers. 

 

Figure 10. TB6612FNG Magnetorquer Driver IC Layout 

3.3.4 Power 

Since CHARMS is powered through the NSL 20-pin connector, the power path is greatly 
simplified. All the battery management and filtering hardware exists on the NSL bus, but 
CHARMS still has several power-related considerations to simplify board bring-up. CHARMS 
has both 5V and 3.3V power inputs available, but for early board iterations and software tests, it 
is inconvenient to simulate the NSL bus and its two power supplies. CHARMS has a physically 
isolated 5V -> 3.3V LDO so that the entire board can be powered from a single USB-C 5V input. 
This LDO is enabled with jumpers during debugging and can be physically unplugged to prevent 
reverse current flow or unnecessary static power consumption. 



 

 

 

Figure 11. CHARMS Debug 5V -> 3.3V LDO 

Another important hardware consideration occurred after Integration Readiness Review (IRR) 
testing. From the IRR requirements, listed in prior sections, CHARMS cannot draw more than 
5A on either power rail during the first 100 ms after being powered on. On the 3.3V rail, 
CHARMS experienced a peak current of over 7A for around 50 ns. To counteract this inrush 
current, an inductor rated for the proper current and voltage was added in series with the power 
path, ensuring that the change in current is resisted and CHARMS is able to limit its strain on the 
bus. After adding this inductor, the inrush current dropped to 4.3A, meeting the requirement. 
Figure 12 shows the schematic for the protective circuit. 

 



 

 

Figure 12. Inrush Current Limiting Circuit 

3.3.5 Bus Interface 

As detailed in previous sections, CHARMS interfaces with the rest of the NSL satellite through a 
20-pin connector. This enables easy plug-and-play capability and simple replacement of the 
CHARMS module. CHARMS uses a 5V power supply for the magnetorquers, a 3.3V power 
supply for the ESP32-S3 and for digital communication, and the designated TTL UART pins to 
send and receive information packets to and from the rest of the system. Figure 13 shows the 20-
pin connector routed on the CHARMS PCB. Note that there are four analog lines that are routed 
to GPIO pins on the bus, but these are not used and are included simply for potential future 
expansion. 

 

Figure 13. NSL 20-pin connector routing 

3.3.6 Mechanical Considerations 

The mechanical design of the CHARMS PCB was developed to fit precisely within the payload 
volume allocated by NearSpace Launch (NSL) and to interface seamlessly with both the bus and 
the structural components of the CHARMS system. The board conforms to a compact 
rectangular outline with rounded corners and precise edge clearance to prevent shorting against 
the aluminum chassis. Critically, the PCB also serves as the physical inner wall between the 
CHARMS payload and the NSL bus, forming a structural and electrical barrier that simplifies 
integration and ensures clean modular separation. 

Four primary mounting holes at the board’s corners enable rigid attachment to the NSL satellite 
frame, while four additional threaded holes provide secure connection to the CHARMS 
aluminum chassis. The 20-pin bus connector is placed in exact accordance with NSL’s Interface 
Control Document (ICD), allowing direct alignment with the satellite’s bus interface for both 
power and serial communication. 

Component layout was guided by mechanical clearance constraints and signal integrity 
requirements. Tall components—such as debug headers—were placed away from interference-
prone zones, avoiding conflicts with external hardware like the IR camera mounts and 
magnetorquer supports. A designated keepout zone on the board’s left side, featuring a 0.1 mm 
clearance margin, was reserved to accommodate the large Z-axis magnetorquer. Despite the 
reduction in usable board area, careful design allowed full routing and placement of all required 
components. 

The board follows a 4-layer stackup with a signal–ground–power–signal configuration. This 
provides robust power delivery and grounding, while maintaining simple, manufacturable 



 

 

geometry. The mechanical and electrical interfaces were verified through physical fit checks and 
finalized during the Integration Readiness Review (IRR). 

 

Figure 14. CHARMS PCB Physical Layout 

3.4 Detailed Design and Operation of Subsystem 2: RTOS/Software 
The software for the CHARMS was developed in C++ using the arduino development platform 
provided by PlatformIO. Using this development tool, the CHARMS team developed the 
CHARMS Real-Time Operating System (RTOS) which manages all tasks that CHARMS needs 
to carry out during operations. Additionally, state variables are used in addition to RTOS task 
management to control the state of the payload and ensure smooth operation.  

Please refer to this file path to review the full software implementation. There are too many files 
to provide a full code listing in Appendix C, D, and E: 

 “...\CHARM Senior Design Code\Payload RTOS\CHARMS RTOS v2” 



 

 

This contains the PlatformIO project, which the CHARMS payload runs as flight software. 
These files are available for download on the CHARMS Senior Design website. 

3.4.1 High-level Architecture 

Figure 15 shows the basic architecture of the CHARMS RTOS. 

 

Figure 15. CHARMS Software Architecture 

The State Machine Task manages the payload state as well as performing state start-up routines. 
This means that when the payload switches between states, some actions need to happen once at 
the beginning of that state, actions that are carried out by the State Machine Task. The next level 
down describes the separation between control tasks and firmware tasks. The ADCS tasks are 
those needed to adjust the orientation of the satellite, whereas the Firmware tasks are those that 
facilitate communication between the CHARMS MCU and the NSL bus flight computer. In-
depth descriptions of each task can be found in the following sections. 

The tasks within the RTOS all reference shared data, all of which either reside in C++ structs or 
freeRTOS queues. This allows for the accurate and safe transfer of data between different tasks 
that the CHARMS MCU is performing. 

3.4.1.1 Structs 

Many structs exist in the RTOS that hold critical information for proper operation. Table 8 
outlines every struct's name and their function within the RTOS. 

Table 8. Description of Data Structs in the CHARMS RTOS 

Name of C++ Struct Description of Struct Function 



 

 

StateVars Contains all state variables governing the operation of the 
RTOS, including task delay times, uplink and downlink request 
times, packet sequence numbers, the RTOS start time, current 
and previous state information, booleans controlling which tasks 
are running, booleans controlled through ground commands to 
turn sensors on and off as well as flip control voltages, and track 
if the last Iridium downlink was successful. 

TaskHandles Contains all task handles needed to initialize each of the 7 
RTOS tasks. 

sensorOffsets Contains calibration values for both on-board IMUs and the 
magnetometer to enable more accurate sensor readings. 

tempOffsetCalcHolder Pre-allocates space for intermediate values during the 
calibration process to avoid stack and/or heap overflows. 

IMUData Contains all available IMU data, including gyro spin rate 
readings, accelerometer readings, and magnetic field readings 
for the X, Y, and Z axes. 

MagnetometerData Contains all available magnetometer data, including magnetic 
field data for the X, Y, and Z axes. 

IRCameraData Contains pixels from the last captured IR image from the IR 
camera. 

SensorData Conglomerates all sensor data, including two IMU structs, one 
magnetometer struct, and two IR Camera structs, to store and 
update all sensor data available from the payload PCB. 

RGB Contains pixel information during the IR camera image 
acquisition process. 

 

3.4.1.2 Queues 

Several queues exist in the RTOS that hold critical information for proper operation. Table 9 
outlines every queue’s name and their function within the RTOS. 

Table 9. Description of Data Queues in the CHARMS RTOS 

Name of RTOS Queue Description of Queue Function 



 

 

iridiumDownlinkBufQueue Contains packetized information that is to be sent to the Iridium 
communications network and ultimately to the ground, adhering to the 
packet structure outlined by the NSL communications protocol as well as a 
CHARMS payload operational data packet structure so that we can decode 
and analyze operational data when the packet is received. 

downlinkBufQueue Contains packetized information that is to be sent to the NSL flight 
computer, adhering to the packet structure outlined by the NSL 
communications protocol.  

uplinkBufQueue Contains uplinked packets from the NSL flight computer to the CHARMS 
MCU. It can contain acknowledgement information, time information, GPS 
information, latency information relating to Iridium downlinks, ground 
commands to reconfigure the CHARMS payload, and a whole host of other 
information that can be requested from the flight computer. 

sensorDataQueue Contains most up-to-date sensor readings. This is accessed by the control 
tasks to calculate desired magnetorquer actuation. This is also accessed by 
the RTOS state machine to detect critical situations like a spin rate that is too 
high and/or increasing due to CHARMS operation.  

Ground commands are available to reset all data queues into a known state if misconfiguration is 
thought to be an issue during operations. 

3.4.1.3 Setup Routine 

On power-up, the C++ scripts run setup routines which initialize critical systems on the 
CHARMS PCB as well as in the CHARMS RTOS. 

First, the software initializes all critical communications links including the UART connection 
between the CHARMS MCU and the NSL flight computer as well as the I2C bus to 
communicate with all on-board sensors.  

After, communications is successfully initialized, the software initializes all output pins 
including the Request-To-Send (RTS) pin, the PWM pins which drive the magnetorquers, and 
the magnetorquer current direction pins to configure the current driver to create positive or 
negative B-fields in a desired axis. Initial states, either HIGH or LOW, are set for all output pins 
to put the CHARMS payload into a known state. The only input pin, the Clear-To-Send (CTS) 
pins, is also configured.  

Next, all sensors are initialized and communicated with over the I2C communications bus. This 
includes two MLX90640 IR Cameras, one LIS2MDL Magnetometer, and two ICM20948 IMUs, 
all of which are used during operations to calculate and control satellite attitude.  

Lastly, all RTOS objects including queues and tasks are initialized before the RTOS begins. To 
initialize the RTOS queues, you must set these two quantities:  

- Queue total size 



 

 

- Queue individual item size 

To initialize a task, you must set these four quantities and objects: 

- Task name 

- Task stack allocation size 

- Task priority level 

- Task handle 

The most critical parameters in a proper RTOS function is making sure that your stack size can 
support all task activities and also making sure that task priority is set properly to generate the 
correct task order when multiple tasks are ready to run at the same time. To avoid any memory 
issues, all memory is statically allocated outside of the RTOS tasks. 

3.4.1.4 State Machine Task 

The State Machine Task is the last software implementation which governs the high level 
architecture of the CHARMS payload. The State Machine Flow Chart can be found in Figure 
16. 

 

Figure 16. State Machine Task Flow Chart 

By periodically communicating with the NSL bus, the CHARMS payload stays up to date in 
ground commands present on the Iridium network as well as other messages from the NSL flight 
computer. Additionally, if the CHARMS MCU does not communicate with the NSL bus at least 
once in 4 minutes, the bus will power cycle the payload. This avoids any power cycling during 
nominal operation.  



 

 

3.4.2 Firmware Design 

The firmware design handles all communications between the CHARMS payload and the NSL 
flight computer, adhering to the proprietary communications protocol provided by NSL. Tasks 
were written to receive commands from the serial monitor for testing purposes, to send packets 
waiting in the downlink buffers and wait for NSL acknowledgements, and to interpret any 
messages that NSL sends to the CHARMS payload. 

3.4.2.1 Monitor Commands Task 

This task is strictly for testing purposes and enables the software designer to send commands 
over the serial monitor to the CHARMS payload to test certain operations while the RTOS is 
running. Figure 17 shows the flow chart for this task. 

 

Figure 17. Monitor Commands Task Flow Chart 

The constructDonwlink() function is integral to proper operation of the CHARMS payload. This 
function takes in the RTOS state struct, the command request, and the most current sensor data to 
construct the appropriate packet which adheres to the NSL packet structure. This includes health 
and safety packets containing the current state of the satellite, detumble packets which contain 
operational IMU data, bus radio reconfiguration, NSL bus uplink checks, and iridium network 
uplink checks. The NSL packet structure can be found in Table 10.  

  



 

 

Table 10. NSL packet structure for proper communication [1] 

 

The most frequently used commands by the CHARMS payload is “0xF5” to downlink data to the 
ground, “0x47” to check for ground commands from the CHARMS operators, and “0x48” to 
check for messages from the NSL flight computer.  

3.4.2.2 Send and Acknowledge Task 

The Send and Acknowledge Task is another critical firmware task which manages sending 
constructed downlink packets (iridium or flight computer) over the UART lines and interpreting 
NSL’s ACK or NACK messaging. If this task detects that the response from NSL is something 
other than ACK or NACK, it will send the packet to the Interpret Uplinks Task for further 
processing. The flow diagram for this task can be found in Figure 18. 



 

 

 

Figure 18. Send and Acknowledge Task Flow Chart 

3.4.2.3 Interpret Uplinks Task 

This task decodes all messages from NSL which are not ACK or NACK messages. For example, 
some messages from NSL will tell you some sort of information that you can decode such as 
GPS coordinates, time stamps, radio configurations, and so on and so forth. The most common 
uplink message that CHARMS waits to decode is a ground command from the Iridium network. 
Beyond the NSL-defined header and functional byte protocol, CHARMS adds another layer to 
the packet structure with its own set of functional bytes to carry out payload reconfiguration. The 
first six bytes of any uplink containing ground information are dedicated to the NSL packet 
structures, and are outlined in Table 11. 

Table 11. NSL packet structure, first 6 bytes of message from ground 

Header Function Byte Ground Command 
Sequence Number 

Number of Bytes in 
Message 

Bytes 0-2 Byte 3 Byte 4 Byte 5 

0x50 0x50 0x50 0x48 0x__ 0x__ 

After the functional byte 0x48 is decoded as a ground message by the Interpret Uplinks Task, it 
will begin to look for which ground command it received by decoding the byte located at Byte 6. 
Available ground commands are described in Table 12.   



 

 

Table 12. Ground commands for CHARMS payload 

Ground Command name Function Byte Description 

Downlink 0x30 Manually request a downlink packet. This will result in a 
health and safety packet being sent to the ground by the 
CHARMS payload containing state information, the most 
recent IMU data, and a timestamp. 

Detumble 0x31 This will change the payload from any state into the 
DETUMBLE state. This essentially turns on the control 
algorithm and the actuation signals which drive the 
magnetorquers.  

Nadir Point 0x32 This command will turn on a separate control algorithm 
which points the satellite’s normal vector directly at Earth. 
This algorithm is not fully implemented yet, so this ground 
command is not currently supported. 

Safety 0x33 This puts the payload into the SAFETY state, turning 
everything off and waiting to be power cycled by the bus 
for a full-system reset. 

Stop 0x34 This takes the payload out of any state and places it in the 
IDLE state. This will manually turn off the magnetorquers 
and control scripts. 

Flip Voltage X 0x35 In case of backwards hardware installation, it is possible 
that our magnetorquers speed up the spin of the satellite 
instead of slow it down. This allows for a software fix in 
case there are hardware problems. 

Flip Voltage Y 0x36 Same as 0x35, different axis. 

Flip Voltage Z 0x37 Same as 0x35, different axis. 

Flip IMU 0x38 There are 2 redundant IMUs on the CHARMS PCB. This 
allows the operator to toggle between either IMU in case 
one malfunctions due to radiation. 

Reset Queues 0x39 This resets all RTOS queues in case they become 
misconfigured during operation. 

 

 



 

 

Interpret Uplinks Task Flow Chart can be found in Figure 19. 

 

Figure 19. Interpret Uplinks Task Flow Chart 

3.4.3 Control Design 

The control design handles all sensor data acquisition and filtering. It then uses this data as 
inputs to a B-cross detumble algorithm which attempts to stop the spin of the satellite on all three 
axes by actuating the magnetorquers.  

3.4.3.1 Poll Sensors Task 

This task takes in sensor readings from 2 IMUs and 1 magnetometer, calibrates the data using 
calibration coefficients including hard and soft iron offsets for the magnetic field readings, filters 
the data using a low-pass filter algorithm, and stores this corrected data as a shared resource for 
all tasks and functions to access. 

This task is critical for providing accurate, low-noise data for accurate and precise control. 
Because of poor IMU selection, the data is very noisy and makes fine-pointing with this first 
prototype of CHARMS impossible. Regardless, we do everything possible we can to reduce the 
noise of the sensors. The calibration process used to correct for sensor offsets can be found in 
Section 3.3.2.1 Magnetometer. Additionally, we low pass filter the data to avoid anomalous 
data spikes to affect the control algorithm. The flow chart for this task can be found in Figure 
20. 



 

 

 

Figure 20. Poll Sensors Task Flow Chart 

3.4.3.2 Poll Cameras Task 

This task takes in image data from the 2 IR cameras, normalizes and grayscales the temperature 
readings for each pixel, and saves this data in a shared resource struct for all tasks and functions 
to access. This sensor data is used for the Nadir Point algorithm which is not a part of this 
iteration of the CHARMS payload. As such, this portion of the RTOS is never turned on for 
operations. However, it may be used to capture low resolution images of the Earth from orbit to 
take Notre Dame’s first pictures from space. 

This task was separated from the Poll Sensors task because it takes significantly longer to poll 
the MLX90640 cameras. For better control algorithm performance, we want to poll the IMU and 
magnetometer every 10 milliseconds. However, polling the IR cameras can take up to 1 second 
and was causing delays in updating the IMU and magnetometer data. The flow chart for this task 
can be found in Figure 21. 

 

Figure 21. Poll Cameras Task Flow Chart 

3.4.3.3 Detumble Task 

The detumble task attempts to stop the spin of the satellite on all three axes. It does this by 
reading the magnetic field that is present relative to the body frame of the satellite, finding the 
desired torque which will oppose the spin of the satellite, and then calculating the desired 
magnetic moment using this equation in Figure 22: 



 

 

 

Figure 22. Guiding equation for B-cross detumble algorithm 

After finding the desired magnetic moment, 𝜇, the detumble algorithm finds the duty cycle to 
drive the magnetorquers on the X, Y, and Z axis to produce that magnetic moment. 

Additionally, during operations the CHARMS payload periodically buffers operational data 
(about every 3 seconds) for downlink through the Iridium network to the ground after operations 
are complete. The payload waits to downlink data to the ground until after operations because the 
magnetorquers produce significant magnetic fields which could interfere with transmission of 
data through the Iridium radio. Because of this, data is buffered during operation and sent after 
the detumble is completed. 

A full flow chart for the detumble algorithm is included in Figure 23.  

 

Figure 23. Detumble Task Flow Chart 

 

After the detumble algorithm reaches a desired spin rate which is low enough to signal a 
successful detumble or the payload receives a ground command to exit the detumble state, all 
buffered operational data will be sent through the Iridium network for analysis on the ground. 
This will allow the operator to confirm that the CHARMS payload is working as intended. 

3.5 Detailed Design and Operation of Subsystem 3: Magnetorquers 



 

 

The CHARMS Attitude Determination and Control System (ADCS) utilizes a fully 
magnetorquer-based actuation architecture, employing three custom-designed, in-house-
fabricated magnetorquers to provide torque in the X, Y, and Z axes. These magnetorquers 
operate by generating a magnetic dipole moment through current-carrying wire coils, which 
interacts with Earth's magnetic field to produce torque according to the Lorentz force: 

 

Figure 24. Lorentz Force 

3.5.1 Design Overview 

Two magnetorquers aligned along the X and Y axes feature mu-metal ferromagnetic cores 
with high permeability to amplify dipole strength within compact volumes. The third, aligned 
along the Z-axis, is an air-core solenoid wrapped around the payload’s rectangular perimeter to 
maximize cross-sectional area and leverage the full spacecraft volume for increased dipole 
moment. 

This configuration was selected for its: 

● Fully passive operation (no moving parts, low failure risk) 

● Compact, CubeSat-compatible form factor 

● Low power draw under constrained 5V/0.4A conditions 

Table 13. Core and Air-Core Magnetorquer Specifications 

Parameter Mu-metal Core Air-Core 

Core Radius 0.32 cm 4.3 cm 

Core Length 7.0 cm 8.5 x 9.7 cm 

Relative Permeability 10,000 1 (vacuum) 

Number of Layers 9 4 

Total Turns 2,270 338 

Resistance 21 Ω 91 Ω 



 

 

Max Current 240 mA 55 mA 

Magnetic Dipole 1.06 A·m² 1.67 A·m² 

Max Magnetic Field ~1300 μT ~1300 μT 

 

3.5.2 Optimization Strategy 

The magnetic dipole moment was maximized while adhering to sizing, resistance, and power 
constraints through: 

● Parametric sweeps using Python simulation scripts 

● Qualitative modeling of magnetic dipole vs. wire count, current, and core dimensions 

● Maximizing length-to-radius ratio for improved efficiency 

● Selecting 30 AWG wire to balance packing density and resistance 

Key insights included: 

● More wire turns = stronger dipole until power limits 

● Longer, narrower cores improved power efficiency 

● Core permeability directly boosted B-field strength 

3.5.3 Fabrication Process 

All magnetorquers were fabricated in-house using a custom-built automated coil-winding 
machine. The machine employed a rotating core driven by a stepper motor to guide side-to-side 
threading with tightly packed coils and tight layer spacing via a tension-controlled wire feed. 
Wrapping counts were monitored and verified. The final cores were checked for tightness, 
continuity, and resistance. 

3.5.4 Testing and Characterization 

To validate and characterize the behavior of each magnetorquer independently, we conducted a 
series of isolated single-axis tests inside a zeroed Helmholtz cage. Each magnetorquer was 
placed individually at the magnetic center of the cage, and its B-field output was measured in all 
three axes while ramping PWM input and applying demagnetization procedures. These tests 
served five key purposes: 

1. Quantify directional B-field contributions per axis 

2. Verify that magnetic response is linear, symmetric, and smooth 



 

 

3. Identify best core configurations and quantitatively determine their performance 

4. Evaluate demagnetization effectiveness on mu-metal core hysteresis 

5. Provide controls team with data for their algorithms 

3.5.4.1 PWM vs. B-field Characterization 

To understand the torque-generating capacity of the magnetorquers, PWM signals were swept 
across the full ±100% duty cycle while logging B-field strength along X, Y, and Z axes using 
precision magnetometers. 

 

Figure 25. Magnetic Fields on All Axes for Single Magnetorquer vs PWM 

This plot shows a strong, clean magnetic field response that varies with PWM duty cycle for 
each axis. The blue (B_x) and orange (B_y) components (corresponding to the axes most aligned 
with the magnetorquer's winding direction) show a symmetric, monotonic trend, indicating well-
formed dipole generation and minimal cross-axis interference. The green trace (B_z) remains 
relatively flat, confirming that the Z component is much less decoupled to this magnetorquer, as 
expected. 

● Key insight: Mu-metal cores produce strong and consistent fields in their aligned axis, 
and are relatively insensitive in the orthogonal directions. This validates axis isolation 
and directional torque authority. 

3.5.4.2 B-field Over Time During PWM Cycling 



 

 

 

Figure 26. Magnetic Field on All Axes for Single Magnetorquer over Time 

This time-based plot visualizes the magnetorquer’s response to a sequential PWM ramp and 
reversal cycle. Each vertical dashed line marks a change in actuation. B_x and B_y, and B_z 
follow a predictable sinusoidal pattern, with B_z reaching the lowest magnitude of B field. 

● Interpretation: This confirms that the field is not only proportional to PWM but also 
tracks time-varying inputs with minimal lag or hysteresis. 

● Notable result: The clean reversal of magnetic field vectors during duty cycle inversion 
confirms reliable bidirectional control and minimal delay in magnetic response, 
validating closed-loop usability. 

3.5.4.3 Residual Magnetization and Demagnetization Testing 

To investigate hysteresis and retained field issues associated with the magnetization of mu-metal 
cores, each magnetorquer was tested for residual B-field after actuation, both before and after a 
demagnetization sequence. 



 

 

 

Figure 27. Residual Magnetic Field on Y Axis Before and After Demagnetization 

This bar graph compares the residual B_y values before and after demag. All four torquers 
showed a measurable drop in retained magnetic field following demagnetization. 

● Key conclusion: While all units retained some residual magnetization, the demag 
procedure successfully reduced it by ~40–70%, indicating partial but consistent 
effectiveness. 

● Design implication: The inclusion of a software-controlled demag routine is justified for 
flight, especially after sustained actuation periods. 

 

 

 

 

 

 

 

 

 

 



 

 

3.5.4.4 Comparative Maximum Field Strengths 

 

Figure 28. Amplitude of Magnetic Field on All Three Axes 

This summary plot visualizes the peak field strengths recorded for each torquer during full PWM 
application. 

● Blue (B_x) peaks dominate, followed by orange (B_y), and green (B_z), matching 
expected dipole orientations based on torquer alignment. 

● Implication: The system exhibits predictable field magnitudes in the intended directions, 
with little deviation across the four torquers, demonstrating manufacturing consistency 
and axis alignment. 

3.5.4.5 Summary 

These individual magnetorquer tests affirm that: 

● Each torquer delivers axis-specific, nearly linear, and reversible field responses. 

● Residual magnetization can be effectively mitigated through onboard demag routines. 

● Directional outputs match modeled expectations and support reliable torque control. 

Together, these results reinforce the validity of CHARMS’s hardware-in-the-loop control 
assumptions and confirm that the magnetic actuation system is ready for mission deployment. 

The CHARMS magnetorquer subsystem provides reliable, directionally controllable torque with 
minimal power draw. Through iterative simulation, precision fabrication, and in-depth 
Helmholtz testing, the team successfully optimized each torquer for peak dipole performance 
under tight form factor and power constraints, demonstrating an effective solution for 
magnetorquer-only CubeSat ADCS control. 



 

 

3.6 Detailed Design and Operation of Subsystem 4: Structures 
The structures subsystem was beyond the scope of the Senior Design team’s work on this 
project. All of the structural design work was completed by members of the IrishSat CubeSat 
Structures team. However, the structural design was driven by CHARMS magnetorquer 
subsystem functional requirements. Because CHARMS is required to have 3 magnetorquers, one 
on each major axis, the structures team must accommodate securing 2 rod magnetorquers and 
manufacturing one air core magnetorquer structure. In Figure 29, we can see the designed 
aluminum structure to fit system requirements. Circled in red are the 2 rod magnetorquers. 
Boxed in blue is the Z-axis air core magnetorquer.  

 

Figure 29. Magnetorquer Structural Design 

See Section 5.1 Payload Assembly for more detailed information on the mechanical assembly of 
the CHARMS payload. Additionally, the CHARMS PCB team, driven by requirements from 
NSL, required the mechanical team to provide access holes for the USB and for signal line test 
points which allow for troubleshooting during integration with the rest of the satellite. These 
access points are seen in Figure 30. Also included are holes in the top plate so that the IR 
cameras can view outside of the satellite. 

 

Figure 30. Access points and camera holes for troubleshooting and picture taking 

Another requirement, driven by NSL requirements, is an external mechanical interface so that 
the full satellite can be assembled properly. These mounting points are seen in Figure 31. The 



 

 

red circles indicate external mounting points and the blue circles indicate PCB mechanical 
integration with the air core structure.  

 

Figure 31. Mechanical integration of CHARMS 

The structures team was also required to create a camera mounting bracket which extends 
through the middle of the payload space to hold the IR cameras brackets. The structural 
mounting points of the IR camera are seen Figure 32.  

 

Figure 32. Attachment of IR cameras using screws (red) and JST board connection (blue) 

Additional mounting points were added onto the aluminum top plate to support the connection of 
the IR camera bracket and wire clamps required for the magnetorquer cabling. This is seen in 
Figure 33.  



 

 

 

Figure 33. Attachment of IR cameras brackets (red) and wire clamp (blue) to top plate 

This mechanical design by the IrishSat team directly supported the CHARMS electrical and 
operational functionality. A more detailed assembly process of the electrical and mechanical 
structures are included in Section 5.1 Payload Assembly. 

3.7 Subsystem Integration 
The CHARMS payload has very simple subsystem integration. All sensors chosen for the PCB 
are I2C enabled, making communication with all sensors very simple within the software 
subsystem. Additionally, all sensors have Adafruit development boards with accompanying 
libraries for sensor communication, making software and hardware integration seamless. 

Integration of the magnetorquer subsystem is also very simple and uses 3 JST connectors which 
are mounted onto the PCB to interface with magnetorquer cabling. This cabling is mechanically 
clamped down to avoid damage due to the harsh vibrational environment during a space system 
launch.  



 

 

4 System Integration Testing 
4.1 Full Integration Testing 

4.1.1 IRR Testing 

Integration Readiness Review (IRR) testing was conducted by the CHARMS team to empirically 
validate that we met all NearSpace Launch requirements outlined in Section 2.2 External 
NearSpace Launch Requirements. The CHARMS team had to demonstrate to the NearSpace 
team that our payload was space-ready and with certain operational limits. 

Valparaiso University which is partnered with NearSpace Launch on the Dream Big program, 
just like the CHARMS team, designed and fabricated and distributed an emulation PCB which is 
designed to act exactly like the NearSpace bus. This means that it directly emulates external 
power supplies, as well as containing an Arduino Mega board running emulator software. The 
Arduino Mega allows for seamless testing of the communications between the payload PCB and 
the NSL flight computer. It also allowed the CHARMS team to test electrical and mechanical 
characteristics of the payload, confirming that it fit within NSL requirements. This IRR testing 
setup is seen in Figure 34. 

 

Figure 34. IRR testing setup using Valparaiso emulator board. 

See the CHARMS IRR Tracker information in Appendix A to see detailed descriptions of all 
testing done for IRR. 

4.1.1.1 Mechanical Testing 

Reference Table 4 from Section 2.2.1 for detailed requirements listing.  

Many of the mechanical requirements from NearSpace Launch were done through BOM 
inspection. Find the CHARMS BOM in Appendix B. These requirements include: 

- Outgassing requirements for all materials and components (TML and CVCM values) 

- Prohibited items in space, including energy storage devices and radio emitters 



 

 

-  Component operational temperature range fitting with space standards 

These BOM inspection items were confirmed to be met by the CHARMS team. In Addition to 
BOM inspections, the team was required to carry out visual inspection of the payload to ensure 
that the payload is free of dust and contaminants, controlled by alcohol cleaning of all payload 
surfaces.  

The rest of mechanical requirements were met by examining our payload CAD’s integration with 
the NSL bus CAD. Certain items that needed to be confirmed through CAD inspection were: 

- Fit the payload space described in Figure 35 

- Rigid mounting at specified locations by NSL 

- Electrical bus connection at specified location 

 

Figure 35. Student payload space on the satellite 

Additional mechanical testing such as characterizing the payload mass and confirming that it is 
less than 500 grams was performed. Additional verification that the CHARMS payload meets 
mechanical integration requirements was done by successfully integrating mechanically and 
electrically with the Valparaiso emulator board, which is built to NSL specifications. 

See the BOM in Appendix B and CHARMS IRR tracker in Appendix A for more detailed 
information. 

4.1.1.2 Electrical Testing 

Reference Table 5 from Section 2.2.2 for detailed requirements listing.  



 

 

Electrical testing was almost entirely complete using the Valparaiso emulator board. This 
emulator board allowed us to show that our payload met these requirements: 

- Powered by bus (external) power only, remains functional 

- Can survive voltage ripples 

- Below the required inrush current limits set by NSL 

- Pulls less than maximum steady state current on power rails 

- Payload is tolerant to abrupt power loss 

To carry out payload testing, the CHARMS team used the Schlafly Lab at Notre Dame for access 
to current sensors and oscilloscopes to take the appropriate measurements. The testing setup used 
to check all electrical requirements is seen in Figure 36 below. 

 

Figure 36. Schlafly Lab IRR electrical testing setup  



 

 

In this figure, the Arduino Mega is on the left and is used to run the emulator software. The 
CHARMS PCB is in the middle and runs the full CHARMS software suite. The emulator board 
power systems are on the right and are connected to a 12V power supply picture on the top of the 
figure. A current probe is seen connected to the external 3.3V power rail, used to measure 
current draw and inrush current. Finally, you see the CHARMS PCB wired up to the 
magnetorquer subsystem which is running at full power during testing.  

The only requirement that the CHARMS payload did not meet was an inrush current on the 3.3V 
line that was too high on start up. As such, a series inductor was added to the 3.3V line to 
constrain the inrush current to below 5 amps.  

Additionally, a test was conducted to cut off power to CHARMS and then powered back on to 
observe how the software and hardware reacted to random power cycling. The CHARMS code 
takes into account that it may be randomly power cycled while in any state including IDLE and 
DETUMBLE. This testing verified that power cycling during IDLE, DETUMBLE, or any other 
state simply places the payload back into the IDLE state, requiring another ground command to 
be sent to resume operational testing. This is because a power cycle causes CHARMS to 
reinitialize all hardware and the RTOS. 

See CHARMS IRR tracker in Appendix A for more detailed information. 

4.1.1.3 Firmware Testing 

Reference Table 6 from Section 2.2.3 for detailed requirements listing.  

Firmware requirements state that the payload should be able to downlink flight computer 
requests and also downlink useful data through the Iridium network for analysis on the ground. A 
detailed description of how the software is configured to do this is described in Section 3.4 
Detailed Design and Operation of Subsystem 2: RTOS/Software.  

Using the Valparaiso emulator board, the CHARMS team was able to demonstrate the smooth 
operation of the firmware. To view the information included in both health and safety packets 
and also operational detumble packets, view the code listing in Appendix E. This information is 
included in the constructDownlink() function.  

4.1.1.4 Environmental Testing 

Reference Table 7 from Section 2.2.4 for detailed requirements listing.  

Using the testing setup seen in Figure 37, the CHARMS team was able to verify the pre-
environmental functionality of the payload. This setup includes an air bearing, which allows for a 
low friction environment similar to that experienced in orbit. Additionally, the Helmholtz cage 
controls the magnetic environment within the cage to simulate the B-fields that would be 
experienced in orbit. See Section 4.1.2.2 Empirical Verification for full, pre-environmental 
testing results. 



 

 

 

Figure 37. Empirical testing setup for verification of CHARMS functionality 

The CHARMS team has yet to carry out the environmental testing plan outlined in Section 2.2.4 
Testing Requirements. Testing plans for TVAC bakeout have been arranged with the Notre 
Dame Nanofabrication Lab and will happen in the near future. Additionally, IrishSat’s testing 
equipment team has created a vibration table with which the CHARMS team will perform 
extended vibrational testing to induce any mechanical failures that the CHARMS payload may 
be susceptible to. 

After performing this environmental testing, the team will carry out the same exact testing as in 
pre-environmental testing so that testing results can be compared. 

4.1.2 Functional Testing 

Functional testing was conducted to verify that all integrated subsystems of the CHARMS 
payload (hardware, software, and the magnetorquer assembly) operated as intended under 
representative operational and environmental conditions. These tests confirmed that the system 
responded accurately to user input, operated within expected performance bounds, and fulfilled 
mission-level requirements across power, timing, sensing, and control domains. Testing 
encompassed both manual command execution and autonomous state-based operations to 
validate transitions, sensor responsiveness, and real-time actuation logic. 

4.1.2.1 Functional Test Setup 



 

 

Two primary environments were used for functional testing: a bench-level emulator 
configuration and a high-fidelity orbital simulation platform. 

During software, firmware, and communication-focused testing, the CHARMS PCB interfaced 
with the NSL bus emulator via the Valparaiso University emulator board. This setup allowed 
comprehensive emulation of the satellite bus’s electrical behavior and command infrastructure. 
The configuration enabled validation that the FreeRTOS-based software stack properly 
initialized, interpreted incoming commands, and formatted outgoing telemetry for transmission 
via NSL’s Iridium network. 

For full integration testing, the complete CHARMS payload was assembled, with all electrical 
and mechanical interfaces in place. Inputs and outputs were connected to the PCB, the structure 
was fully enclosed and fastened, and the 20-pin connector was wired to a mass-matched power 
pack emulating 3.3V and 5V rail delivery from the NSL bus. 

The full functional testing environment included: 

● Helmholtz Cage: Used to null Earth’s magnetic field and inject controlled magnetic 
fields emulating those encountered in Low Earth Orbit (LEO), using the PySol field 
simulation platform. 

● Air Bearing System: A hemispherical bowling ball platform allowed near-frictionless 
movement—360° rotation on the Z-axis and ±120° on the X and Y axes—enabling 
realistic spacecraft dynamics. 

● BLE Telemetry: Provided real-time data visualization of orientation, PWM outputs, 
magnetometer readings, and gyroscope measurements. 

These tools together enabled comprehensive, closed-loop Hardware-in-the-Loop (HIL) testing of 
the CHARMS flight system, with emphasis on detumble responsiveness and magnetorquer 
behavior under flight-representative conditions. 

4.1.2.2 Functional Test Protocols 

Functional testing was executed in two key phases. 

4.1.2.2.1 Emulator-Based Testing with Valparaiso Board 

These tests focused on validating firmware functionality, system state handling, and telemetry 
reliability: 

● Startup Routine Test 
Upon power-up via the emulator board, CHARMS reliably entered the IDLE state. All 
peripherals including the IMU, magnetometer, and magnetorquer control circuitry 
initialized successfully. LED indicators and telemetry packets confirmed system 
readiness. 

● Ground Command and State Transition Tests 
Commands successfully transitioned the payload between operational states (e.g., 
IDLE → DETUMBLE → IDLE). The RTOS parsed incoming commands, updated 



 

 

the internal state machine, and triggered the correct routines, including sensor 
logging and magnetorquer activation. 

● Power Cycle Recovery Tests 
Power to the payload was abruptly cut while in various states. Upon restart, the system 
returned to the IDLE state, reinitialized peripherals, and awaited commands. This 
confirmed system robustness and fault-tolerant behavior. 

● Data Logging and Downlink Tests 
Collected data was reviewed to verify accurate formatting and storage. The 
constructDownlink() function consistently produced correctly structured telemetry 
packets, suitable for downstream transmission over the simulated Iridium interface. 

4.1.2.2.2 Helmholtz Cage and Air Bearing Testing 

These tests validated full-system dynamic response in an environment simulating LEO magnetic 
and rotational conditions: 

● Detumble Magnetorquer Activation Tests 
When in the DETUMBLE state, the control algorithm activates the X, Y, and Z 
magnetorquers in real time. PWM signals were generated based on angular velocity 
inputs, and sensor readings confirmed successful actuation and system responsiveness. 

● PWM Response Tests 
PWM output varied dynamically in response to angular rate values from the filter and 
detumble logic. Signal profiles ramped accurately matching expected control behavior. 
Induced load remained within constraints. 

● Sensor Feedback Verification 
Data from the IMU and magnetometer sensors was logged continuously. The Helmholtz 
cage enabled ground-truth validation of magnetometer accuracy, confirming system 
reliability in a controlled test environment. 

4.1.2.3 Functional Test Procedure 

To ensure a consistent and replicable detumble test, the air bearing and Helmholtz cage were 
standardized and each full system CHARMS test was performed with the following process: 

1. Ensure air bearing is set to nominal pressure. Too much or too little airflow would lead to 
an unstable system or unnecessary friction, accordingly. Figure 39 shows the 
standardized air pressure of the CHARMS air bearing compressor. 



 

 

 

Figure 39. CHARMS air bearing pressures 

2. Connect CHARMS to power. Since it would be impractical to power using an exact bus 
emulator, simply directly powering the 20-pin connector via a USB battery pack proved 
sufficient. The battery pack shown below in Figure 40 has dual outputs, where each 5V 
from USB is broken out to a custom testing perf board. One output goes straight to 
CHARMS’s 5V input and the other passes through a 5V -> 3.3V LDO before it goes to 
the 3.3V pin on CHARM. 

 

Figure 40. CHARMS with testing battery pack and power perf board 

3. Pair CHARMS with the logging computer and ensure data is collected. This involves 
running a Python script that searches for the custom CHARMS hardware address. This 
script then begins to log data to a .CSV, where it can be plotted and analyzed. Figure 41 
outlines the data collected. 



 

 

 

Figure 41. Data collected and logged over BLE 

4. Center CHARMS on the air bearing, making sure that the center of mass is aligned with 
the center of the bearing. This is often difficult, since the low-friction air bearing is quite 
sensitive. 

5. Place CHARMS and the air bearing in the center of the Helmholtz cage, since induced 
magnetic fields are only guaranteed at the origin of the cage. Previously, the cage was 
calibrated to the exact center, but the CHARMS payload with the air bearing is a bit 
shorter than this point. This meant that the Helmholtz cage had to be recalibrated, with 
the new origin being the point where the payload would sit. This ensures that CHARMS 
experiences the proper magnetic field and can react to an environment simulating the 
Earth’s LEO field. 

6. Enable the LEO simulation. This is controlled from the Helmholtz cage’s computer, a 
Raspberry Pi 5. The cage uses three power supplies and a custom current driver circuit 
(similar to the one found on CHARM!) to ensure the proper current and field are induced 
in the cage. 

7. Induce a spin. This is a procedure that took some practice, since early attempts to spin 
CHARMS added a lot of additional vertical variations. The best practice became spinning 
CHARMS to a higher than desired velocity, then slowing it down gradually until the 
desired rotation rate was logged over BLE. 

8. Data was collected over the course of CHARMS’s rotation and analyzed after each run. 

4.1.2.4 Functional Test Adjustments 

As expected, initial full-system test data did not initially meet the requirements set in the HLD. 
The CHARMS B-dot algorithm includes many adjustable constants to ensure proportional 
control over the response seen from the magnetorquers. These constants are used in the B-dot 
control algorithm to provide an accurate characterization of the inputs and ensure the level of 
processing is appropriate to induce the desired output. Figure 42 shows a few constants used by 
the CHARMS control system. 

 



 

 

 

Figure 42. Some IrishSatRTOS.h detumble constants 

Many of these constants are representative of the physical CHARMS system and should not be 
adjusted, like the resistance of each magnetometer (used to calculate the amount of current and 
proportionally the torque response seen from each axis). However, the B-dot algorithm provides 
one particular constant, k, as a way to incorporate a detumbling constant gain. This constant was 
initially calculated using the expected dipole moment (found from the torquer physical 
characteristics) and the expected magnetic field (found from experimentally collected data) in the 
equation: 

k = α · (mₘₐₓ / ǁ𝐁ǁ). 

In satellite detumble systems, this relationship is simply used as a starting point and an additional 
scaling constant, α, is often introduced to account for other forces present that may be difficult to 
analytically determine. Initial CHARMS runs used a k value of 1e-5, but this small value led to 
long detumble times and low duty cycle utilization percentages even at high angular velocity. 
This means that CHARMS is not applying aggressive enough magnetic fields and the torques 
experienced were smaller than optimal. Figure 43 shows an early detumble test, where the duty 
cycle (from 0 to 255) rarely reaches an optimal point. Note that due to the circular nature of a 
rotating field, the optimal value will oscillate from -255 to 255, but the infrequent peaks seen in 
Figure 43 mean that k should be increased. 



 

 

 

Figure 43. An early CHARMS detumble test result 

In future runs, the k value was increased to 10e-5, meaning that the detumble product 

m = -k (ω × B) 

is ten times higher. This led to successful results and a faster detumble, as seen in Figure 44 in 
the Functional Test Outcomes section below. Attempts to raise k even more (to ensure full power 
is applied to each magnetorquer for as long as possible) actually resulted in longer times to 
detumble as well as poorer power consumption, since any variation in gyroscope readings led to 
near-maximum duty cycle application and an unnecessarily large force being applied. 

4.1.2.5 Functional Test Outcomes 

All functional tests confirmed that the CHARMS payload met or exceeded its mission 
requirements for reliable actuation, sensor feedback, power efficiency, and software robustness. 
The system demonstrated stable performance across multiple subsystems and under flight-like 
environmental conditions.  

 

 

 

 

 

 

 

 

 

 



 

 

4.1.2.5.1 Successful Autonomous Detumble in Simulated Orbit 

 

Figure 44. Detumble on Z axis of CHARMS vs IDLE System 

In a closed-loop Helmholtz cage test replicating full LEO magnetic field conditions, CHARMS 
reduced angular velocity from 15°/s to approximately 2°/s in 17 minutes and 38 seconds. Total 
energy consumption during detumble was 0.2087 Wh, well below the 7 Wh performance 
threshold. This behavior directly confirmed functional magnetorquer actuation and closed-loop 
control execution. 

 

 

 

 

 

 

 

 

 

 



 

 

4.1.2.5.2 Validated Control Algorithm and State Machine 

 

Figure 45. PWM Signal Strength of CHARMS Through Detumble 

Real-time telemetry showed expected PWM outputs from the detumble controller in response to 
angular velocity and magnetic field measurements. All three magnetorquers were actuated using 
a gain-scaled B-dot control law implemented in the RTOS task scheduler.  

4.1.2.5.3 Clear Separation from Passive Damping Behavior 

A control-disabled comparison trial, where magnetorquers were unplugged but the system was 
otherwise identical, resulted in asymptotic decay to ~7°/s over 75+ minutes. The active control 
test achieved over 4x faster spin rate reduction, confirming that active magnetorquer control (not 
natural damping) was the stabilizing agent. 

4.1.2.5.4 Robust Sensor Performance and System Feedback 

 

Figure 46. Magnetometer Readings onboard CHARMS Through Detumble 



 

 

IMU, magnetometer, and IR sensors performed within expected ranges throughout testing. 
Logged sensor data closely aligned with predicted field inputs from PySol, and real-time graphs 
(Figure 46) demonstrated consistent measurement trends, including decreasing gyro magnitudes 
and B-field stabilization over time. 

4.1.2.5.5 Power and Current Compliance 

 

Figure 47. Power Consumption of CHARMS Through Detumble 

Current draw remained well within NSL’s 0.4 A rail limit throughout operation. PWM signals 
followed trendlines aligned with model expectations (Figure 47), and power analysis confirmed 
that thermal and electrical budgets were not exceeded. Figure 47 illustrates a stable current trend 
of ~60–100 mA, with energy accumulation peaking under 0.21 Wh. 

4.1.2.5.6 Stable Re-Initialization After Power Loss 

The payload reliably re-entered IDLE mode after each abrupt power interruption. All peripherals 
re-initialized without failure, validating the system’s fault-tolerant behavior and confirming that 
no undefined states or corruption occurred due to power loss. 

4.1.2.5.7 Consistent Telemetry and Logging 

Data packets were correctly generated, formatted, and transmitted, both in emulator-based tests 
and real-time trials. Log files and BLE terminal output included full sensor snapshots, state 
transitions, and control inputs with accurate time correlation. 

 

 



 

 

4.1.2.5.8 Flight-Ready Integration and Bus Compatibility 

End-to-end validation with NSL-Valparaiso emulator board and bus emulation power hardware 
confirmed that CHARMS is compatible with NSL’s packet structure, command format, 
mechanical mounting, and electrical interface. The system responded appropriately to NSL-style 
inputs including power, bus activity, and signal commands.  

The CHARMS team will repeat tests conducted previously after environmental qualification to 
ensure post-TVAC and vibration survivability. 

The functional testing outcomes, supported by visualizations in Figures 39-47, show that 
CHARMS is not only functionally complete, but mission ready. System behavior aligned tightly 
with simulations, validating the design approach and confirming the efficacy of the onboard 
control system under real testbed conditions.  

4.1.2.6 Extended Functional Test Outcomes 

To further showcase CHARMS's readiness, the system was operated continuously during a 3-
hour live demonstration on Demo Day using the full hardware-in-the-loop setup. Over this 
extended period, the payload: 

● Successfully performed ten partial autonomous detumble cycles, each beginning from 
high initial angular velocities and multiaxis rotational wobble. 

● Demonstrated proportional PWM intensity scaling, as shown in real-time telemetry, with 
actuator response closely matching expected angular deceleration profiles. 

● Maintained strong and consistent magnetic dipole output, evidenced by the magnetometer 
readings, which showed clear directional field generation corresponding to commanded 
actuation. 

● Retained stable power consumption, with no performance degradation or overdraw 
despite extended operation. 

● Maintained unbroken communication and telemetry output, with valuable sensor data and 
command acknowledgments logged throughout the full session. 



 

 

‘

 

Figure 48. 3 Hour Demonstration of Detumble Operations Results 

This demonstration not only reaffirmed subsystem durability but also emphasized the 
repeatability and endurance of CHARMS under sustained control loop stress, adding further 
confidence in its flight robustness. 

 

 



 

 

4.2 Alignment of Testing Data with Design Requirements 

Objective Target Specification CHARMS Performance Status 

Detumbling Success Reduce spin to < 0.5°/s ~2°/s achieved after 15°/s initial Partial 
Success 

Detumbling Time < 75 minutes 17 minutes minimum  Exceeded 

Precise Actuation Produce expected B-field from 
magnetorquers 

~4000 magnitude achieved Met 

Sensor Suite Performance Accurate magnetometer and 
gyro readings 

All axes accurately read, 
decreasing ω detected 

Met 

Dipole Strength 
(MuMetal) 

> 5 Am² ~1.06 Am² Partially 
Met 

Dipole Strength (Air Core) > 0.1 Am² ~1.67 Am² Exceeded 

Power Consumption < 7 Wh ~0.2087 Wh during detumble Exceeded 

PWM Control PWM scaled based on sensor 
feedback 

Gain-varying PWM confirmed Met 

Autonomous Operation Self-contained RTOS + control 
architecture 

Fully autonomous detumble 
mode 

Met 

Power Efficiency Operates under tight energy 
budget 

~0.2087 Wh detumble (<< 7 Wh) Exceeded 

 

As iterated above, CHARMS met or exceeded nearly all of the initial requirements. Above are 
the testing-related metrics of success. One notable failed metric is the <0.5 degrees/second spin 
rate. This can be attributed to the imperfect proportion-based control system, the low-cost and 
noisy (even after calibration) gyroscope, and the imperfect air bearing potentially introducing 
some external torque from differing pressure zones. Overall, CHARMS’s testing process proved 
overwhelmingly successful. 

  



 

 

5 Installation Manual for Mission Operations   
The CHARMS payload was designed for ease of use, with simple construction, installation, and 
verification in mind. This allows customers to buy a CHARMS module and have confidence in 
its serviceability and functionality. 

5.1 Payload Assembly 
The CHARMS payload assembly process is relatively simple and can be completed in an hour or 
less. This simple construction also allows easy maintenance access. The assembly kit will have 6 
main components: the CHARMS PCB, the air core magnetorquer, the aluminum top plate, 2 rod 
magnetorquers, and several mechanical clamps to hold the rod magnetorquers and wire 
assemblies within the payload. Pictures of the full payload are included in Figure 49 below. 

 

Figure 49. Isometric top view (left) and internal assembly (right) of the CHARMS payload 

Step 1 of Payload Assembly – PCB Attachment 

Since the part selection ensured the use of commonly used components, the PCB fabrication and 
assembly house will fully assemble all PCBs for the CHARMS payload. 

The CHARMS payload has 8 mounting screws which are to be attached through the PCB: 4 
screws to hold the PCB into the air core magnetorquer structure and 4 screws to integrate 
mechanically with the rest of the CubeSat. In this prototype's case, the mechanical integration 
happens with the NSL bus to complete the 0.5U satellite. The attachment points are highlighted 
below in Figure 50. The red circles indicate mechanical integration points with external systems. 
The blue circles indicate mechanical integration with the air core structure. 



 

 

 

Figure 50. Mechanical integration of CHARMS PCB with air core structure (bottom view) 

Step 2 of Payload Assembly – Magnetorquer Attachment and Wiring 

The next step of CHARMS assembly is to install and wire the magnetorquers. The rod 
magnetorquers, which are internal to the payload, are held in place by mechanical clamps that 
attach to the side wall of the air core structure. Figure 51 shows the location of these clamps for 
the proper installation of the X and Y axis magnetorquers. 

 

Figure 51. Magnetorquer structural clamps (top view, no top plate) 

The next step is to wire the X, Y, and Z axis magnetorquers using the JST connectors circled in 
red in Figure 52. These wires coming from the JST connectors are then clamped using the 



 

 

mechanical clamp circled in blue, which is attached to the top plate using screws. Do not attach 
the top plate yet. This completes the magnetorquer assembly. 

 

Figure 52. Magnetorquer wiring clamp (blue) and JST connectors (red) 

Step 3 of Payload Assembly – IR Camera Installation 

Next, the IR camera brackets and the IR camera will be assembled and attached to the top plate, 
similar to the wire clamp. First, screw in the cameras to the aluminum camera bracket, as seen in 
Figure 53. After securing the cameras to the IR camera bracket, plug in the JST connector in to 
connect them to the I2C bus, circled in blue underneath the magnetorquer. This figure is repeated 
from Section 3.6 Detailed Design and Operation of Subsystem 4: Structures for reader ease. 

 

Figure 53. Attachment of IR cameras using screws (red) and JST board connection (blue) 

After securing the cameras to the IR camera bracket and plugging in the IR cameras, attach the 
IR camera bracket to the top plate, circled in red in Figure 54. Circled in blue is the mechanical 
clamp for the wiring. This figure is also repeated from Section 3.6 Detailed Design and 
Operation of Subsystem 4: Structures for reader ease. 



 

 

 

Figure 54. Attachment of IR cameras brackets (red) and wire clamp (blue) to top plate 

Step 4 of Payload Assembly – Secure the Top Plate 

The final part of the CHARMS assembly process is the attachment of the top plate. The top plate 
has 4 screws to secure it to the air core structure, as seen in Figure 55.  

 

Figure 55. Attachment of top plate to the air core structure 

After this step, the CHARMS module is fully assembled and ready for testing and operation.  

5.2  Installation 
Installation of the CHARMS payload is designed to be extremely easy, using one 20-pin 
connector which extrudes from the bottom of the CHARMS payload as seen in Figure 56. This 
bus connector includes external 3.3V, 5V, and 6-9V power rails, UART serial Tx and Rx pins, 
Ready-To-Send (RTS) and Clear-To-Send (CTS) signalling pins, and 3 analog GPIO pins for 
powering and information exchange between the CHARMS MCU and the external system.  



 

 

 

Figure 56. 20-pin bus connector for external power and communication with CHARMS 

Figure 57 shows a top view of the CHARMS 20-pin connector with pin numbers visible on the 
silkscreen of the PCB. Table 14 shows the pinout assignments for the CHARMS payload. 

Table 14. 20-pin bus connector pinout assignments [1] 

 



 

 

 

Figure 57. 20-pin bus connector pin numbering 

5.3  Initialization 
To initialize the payload, connect the 20-pin connector to the external system, which is 
configured properly to externally power and communicate with CHARMS. When the board is 
being powered, you can now reprogram CHARMS if you desire. Use the accessibility holes in 
the top plate to access the USB for reprogramming, as well as the signal line header breakouts 
for debugging. See Figure 58 to locate accessibility holes. 

 

Figure 58. CHARMS accessibility holes in top plate for USB and signal probing 

After CHARMS is running the proper software, the USB connection is no longer needed. 
CHARMS will solely run off the 20-pin connector. 

5.4  Verification and Troubleshooting of System Functionality 
To verify that CHARMS is working properly, the accessibility holes seen in Figure 58 are very 
helpful. The USB can be utilized for serial monitor debugging. Add printouts throughout the 
code to verify that everything is working as expected. Additionally, connecting a digital analyzer 
to the signal breakout headers or probing voltage breakouts with a multimeter will confirm 
CHARMS’s functionality. The pinouts for the top header breakout, circled in red, and the bottom 
header breakout, circled in blue, can be found in Figure 59.  



 

 

 

Figure 59. CHARMS signal probing pinouts 

Beyond probing, verifying the functionality of CHARMS can be tested by gathering empirical 
data. First, set up a Helmholtz cage to run PySol, a program that simulates the magnetic fields 
that a satellite would experience during one orbit in LEO. Place CHARMS inside the cage on top 
of an air bearing and upload Bluetooth-enabled code for wireless data transmission. This will 
allow you to gather and plot testing data of CHARMS during its detumble state. This empirical 
testing setup can be seen in Figure 60. See more information in Section 4.1.2 Functional 
Testing. This figure is repeated from Section 4.1.1.4 Environmental Testing for reader ease. 

 

Figure 60. Empirical testing setup for verification of CHARMS functionality  



 

 

6 Design Changes Required for Commercial 
Marketability 

● As the CHARMS team wraps up the prototype and testing of this magnetorquer-only 
ADCS, there are a few design changes that would improve the commercial viability of the 
product for other CubeSat missions.  

● Observed in testing results, we find that our system performance decreases significantly 
once the spin rate reduces down to around 2 degrees per second on all three axes. We believe 
that this reduction in performance is due to many factors which are described in detail in Table 
15.  

● Table 15. Design changes to improve CHARMS performance in future iterations 

Current Design Design Improvement 

Proportional Controller CHARMS could employ significantly better controls which take into account 
previous states to guide future actuation, something that a proportional controller 
does not do. For example, CHARMS could use a Proportional Integral Derivative 
(PID) controller which would result in more accurate and effective actuation.  

Low-Pass Filtering CHARMS could use a more advanced filtering technique called Kalman filtering to 
improve sensor data. With noisy sensor data heavily impacting system 
performance, improving our filtering algorithm would lead to better system 
performance. 

Low-Cost Sensor Suite CHARMS could use higher accuracy, lower noise sensors on the PCB. This would 
have a similar effect over performance that improving our filtering would have. 

 

Additionally, ADCS on CubeSats are expected to do more than just detumble the satellite. ADCS 
are also expected to be able to do some sort of pointing, especially sun pointing, which allows 
the satellite to carry out critical functions. For example, sun pointing is a required function of a 
satellite ADCS because the satellite needs to charge its batteries using its solar panels. Without 
sun pointing, the satellite quickly loses power and becomes inoperable.  

Other pointing algorithms like Earth pointing are very helpful for satellites doing Earth 
communication and Earth science. This is another pointing algorithm which will need to be 
developed for the CHARMS payload for it to become a viable commercial product. 

One other design improvement which could improve CHARMS commercial viability is 
reduction of the module size to take up less space on the satellite. In small satellites like 
CubeSat, space is hard to come by when designing. Smaller modules allow you to improve other 
critical bus systems as well as increasing the available payload space for research and technology 
demonstrations. This can be achieved by reducing the size and wrappings in our magnetorquer 



 

 

design, trading speed and strength for reduced profile. If ADCS is able to detumble and sun point 
before running low on power, having a small module would improve our marketability.  



 

 

7 Conclusions 
● The CHARMS (Control of Hardware Attitude using Reliable Magnetorquers Satellite) 
payload represents a major milestone in accessible, autonomous attitude control for small 
satellite platforms. Developed to operate within the minimal space and power constraints of an 
0.5U Cubesat, CHARMS successfully represents a technology demonstration of a magnetorquer-
only GPS-free ADCS architecture - the first of its kind at this price point. 

Through design, simulation, validation, and testing, the CHARMS team delivered a plug-and-
play system that integrates a control and data handling PCBA, a custom real time operating 
system, and in-house machined and wrapped magnetorquers. The system achieved angular 
velocity reductions from 15 degrees/second to 2 degrees/second in just 17 minutes, consuming 
less than 0.21 Wh, surpassing expectations for both energy efficiency and actuation capability. 

Extensive hardware-in-the-loop testing validated sensor performance, firmware reliability and 
robustness, and closed-loop full system control under accurate Earth LEO simulated conditions. 
These results prove the validity of a proportion-based B-dot control algorithm and prove 
CHARMS’s viability as a standalone detumbling system. 

CHARMS lays the groundwork for much more capability beyond detumbling, including sun and 
nadir pointing algorithms with the already-included IR cameras. With specific hardware and 
software improvements like higher fidelity sensors and more advanced sensor filtering, 
CHARMS could eventually evolve into a fully functional, general purpose ADCS for 
commercial scalability and deployment. 

Most importantly, CHARMS embodies the broader mission of democratizing space. It proves 
that reliable ADCS functionality can be achieved at a fraction of the power and cost of 
commercial systems, meeting its technical goals and also providing hands-on experience to the 
CHARMS team with real-world flight hardware and systems engineering. As a plug-and-play, 
low cost, low power, open-architecture ADCS, CHARMS promises to be a launch-ready solution 
for educational programs, low-budget smallsats, and commercial tech demonstrators seeking 
low-cost, effective detumbling. 

 
 
 
 
 
 
 
 
 
 
 



 

 

8 Appendices 
Appendix A – Modified IRR Tracker Document 
Non-critical columns were removed from the IRR tracker document and placed here for 
readability. The full IRR Tracker document is linked here and also provided on request from the 
CHARMS team.. 
 

Requirement 
Reference & 
Documentation 

Test Complete (Requirement Met) Responsible Engineer(s) 
In Charge of Req. 

R1.1 Final cleaning will take place after post-env. testing Jackson O'Neill 

R1.2 TRUE Aidan, Peter 

R1.3 TRUE Peter Gibbons 

R1.4 TRUE Peter Gibbons 

R1.5 TRUE Peter Gibbons 

R1.6 ??? Jackson O'Neill 

R1.7 TRUE Peter, Aidan, Sarah 

R1.8 20 pin connector black spacers are 1 mm out of spec. Jackson O'Neill 

R1.9 Waiting for correct parts to arrive Jackson O'Neill 

R1.10 TRUE Peter Gibbons 

R1.11 
Full assembly almost complete... almost certainly will meet 
this req 

Jackson O'Neill 

R2.1 TRUE Aidan 

R2.2 TRUE Aidan 

R2.3 In-rush too high, next iteration will have filtering inductor Aidan, Peter 

R2.4 TRUE Aidan, Peter 

R2.5 TRUE Aidan, Peter 

R2.6 TRUE Aidan, Peter 

R2.7 Next iteration of board will contain all test points. Ordering 
board in a couple of days 

Aidan 

R2.8 TRUE Peter Gibbons, Aidan 

R2.9 TRUE Aidan 

R2.10 TRUE Aidan 

R2.11 TRUE Isaac 

R2.12 
Full functional test for verifying power consumption 
happening in next week isaac 

R2.13 ??? Sarah, Isaac 

R3.1 TRUE Isaac 

https://docs.google.com/spreadsheets/d/1wLJq8HgWDDYfJx8yeF0yL643Klq8qR12ty1EqZWEmj0/edit?gid=0#gid=0
https://docs.google.com/document/d/1ghFCVk2KrfSfQs7H7zKcXZWc_aRrz0smLly2ZcvrYtM/edit?tab=t.0
https://docs.google.com/document/d/1mdejkJecQGapGupeqqMdsvjDJmPGjcU9K_lVyFihffQ/edit?tab=t.0
https://docs.google.com/document/d/1SW-u_SNcEQCnaQ06xoxUn3j2BZBHg0fB8WCz1fPP2-Q/edit?tab=t.0
https://docs.google.com/document/d/1UMNqMJXh-0nsVJLT6S8NyQ6ZEEgX4DX5si0v6puZm9s/edit?tab=t.0
https://docs.google.com/document/d/1wN-0IJGUF6kLKNfBEl4cru-ZfWVp2b9ZlYah0hOKh9s/edit?tab=t.0
https://docs.google.com/document/d/1xwWM2JaXLaLIR9-0Nz7LN1epfWrRzSXeiPDdfRJnY7s/edit?usp=drive_link
https://docs.google.com/document/d/1xe5fvLZTHJvxGZySQE8s2swrxhMAQGbMnPS20LQGGdw/edit?usp=drive_link
https://docs.google.com/document/d/1w2iNTnRPYxmt3KGee634KGCBtpPcf-lzeEc5dboZlrI/edit?usp=drive_link
https://docs.google.com/document/d/1u3PrX1iPK1Ff9IMwZ-p59BfgYJ4CRTSzGj1nvwwe2_8/edit?usp=drive_link
https://docs.google.com/document/d/1sEF-rzL27RxRXFGUW3Fghx6eyKOndVdxOKqyMrUhoaQ/edit?usp=drive_link
https://docs.google.com/document/d/1mI0aHrwGTF-f1CySn0Cxoc18VpEK6Njx2AfFdTXzDWM/edit?usp=drive_link
https://docs.google.com/document/d/1hgDmtqxijwW6q0Me3vACkjdihaQcXvTCcMnyhCw-KbU/edit?usp=drive_link
https://docs.google.com/document/d/1frGMoHY55vP1T51mTeR26ogm99q9RmWrK4VWxTHM2ns/edit?usp=drive_link
https://docs.google.com/document/d/1dL36zmxdLYt_wW9AWMeC08GXPm0m-Phi48LXS3YdCHs/edit?usp=drive_link
https://docs.google.com/document/d/1T50BaRjW1wPiXw090vp32TPZHw4YjvMe3yFDLC4B0D4/edit?usp=drive_link
https://docs.google.com/document/d/1NUVdIftKR9fPIA1zA4ZQBtLpm8UxcCln0xJt2qbdSXQ/edit?usp=drive_link
https://docs.google.com/document/d/1LR2Pgj7QqtxePuRcvfurPKI3mTSor4ivg_bGwaUUj5E/edit?usp=drive_link
https://docs.google.com/document/d/1HeaFtysuYdSe7pWOZev2cuc_ao0klEdqCwBjK1Yj62I/edit?usp=drive_link
https://docs.google.com/document/d/1HYPSgGIUglskhPEogtf31oN7l6AbIqzM0SRoiTDwFY4/edit?usp=drive_link
https://docs.google.com/document/d/1GblB06tX-xP8ClE00IQ9v8XjEoJ9_f-jnLRvNz0sXZE/edit?usp=drive_link
https://docs.google.com/document/d/1EWXAc-s0q59oPp2bNfT2k7OjlF27GdQcD0rx2QVkdTs/edit?usp=drive_link
https://docs.google.com/document/d/1CDh8MV7d-UmivMgHx13oFGSvFRcLPe2VnwiyIRwLvDc/edit?usp=drive_link
https://docs.google.com/document/d/1BIdLcwQO7orXk4ImbZOtNUzxwLH8GfjTbqZRxnDEcQw/edit?usp=drive_link
https://docs.google.com/document/d/18YgztG40Pyz6SZppn7Z0KH49x5fK344eJPE3oDpiMrU/edit?usp=drive_link
https://docs.google.com/document/d/17CjcKGIAHRu7LDVHxirwcx7eQvWZA-K6Ls85OV-z0Gs/edit?usp=drive_link


 

 

R3.2 Ongoing: Still need to complete this SW implementation Isaac 

R4.1 Ongoing: Will be completed withing 3 days of IRR Isaac 

R4.2 Pending: Can be done whenever ready Isaac 

R4.3 Pending: Done whenever TVAC happens Isaac 

 
 
  

https://docs.google.com/document/d/16Qnp3U3k7HwuHiIV3gfRNnwNPz8fGBBhESdD-I32CJ4/edit?usp=drive_link
https://docs.google.com/document/d/14YeyNNAOIJL2hNWubINwODC-3gHmy8zGr6iek8y063c/edit?usp=drive_link
https://docs.google.com/document/d/1-VJayX6d27ZdsEjexdueo1sblckSmqNDVg1BWNSlJwk/edit?usp=drive_link
https://docs.google.com/document/d/1dcYEcgyEFMDwQijYXY4CwAPmC1V_7mMUzB_XwrUdKeE/edit?usp=drive_link


 

 

Appendix B – CHARMS BOM Document 
This is a modified BOM which significantly reduced the number of column so that it only 
contains limited information. This is done so that some form of the BOM could be represented 
on this document. To view to full BOM, go here.  
 
Name/PN Description Qty (#) Part Mass (g) 

CHARMS Complete Integrated Payload 1 N/A 

Chassis Assembly Structural Assembly of Payload 1 N/A 

N1-1-008_A Payload Roof Plate 1 48 

N1-1-007_A Air Core Shell 1 68.1 

N1-1-011_A Camera Mount Bracket 1 7.1 

N1-1-006_A Magnetorquer Mounting Bracket 2 3.2 

N1-1-006_B Magnetorquer Mounting Bracket 2 1.5 

N1-1-015_A Magnetorquer Mounting Bracket 2 3.1 

N1-1-003_A Magntorquer Rod Core 2 19.7 

N2-1-002_A Magnetorquer Rod Wire Segments 2 28.35 

N2-1-003_A Air Core Wire Segment 1 56.7 

N1-1-016_A Magnetorquer Wire Clamp 1 0.6 

N1-1-017_A Magnetorquer Wire Clamp 1 0.5 

90318A411 M2 Shoulder Bolts for PCB Mounting 4 0.04 

91292A831 M2 x 6mm Socket Head for Camera Mounting 8 0.02 

92125A052 M2 x 6mm CS 8 0.02 

92196A078 
#2-56 x 5/16" Socket Head for Payload 
Mounting 4 0.03 

92125A611 M2 x 20mm CS 4 0.06 

92125A059 M2 x 16mm CS 4 0.05 

92125A056 M2 x 10mm CS 2 0.03 

MLX90640 Infared Camera 2 3 

PCB Asm 1 Primary PCB Assembly 1 N/A 

C10,C9 1uF 2  

R9,R14 4.7k 2  

R7,R23,R11,R26,R3,R17,R
10,R5 2.2k 8  

C17,C38,C16,C7,C14,C2,C
11,C40,C13,C12 0.1uF 10  

J11,J4,J2 JST_SH_4 3  

C8,C1 0.1uF 2  

https://docs.google.com/spreadsheets/d/1wBBNyTtlvT_iVNq6KEaAfDoUMJr_nn2Yn2tFhBmZRxk/edit?gid=0#gid=0


 

 

R19,R22,R20 10k 3  

J9,J27,J25,J26 Conn_01x02_Pin 4  

C21,C22 10uF 2  

SJ1,SJ2,SJ3,SJ4 DNP 4  

R29,R28,R30 0 ohm 3  

R6,R12 10k 2  

C4,C36 22uF 2  

R25,R24,R4,R27,R8,R21 RE1C002UNTCL (Mosfet) 6  

C35,C3,C15,C18 10uF 4  

J12 Conn_01x04_Socket 1  

J16 JST_PH_B2B 1  

U8 AMS1117-1.8 (LDO) 1  

J10 USB_C_Receptacle 1  

J24 Conn_01x04_Pin 1  

J15 JST_PH_B2B 1  

C5,C6 100n 2  

U2 AMS1117-3.3 (LDO) 1  

R2,R1,R32,R13 1k 4  

U9 ESP32-S3-WROOM-1-N16R2 1  

U5 LIS2MDL (Magnetometer) 1  

C39 220nF 1  

R16,R18 5.1k 2  

LED4 Red LED 1  

LED1,LED5 Green LED 2  

U1,U10 ICM-20948 (9-Axis Accelerometer) 2  

SW2,SW1 KMR231GLFS (Button) 2  

U11,U6 TB6612FNG (H-bridge) 2  

J14 JST_PH_B2B 1  

C23 10uF 1  

LED2 Blue LED 1  

J1 Conn_02x10_Odd_Even 1  

L1, L2 10uH 2  

 
  



 

 

Appendix C – IrishSat_RTOS_main.cpp Code Listing 
 
#include "IrishSatRTOS.h" 
 
TaskHandles taskHandles; 
 
QueueHandle_t iridiumDownlinkBufQueue; 
QueueHandle_t downlinkBufQueue; 
QueueHandle_t uplinkBufQueue; 
QueueHandle_t sensorDataQueue; 
 
HardwareSerial Serial3(2); 
Adafruit_MLX90640 mlx; 
ICM_20948_I2C myICM1; 
ICM_20948_I2C myICM2; 
Adafruit_LIS2MDL lis2mdl = Adafruit_LIS2MDL(12345); 
sensors_event_t event; 
 
StateVars RTOSstateVars = { {100},                      // State Machine 
Delay 
                            {100 / portTICK_PERIOD_MS}, // State Machine 
Delay Ticks 
                            {100},                      // Poll Sensor Delay 
                            {100 / portTICK_PERIOD_MS}, // Poll Sensor Delay 
Ticks 
                            {1000},                      // Poll Camera Delay 
                            {1000 / portTICK_PERIOD_MS}, // Poll Camera Delay 
Ticks 
                            {100},                      // Interpret Uplink 
Delay 
                            {100 / portTICK_PERIOD_MS}, // Interpret Uplink 
Delay Ticks 
                            {100},                      // Detumble Delay 
                            {100 / portTICK_PERIOD_MS}, // Detumble Delay 
Ticks 
                            {100},                      // Send and Ack Delay 
                            {100 / portTICK_PERIOD_MS}, // Send and Ack Delay 
Ticks 
                            {100},                      // Monitor Commands 
Delay 
                            {100 / portTICK_PERIOD_MS}, // Monitor Commands 
Delay Ticks 
                            {60000},                     // Iridium Request 
Time 
                            {5000},                      // Uplink Request 
Time 
                            {15000},                     // Iridium High 
Frequency Packet Creation Time 
                            {180000},                    // Iridium Low 
Frequency Packet Creation Time 



 

 

                            {0},                         // Packet Sequence 
Number 
                            {0},                         // Detumble Sequence 
Number 
                            {0},                         // RTOS Start Time 
                            {START_UP},                  // Current State 
                            {-1},                        // Previous State 
                            {true},                      // New State? 
                            {true},                      // Start Up? 
                            {true},                      // Poll Sensors? 
                            {false},                     // Poll Cameras? 
                            {false},                     // Detumble? 
                            {false},                     // Flip X Voltage? 
                            {false},                     // Flip Y Voltage? 
                            {false},                     // Flip Z Voltage? 
                            {false}, 
                            {false} };                   // Use IMU2? 
                             
sensorOffsets sensorOffsetBoard2 = { 
  //lis2mdl 
  {-17, -20,  42.21},     // Mag X,Y, and  
  //ICM1 
  { {0.346 , -0.379, -0.117},   // Gyro X,Y, and Z 
  {17.828, -8.817,  6.472},   // Accel X,Y, and Z 
  {-15.27,  21.58,  31.54}  }, // Mag X,Y, and Z 
  //ICM2 
  { {0.973 , -0.576, -0.518},   // Gyro X,Y, and Z 
  {28.249, -0.630,  29.002},   // Accel X,Y, and Z 
  {6.76 ,  5.32,  57.80} }, // Mag X,Y, and Z 
  //lis2mdl soft iron 
  { {0.965 ,  0.012, -0.007}, 
    {0.012 ,  1.040, -0.014}, 
    {-0.007, -0.014,  0.997} }, 
  //ICM1 soft iron 
  { {1.071 , -0.009,  0.028}, 
  {-0.009,  0.986, -0.013}, 
  {0.028 , -0.013,  0.948} }, 
  //ICM2 soft iron 
  { {1.025 , -0.015,  0.014}, 
  {-0.015,  0.982,  0.006}, 
  {0.014 ,  0.006,  0.994} }, 
}; 
 
tempOffsetCalcHolder corrValStruct; 
 
// the setup function runs once when you press reset or power the board 
void setup() { 
 
  delay(2000); 
 
  Serial.begin(38400); // to the computer 



 

 

  Serial3.begin(38400, SERIAL_8N1, RX_PIN, TX_PIN); // to the NSL FC 
  Serial.read(); // Clear Serial Bus 
  Serial3.read(); // Clear Serial3 Bus 
 
  // Initialize I2C on specified pins 
  Wire.begin(SDA_PIN, SCL_PIN); 
 
  Serial.println("Serial Bus Initialized."); 
 
  pinMode(CTS_PIN, INPUT); // Clear-to-Send pin set high or low by NSL FC 
  pinMode(RTS_PIN, OUTPUT); // Request-to-Send pin set high or low by 
IrishSat 
  digitalWrite(RTS_PIN, LOW); // Initial state LOW 
 
  // Set PWM Pin States 
  pinMode(DIR1X, OUTPUT); 
  pinMode(DIR2X, OUTPUT); 
  pinMode(PWMX, OUTPUT); 
  digitalWrite(DIR1X, LOW); 
  digitalWrite(DIR2X, HIGH); 
 
  pinMode(DIR1Y, OUTPUT); 
  pinMode(DIR2Y, OUTPUT); 
  pinMode(PWMY, OUTPUT); 
  digitalWrite(DIR1Y, LOW); 
  digitalWrite(DIR2Y, HIGH); 
 
  pinMode(DIR1Z, OUTPUT); 
  pinMode(DIR2Z, OUTPUT); 
  pinMode(PWMZ, OUTPUT); 
  digitalWrite(DIR1Z, LOW); 
  digitalWrite(DIR2Z, HIGH); 
 
  //Serial.println("Pin Modes Set."); 
 
  if (! mlx.begin(MLX_ADDR, &Wire)) { 
    Serial.println("MLX90640 not found!"); 
    while (! mlx.begin(MLX_ADDR, &Wire)) delay(10); 
  } 
 
  if (! myICM1.begin(Wire, IMU1_AD0_VAL)) { 
    Serial.println("ICM20948-1 not found! Trying Again..."); 
    while (myICM1.status != ICM_20948_Stat_Ok){ 
      myICM1.begin(Wire, IMU1_AD0_VAL); 
      delay(500); 
    } 
  } 
 
  if (! myICM2.begin(Wire, IMU2_AD0_VAL)) { 
    Serial.println("ICM20948-2 not found! Trying Again..."); 
    while (myICM2.status != ICM_20948_Stat_Ok){ 



 

 

      myICM2.begin(Wire, IMU2_AD0_VAL); 
      delay(500); 
    } 
  } 
 
  /* Enable auto-gain */ 
  lis2mdl.enableAutoRange(true); 
  if (!lis2mdl.begin(0x1E, &Wire)) {  // I2C mode 
    Serial.println("Ooops, no LIS2MDL detected ... Check your wiring!"); 
    while (!lis2mdl.begin(0x1E, &Wire)){ 
      delay(500); 
    } 
  } 
 
  Serial.println("Found MLX90640, ICM20948-1, ICM20948-2, LIS2MDL"); 
 
  iridiumDownlinkBufQueue = xQueueCreate(200, sizeof( uint8_t 
)*UART_PACKET_SIZE); 
  downlinkBufQueue = xQueueCreate(10, sizeof( uint8_t )*UART_PACKET_SIZE); 
  uplinkBufQueue = xQueueCreate(10, sizeof( uint8_t )*UART_PACKET_SIZE); 
  sensorDataQueue = xQueueCreate(1, sizeof( SensorData )); 
 
  //Serial.println("Queues Created."); 
 
  // Now set up two tasks to run independently. 
  xTaskCreate( 
    TaskStateMachine 
    ,  "State Machine" 
    ,  16384  // Stack size 
    ,  NULL 
    ,  1  // Priority 
    ,  &taskHandles.taskStateMachineHandle ); 
 
  //Serial.println("State Machine Created."); 
 
 
  xTaskCreate( 
    TaskPollSensors 
    ,  "Poll Sensors" 
    ,  16384  // Stack size 
    ,  NULL 
    ,  2  // Priority 
    ,  &taskHandles.taskPollSensorsHandle ); 
 
  //Serial.println("Poll Sensors Created."); 
 
  xTaskCreate( 
    TaskPollCameras 
    ,  "Poll Cameras" 
    ,  16384  // Stack size 
    ,  NULL 



 

 

    ,  3  // Priority 
    ,  &taskHandles.taskPollCamerasHandle ); 
 
  //Serial.println("Poll Sensors Created."); 
 
  xTaskCreate( 
    TaskInterpretUplink 
    ,  "Interpret Uplink" 
    ,  16384  // Stack size 
    ,  NULL 
    ,  4  // Priority 
    ,  &taskHandles.taskInterpretUplinkHandle ); 
   
  //Serial.println("Interpret Uplink Created."); 
 
  xTaskCreate( 
    TaskDetumble 
    ,  "Detumble with bcross" 
    ,  16384  // Stack size 
    ,  NULL 
    ,  5  // Priority 
    ,  &taskHandles.taskDetumbleHandle ); 
 
  //Serial.println("Detumble Created."); 
 
  xTaskCreate( 
    TaskSendAndAck 
    ,  "Send and Ack"   // A name just for humans 
    ,  4096  // This stack size can be checked & adjusted by reading the 
Stack Highwater 
    ,  NULL 
    ,  6  // Priority, with 3 (configMAX_PRIORITIES - 1) being the highest, 
and 0 being the lowest. 
    ,  &taskHandles.taskSendAndAckHandle ); 
     
  //Serial.println("Send and Ack Created."); 
 
  xTaskCreate( 
    TaskMonitorCommands 
    ,  "Monitor Commands" 
    ,  16384  // Stack size 
    ,  NULL 
    ,  7  // Priority 
    ,  &taskHandles.taskMonitorCommandsHandle ); 
   
  //Serial.println("Monitor Commands Created."); 
 
  //Serial.println("Setup Complete!"); 
 
  // Now the task scheduler, which takes over control of scheduling 
individual tasks, is automatically started. 



 

 

} 
 
void loop() 
{ 
  // Empty. Things are done in Tasks. 
} 
 
void TaskStateMachine(void *pvParameters)  // This is a task. 
{ 
  (void) pvParameters; 
 
  uint8_t downlinkPacket[UART_PACKET_SIZE]; // Used as buffer to send stuff 
to NSL FC 
  uint8_t uplinkPacket[UART_PACKET_SIZE]; // Used as buffer to send stuff to 
NSL FC 
  uint8_t netReqCmd = 0x47; 
  uint8_t checkUplinkCmd = 0x48; 
  uint64_t loopCounter = 0; 
  int numBytesAvailable; 
  SensorData sensorData; // Used as buffer to send stuff to NSL FC 
 
  float pixel; 
 
  unsigned long previousTime; //track how long you are in the current state 
  unsigned long switchTime = millis(); 
  unsigned long totalStateTime; 
 
  unsigned long totalDetumbleTime; 
 
  RTOSstateVars.RTOSStarttime = millis(); 
 
  for(;;) 
  {  
    if((xQueuePeek(sensorDataQueue, &sensorData, 10) == pdPASS) && 
!RTOSstateVars.startUp) 
    { 
      //printSensorData(sensorData, pixel); 
    } 
 
    //Serial.println("State Machine"); 
    delay(1); 
    if(RTOSstateVars.newState){ 
     
      RTOSstateVars.newState = false; 
/*   
      previousTime = switchTime; // Save last state switch time  
      switchTime = millis(); //track 
      totalStateTime = switchTime - previousTime; 
*/ 
      // Turn off torquers 
      digitalWrite(DIR1X, 0 >= 0 ? LOW : HIGH); 



 

 

      digitalWrite(DIR2X, 0 >= 0 ? HIGH : LOW); 
      analogWrite(PWMX, abs(0)); 
 
      digitalWrite(DIR1Y, 0 >= 0 ? LOW : HIGH); 
      digitalWrite(DIR2Y, 0 >= 0 ? HIGH : LOW); 
      analogWrite(PWMY, abs(0)); 
 
      digitalWrite(DIR1Z, 0 >= 0 ? LOW : HIGH); 
      digitalWrite(DIR2Z, 0 >= 0 ? HIGH : LOW); 
      analogWrite(PWMZ, abs(0)); 
 
      if(RTOSstateVars.prevState == DETUMBLE){ 
        // Save the total detumble time 
        totalDetumbleTime = totalStateTime; 
      } 
 
      switch (RTOSstateVars.state){ 
         
        case START_UP: 
        { 
          Serial.println("RTOS start up!"); 
          // Get payload into a known state, all other tasks always running 
          RTOSstateVars.startUp = true; 
 
          RTOSstateVars.prevState = RTOSstateVars.state; 
          RTOSstateVars.state = IDLE; 
          RTOSstateVars.newState = true; 
 
          // Check uplink buffer immediately on start up 
          initBufAsZeros(downlinkPacket); 
          constructDownlink(RTOSstateVars, CHKUPLINK, downlinkPacket, 
CHKUPLINK, sensorData); 
          xQueueSend(downlinkBufQueue, &downlinkPacket, portMAX_DELAY); 
          delay(5); 
 
          // Check IMU1 Data 
          if (myICM1.dataReady()) { 
            RTOSstateVars.sensorUpdate = true; // update made to sensor data 
            myICM1.getAGMT(); 
 
            fliterAndPollIMU(myICM1, sensorData, sensorOffsetBoard2, 
corrValStruct, RTOSstateVars.startUp, IMU1_AD0_VAL); 
          } 
          else{ 
            Serial.println("Failed to poll ICM20948-1."); 
          } 
 
          // Check IMU2 Data 
          if (myICM2.dataReady()) { 
            RTOSstateVars.sensorUpdate = true; // update made to sensor data 
            myICM2.getAGMT(); 



 

 

            fliterAndPollIMU(myICM2, sensorData, sensorOffsetBoard2, 
corrValStruct, RTOSstateVars.startUp, IMU2_AD0_VAL); 
          } 
          else{ 
            Serial.println("Failed to poll ICM20948-2."); 
          } 
 
          // Check Magnetometer Data 
          if(lis2mdl.getEvent(&event)){ 
            RTOSstateVars.sensorUpdate = true; // update made to sensor data 
            fliterAndPollMag(event, sensorData, sensorOffsetBoard2, 
corrValStruct, RTOSstateVars.startUp); 
          } 
          else{ 
            Serial.println("Failed to poll LIS2MDL."); 
          } 
 
          if(RTOSstateVars.sensorUpdate){ 
            sensorData.timeStamp = millis()-RTOSstateVars.RTOSStarttime;  // 
milliseconds since the beginning of operation 
            xQueueReset(sensorDataQueue); // Clear the queue 
            xQueueSend(sensorDataQueue, &sensorData, portMAX_DELAY); // 
replace with new sensor data 
            RTOSstateVars.sensorUpdate = false; // reset the control variable 
            //Serial.println("Sensor Data updated."); 
          } 
           
          // Downlink H&S Packet on start up 
          initBufAsZeros(downlinkPacket); 
          constructDownlink(RTOSstateVars, SEND_DOWNLINK, downlinkPacket, 
HSPACKET, sensorData);  
          RTOSstateVars.packetSeqNum += 1; // Iterate Sequence number for 
iridium packets 
          xQueueSend(iridiumDownlinkBufQueue, &downlinkPacket, 
portMAX_DELAY);  
          delay(5); 
 
        }break; 
         
        case IDLE: 
        { 
          RTOSstateVars.pollSensors = true; 
          RTOSstateVars.pollCameras = false; 
          RTOSstateVars.detumble = false;    
          RTOSstateVars.IridiumReqTime = 60000; // in ms 
          RTOSstateVars.UplinkReqTime = 5000; // in ms 
        }break; 
         
        case DETUMBLE: 
        { 
          RTOSstateVars.IridiumReqTime = 60000; // in ms 



 

 

          RTOSstateVars.UplinkReqTime = 5000; // in ms 
          RTOSstateVars.detumble = true; 
        }break; 
/*         
        case NADIR_POINT: 
        { 
 
        } 
*/ 
        case SAFETY: 
        { 
          RTOSstateVars.pollSensors = false; 
          RTOSstateVars.pollCameras = false; 
          RTOSstateVars.detumble = false; 
 
          RTOSstateVars.IridiumReqTime = INT32_MAX; // in ms 
          RTOSstateVars.UplinkReqTime = INT32_MAX; // in ms 
        }break; 
         
        default: 
        { 
 
        }break; 
      } 
    } 
 
    loopCounter += 1; 
 
    if(int(fmod(loopCounter, 
(RTOSstateVars.UplinkReqTime/RTOSstateVars.StateMachineDelay))) == 0){ 
      initBufAsZeros(downlinkPacket); 
      constructDownlink(RTOSstateVars, CHKUPLINK, downlinkPacket, CHKUPLINK, 
sensorData); 
      xQueueSend(downlinkBufQueue, &downlinkPacket, portMAX_DELAY); 
    } 
     
    if(int(fmod(loopCounter, 
(RTOSstateVars.IridiumReqTime/RTOSstateVars.StateMachineDelay))) == 0){ // 
requests an uplink uplink about every netReqTime milliseconds 
      initBufAsZeros(downlinkPacket); 
      constructDownlink(RTOSstateVars, NETREQ, downlinkPacket, NETREQ, 
sensorData); 
      xQueueSend(downlinkBufQueue, &downlinkPacket, portMAX_DELAY); 
    } 
 
    //Serial.print("State: "); 
    //Serial.println(state); 
    //Serial.println(); 
 
    vTaskDelay( RTOSstateVars.StateMachineDelayTicks ); 
  } 



 

 

} 
 
void TaskPollSensors(void *pvParameters)  // This is a task. 
{ 
  (void) pvParameters; 
 
  SensorData sensorData; // Used as buffer to send stuff to NSL FC 
 
  float magPrevVals[3]; 
 
  for(;;) 
  {  
    if(RTOSstateVars.pollSensors){ 
      //Serial.println("Poll Sensors"); 
 
      // Check IMU1 Data 
      if (myICM1.dataReady()) { 
        RTOSstateVars.sensorUpdate = true; // update made to sensor data 
        myICM1.getAGMT(); 
 
        fliterAndPollIMU(myICM1, sensorData, sensorOffsetBoard2, 
corrValStruct, RTOSstateVars.startUp, IMU1_AD0_VAL); 
      } 
      else{ 
        Serial.println("Failed to poll ICM20948-1."); 
      } 
 
      // Check IMU2 Data 
      if (myICM2.dataReady()) { 
        RTOSstateVars.sensorUpdate = true; // update made to sensor data 
        myICM2.getAGMT(); 
        fliterAndPollIMU(myICM2, sensorData, sensorOffsetBoard2, 
corrValStruct, RTOSstateVars.startUp, IMU2_AD0_VAL); 
      } 
      else{ 
        Serial.println("Failed to poll ICM20948-2."); 
      } 
 
      // Check Magnetometer Data 
      if(lis2mdl.getEvent(&event)){ 
        RTOSstateVars.sensorUpdate = true; // update made to sensor data 
        fliterAndPollMag(event, sensorData, sensorOffsetBoard2, 
corrValStruct, RTOSstateVars.startUp); 
      } 
      else{ 
        Serial.println("Failed to poll LIS2MDL."); 
      } 
 
      if(RTOSstateVars.sensorUpdate){ 
        sensorData.timeStamp = millis()-RTOSstateVars.RTOSStarttime;  // 
milliseconds since the beginning of operation 



 

 

        xQueueReset(sensorDataQueue); // Clear the queue 
        xQueueSend(sensorDataQueue, &sensorData, portMAX_DELAY); // replace 
with new sensor data 
        RTOSstateVars.sensorUpdate = false; // reset the control variable 
        //Serial.println("Sensor Data updated."); 
      } 
    } 
     
    vTaskDelay( RTOSstateVars.PollSensorsDelayTicks ); // wait for 
PollSensorsDelay ms 
  } 
} 
 
void TaskPollCameras( void *pvParameters ) 
{ 
  (void) pvParameters; 
 
  SensorData sensorData; // Used as buffer to send stuff to NSL FC 
 
  float minVal = INT_MAX; 
  float maxVal = 0; 
 
  // MLX IR Cam 
  float frame[32*24]; // buffer for full frame of temperatures 
  float pixel; 
 
  bool update = false; 
 
  for(;;) 
  {  
    if(RTOSstateVars.pollCameras){ 
      //Serial.println("Poll Cameras"); 
 
      // Reset the min and max val for next image 
      minVal = INT_MAX; 
      maxVal = 0; 
 
      // Check MLX IR Cam data 
      if (mlx.getFrame(frame) != 0) { 
        Serial.println("Failed to get MLX frame."); 
      } 
      else{ 
        update = true; // update made to sensor data 
        for(int i=0; i<24; i++){ 
          for(int j=0; j<32; j++){ 
            sensorData.cam1Data.Image[i][j] = frame[i*32 + j]; 
            if (sensorData.cam1Data.Image[i][j] < minVal) { 
              minVal = sensorData.cam1Data.Image[i][j]; 
            } 
            if (sensorData.cam1Data.Image[i][j] > maxVal) { 
              maxVal = sensorData.cam1Data.Image[i][j]; 



 

 

            } 
          } 
        } 
 
        // Convert temperature data to pixel values data 
        temp_to_image(sensorData.cam1Data.Image, WIDTH, HEIGHT, minVal, 
maxVal); 
      } 
 
      if(update){ 
        xQueueReset(sensorDataQueue); // Clear the queue 
        xQueueSend(sensorDataQueue, &sensorData, portMAX_DELAY); // replace 
with new sensor data 
        update = false; // reset the control variable 
        Serial.println("Sensor Data updated."); 
      } 
    } 
     
    vTaskDelay( RTOSstateVars.PollCamerasDelayTicks ); // wait for 
PollSensorsDelay ms 
  } 
} 
 
void TaskInterpretUplink(void *pvParameters)  // This is a task. 
{ 
  (void) pvParameters; 
 
  uint8_t downlinkPacket[UART_PACKET_SIZE]; // Used as buffer to send stuff 
to NSL FC 
  uint8_t detumbleDownlinkPacket[UART_PACKET_SIZE]; // Used as buffer to send 
stuff to NSL FC 
  initBufAsZeros(detumbleDownlinkPacket); 
 
  uint8_t uplinkBuf[UART_PACKET_SIZE]; // Used as buffer to send stuff to NSL 
FC 
  uint8_t functionByte; 
  uint16_t busTempBytes; 
  float busTemp; 
  uint16_t busVoltageBytes; 
  float busVoltage; 
 
  // S4 Configuration Settings 
  uint8_t HSPacketTXPeriod = 0x15; // 15 minutes 
  uint8_t GPSPacketTXPeriod = 0x15; // 15 minutes 
  uint8_t UplinkQueueCheckPeriod = 0x15; // 15 minutes 
   
  int iridiumLatency = -1; // how long did it take to send your packet over 
iridium S4 radio 
 
  bool uplinkReceived = false; 
 



 

 

  SensorData sensorData; 
  uint8_t numCmdSent; 
  uint8_t numBytesSent; 
  uint8_t gndCmd; 
  uint8_t packetType; 
  bool newGndCmd = false; 
 
  for(;;) 
  { 
    initBufAsZeros(uplinkBuf); 
    //Serial.println("Interpret Uplink"); 
    //Read in queue and check if the known packet header is present 
    if (Serial3.available()) { 
      delay(50); // allow whole transmission to send 
       
      int numBytesAvailable = Serial3.available(); 
      if(numBytesAvailable > 0){ 
        // Read in the available data on Serial 3. This only happens when 
there is an NSL uplink which is not prompted by us 
        for(int i=0; i<numBytesAvailable; i++){ 
          uplinkBuf[i] = Serial3.read(); 
        } 
 
        uplinkReceived = true; 
      } 
    } 
    else if (xQueueReceive(uplinkBufQueue, &uplinkBuf, 10) == pdPASS) { 
      uplinkReceived = true; 
    } 
 
 
    if(uplinkReceived){ 
 
      uplinkReceived = false; // reset control var 
 
      if(uplinkBuf[0] == 0x50 && uplinkBuf[1] == 0x50 && uplinkBuf[2] == 
0x50){ 
        functionByte = uplinkBuf[3]; 
      } 
      else{ 
        functionByte = uplinkBuf[0]; 
      } 
 
      switch(functionByte) { 
         
        case 0x48: // Check uplink buffer from NSL Bus for data 
        {  
          // NSL keeps track of how many ground commands it has uplinked to 
the payload with this byte.  
          // We can use it to tell if we have processed a command already or 
not. 



 

 

          if(RTOSstateVars.startUp){ 
            numCmdSent = uplinkBuf[4]; 
            RTOSstateVars.startUp = false; 
          } 
           
          if(numCmdSent != uplinkBuf[4]){ 
            numCmdSent = uplinkBuf[4]; // update for new command 
            newGndCmd = true; 
          }  
 
          if(newGndCmd){ 
            newGndCmd = false; 
            numBytesSent = uplinkBuf[5]; // From emulator code 
            gndCmd = uplinkBuf[6]; // Need to ask NSL about this 
 
            switch(gndCmd) { 
              // char(zero) in ASCII is 0x30, so sending a "0" over Iridium 
will result in 0x30 being uplinked to our payload 
              case 0x30: // DOWNLINK ground command  
              { 
                Serial.println("DOWNLINK command received"); 
 
                xQueuePeek(sensorDataQueue, &sensorData, portMAX_DELAY); 
 
                packetType = uplinkBuf[7]; 
/* 
                if(packetType == DETUMBLEHIGHRES){ 
                  constructDownlink(packetSeqNum, SEND_DOWNLINK, 
detumbleDownlinkPacket, packetType, sensorData, detumbleSequenceNum, 
useIMU2); 
                  packetSeqNum += 1; 
                  detumbleSequenceNum += 1; 
                  if(detumbleSequenceNum == 8){ // Detect when packet is 
full, then write to the buffer. Multiple time steps in one packet 
                    detumbleSequenceNum = 0; 
                    xQueueSend(iridiumDownlinkBufQueue, 
&detumbleDownlinkPacket, portMAX_DELAY); 
                    initBufAsZeros(detumbleDownlinkPacket); 
                    delay(1); 
                  } 
                } 
*/ 
                initBufAsZeros(downlinkPacket); 
                constructDownlink(RTOSstateVars, SEND_DOWNLINK, 
downlinkPacket, packetType, sensorData); // Only supports H&S downlink from 
ground cmd, detumble packets should send automatically 
                RTOSstateVars.packetSeqNum += 1; // Iterate Sequence number 
for iridium packets 
                xQueueSend(iridiumDownlinkBufQueue, &downlinkPacket, 
portMAX_DELAY);  
                delay(1); 



 

 

              } break; 
 
              case 0x31: // DETUMBLE ground command 
              { 
                Serial.println("DETUMBLE command received"); 
                RTOSstateVars.prevState = RTOSstateVars.state; 
                RTOSstateVars.state = DETUMBLE; 
                RTOSstateVars.newState = true; 
                delay(1); 
              } break; 
 
              case 0x32: // NADIR POINT ground command 
              { 
                Serial.println("NADIR POINT command received"); 
                RTOSstateVars.prevState = RTOSstateVars.state; 
                RTOSstateVars.state = NADIR_POINT; 
                RTOSstateVars.newState = true; 
                delay(1); 
              } break; 
 
              case 0x33: // SAFETY ground command 
              { 
                Serial.println("SAFETY command received"); 
                RTOSstateVars.prevState = RTOSstateVars.state; 
                RTOSstateVars.state = SAFETY; 
                RTOSstateVars.newState = true; 
                delay(1); 
              } break; 
 
              case 0x34: // STOP ground command 
              { 
                Serial.println("STOP command received"); 
                RTOSstateVars.prevState = RTOSstateVars.state; 
                RTOSstateVars.state = IDLE; 
                RTOSstateVars.newState = true; 
                delay(1); 
              } break; 
              case 0x35: 
              { 
                Serial.println("FLIP VOLTAGE X command received"); 
                RTOSstateVars.flipVoltageX = !RTOSstateVars.flipVoltageX; 
                Serial.print("flipVoltageX: "); 
                Serial.println(RTOSstateVars.flipVoltageX); 
              }break; 
              case 0x36: 
              { 
                Serial.println("FLIP VOLTAGE Y command received"); 
                RTOSstateVars.flipVoltageY = !RTOSstateVars.flipVoltageY; 
                Serial.print("flipVoltageY: "); 
                Serial.println(RTOSstateVars.flipVoltageY); 
              }break; 



 

 

              case 0x37: 
              { 
                Serial.println("FLIP VOLTAGE Z command received"); 
                RTOSstateVars.flipVoltageZ = !RTOSstateVars.flipVoltageZ; 
                Serial.print("flipVoltageZ: "); 
                Serial.println(RTOSstateVars.flipVoltageZ); 
              }break; 
              case 0x38: 
              { 
                Serial.println("FLIP IMU command received"); 
                RTOSstateVars.useIMU2 = !RTOSstateVars.useIMU2; 
                Serial.print("Use IMU2: "); 
                Serial.println(RTOSstateVars.useIMU2); 
              }break; 
              case 0x39: 
              { 
                Serial.println("RESET QUEUES command received"); 
                xQueueReset(sensorDataQueue); // Clear the queue 
                xQueueReset(iridiumDownlinkBufQueue); // Clear the queue 
                xQueueReset(downlinkBufQueue); // Clear the queue 
                xQueueReset(uplinkBufQueue); // Clear the queue 
              }break; 
              default: 
              { 
                Serial.println("Ground Command received is unable to be 
interpretted."); 
              }break; 
 
            } 
          } 
          else{ 
            Serial.println("Command uplinked has already been processed."); 
            delay(1); 
          } 
        } 
        break; 
         
        case 0xF1: // Check Health and Safety of Bus 
        {  
          Serial.println("Health and Safety Information:"); 
          delay(5); 
          serPrintHex(uplinkBuf, UART_PACKET_SIZE); 
          Serial.println(); 
          delay(5); 
 
          busTempBytes = ((uint16_t)uplinkBuf[5]<<8) | uplinkBuf[6]; 
          busTemp = short(busTempBytes)/16.0; 
          busVoltageBytes = ((uint16_t)uplinkBuf[7]<<8) | uplinkBuf[8]; 
          busVoltage = busVoltageBytes * ( 5.0 / ((1<<10)-1.0) ) * 7.652; // 
conversion given on the NSL ICD 
          Serial.print("Bus Temp: "); 



 

 

          Serial.println(busTemp); 
          delay(5); 
 
        } 
        break; 
         
        case 0xF3: // Request S4 params 
        { 
          Serial.println("S4 Parameters:"); 
          delay(5); 
          serPrintHex(uplinkBuf, UART_PACKET_SIZE); 
          Serial.println(); 
          delay(5); 
           
          char temp[2]; // To help extract decimal minutes from hex 
transmission 
          uint8_t recFuncByte = uplinkBuf[3]; 
          // NSL sending decimal values as hex, extract decimal value by 
converting hex to chars and then to ints 
          sprintf(temp, "%x", uplinkBuf[4]); 
          HSPacketTXPeriod = atoi(temp); 
          sprintf(temp, "%x", uplinkBuf[5]); 
          GPSPacketTXPeriod = atoi(temp); 
          sprintf(temp, "%x", uplinkBuf[6]); 
          UplinkQueueCheckPeriod = atoi(temp); 
 
          Serial.print("H&S Tx Period: "); 
          delay(1); 
          Serial.println(HSPacketTXPeriod); 
          delay(1); 
          Serial.print("GPS Tx Period: "); 
          delay(1); 
          Serial.println(GPSPacketTXPeriod); 
          delay(1); 
          Serial.print("Uplink Check Period: "); 
          delay(1);             
          Serial.println(UplinkQueueCheckPeriod); 
          delay(1); 
        } 
        break; 
 
        case 0xF5: // downlink IrishSat data to NSL FC 
        {  // Interpret if S4 was successful in transmission, print latency 
/* 
          Serial.println("Downlink of IrishSat Packet:"); 
          delay(5); 
          serPrintHex(uplinkBuf, UART_PACKET_SIZE); 
          Serial.println(); 
          delay(5); 
*/ 
          if(uplinkBuf[1] == 0xFF){ 



 

 

            Serial.println("Transmission Failed."); 
          } 
          else{ 
            iridiumLatency = uplinkBuf[1]; 
            Serial.print("Latency: "); 
            Serial.print(iridiumLatency); 
            Serial.println(" seconds"); 
            Serial.println("Transmission Successful!");             
          } 
        } 
        break; 
         
        default: 
        { 
          Serial.println("Invalid functional value OR response not receieved 
yet... "); 
          serPrintHex(&functionByte, 1); 
        } 
        break; 
      } 
    } 
    vTaskDelay( RTOSstateVars.InterpretUplinkDelayTicks ); 
  } 
} 
 
void TaskDetumble(void *pvParameters)  // This is a task. 
{ 
  (void) pvParameters; 
 
  SensorData sensorData; // Used as buffer to send stuff to NSL FC 
 
  uint8_t detumbleDownlinkPacket[UART_PACKET_SIZE]; 
 
  float dB[NUM_MAGS] = {0}; 
  float voltage_in[NUM_MAGS] = {0}; 
  float B_magnitude_squared = 0; 
  float desiredMagneticMoment[NUM_MAGS] = {0}; 
  float b_dot_term[NUM_MAGS] = {0}; 
  float w_sat[3]; 
  float B_body[3]; 
  float prevB[3]; 
  float current_in[NUM_MAGS] = {0}; 
  //not sure how to make a persistent array of prevB values - possibly a 
Queue? 
  bool gyro_working = 0; 
  float n, a, epsilon = 0; 
 
  int dutyCycleX = 0; 
  int dutyCycleY = 0; 
  int dutyCycleZ = 0; 
 



 

 

  int demoDutyCycleX = 255; 
  int demoDutyCycleY = 255; 
  int demoDutyCycleZ = 255; 
 
  long int detumbleLoopCounter = 0; 
  int demoSwitchingTime = 10000; // 10 seconds 
  bool demo = false; 
 
  for(;;) 
  {  
    if(RTOSstateVars.detumble){ 
      detumbleLoopCounter += 1; 
      //Serial.println("Detumble"); 
      if(xQueuePeek(sensorDataQueue, &sensorData, 10) == pdPASS) 
      { 
        // Use most recent data put into sensor data queue by 
TaskPollSensor() to run bcross algo 
 
        xQueuePeek(sensorDataQueue, &sensorData, portMAX_DELAY); 
         
        if(int(fmod(detumbleLoopCounter, 
((RTOSstateVars.IridiumPacketHighFreq/8)/RTOSstateVars.StateMachineDelay))) 
== 0){ 
          constructDownlink(RTOSstateVars, SEND_DOWNLINK, 
detumbleDownlinkPacket, DETUMBLEHIGHRES, sensorData); 
          RTOSstateVars.detumbleSequenceNum += 1; 
          if(RTOSstateVars.detumbleSequenceNum == 8){ // Detect when packet 
is full, then write to the buffer. Multiple time steps in one packet 
            Serial.print("Detumble Packet Sent: Packet #"); 
            Serial.println(RTOSstateVars.packetSeqNum); 
            RTOSstateVars.packetSeqNum += 1; 
            RTOSstateVars.detumbleSequenceNum = 0; 
            xQueueSend(iridiumDownlinkBufQueue, &detumbleDownlinkPacket, 
portMAX_DELAY); 
            initBufAsZeros(detumbleDownlinkPacket); 
            delay(1); 
          } 
        } 
         
 
        if (RTOSstateVars.useIMU2){ 
          w_sat[0] = sensorData.imu2Data.gyrX * (PI/180); // CHANGED FROM DEG 
TO RADIANS 
          w_sat[1] = sensorData.imu2Data.gyrY * (PI/180); 
          w_sat[2] = sensorData.imu2Data.gyrZ * (PI/180); 
         
          B_body[0] = sensorData.imu2Data.magXField/10e6; // CHANGE FROM uT 
TO T 
          B_body[1] = sensorData.imu2Data.magYField/10e6; 
          B_body[2] = sensorData.imu2Data.magZField/10e6; 
        } 



 

 

        else{ 
          w_sat[0] = sensorData.imu1Data.gyrX * (PI/180); // CHANGED FROM DEG 
TO RADIANS 
          w_sat[1] = sensorData.imu1Data.gyrY * (PI/180); 
          w_sat[2] = sensorData.imu1Data.gyrZ * (PI/180); 
         
          B_body[0] = sensorData.imu1Data.magXField/10e6; // CHANGE FfROM uT 
TO T 
          B_body[1] = sensorData.imu1Data.magYField/10e6; 
          B_body[2] = sensorData.imu1Data.magZField/10e6; 
        } 
 
        if (w_sat[0]) { 
          gyro_working = 1; 
        } else { 
          gyro_working = 0; 
        } 
 
        // Use most recent data put into sensor data queue by 
TaskPollSensor() to run bcross algo 
        B_magnitude_squared = 0; 
        for (int i = 0; i < NUM_MAGS; i++) { 
          B_magnitude_squared += pow(B_body[i], 2); // B_body[0]^2 + 
B_body[1]^2 + B_body[2]^2 
        } 
 
        if (B_magnitude_squared == 0) { 
          printf("Magnetic field vector magnitude cannot be zero!\n"); 
          // should we do something besides this print statement if this 
value is 0? 
        } 
 
        // use b-cross equation when we have access to magnetic field data 
        if (gyro_working) { 
            // b_dot_term is B x w, the cross-product of B_body and w_sat 
            b_dot_term[0] = B_body[1]*w_sat[2] - B_body[2]*w_sat[1]; 
            b_dot_term[1] = B_body[2]*w_sat[0] - B_body[0]*w_sat[2]; 
            b_dot_term[2] = B_body[0]*w_sat[1] - B_body[1]*w_sat[0]; 
 
            // desiredMagneticMoment = - (k / ||B||^2) * (B x w) 
            for (int j = 0; j < NUM_MAGS; j++) { 
                desiredMagneticMoment[j] = - (K / B_magnitude_squared) * 
b_dot_term[j]; 
            } 
 
        } else { 
            // if gyroscope is off, estimate derivative of B field 
            // Compute magnetic moment using the control law without w: - k * 
B' 
            // TODO: research methods to smooth noise out: Savitzky-Golay 
Filter, low pass filter, kalman, etc 



 

 

            if (sizeof(prevB) >= 2*NUM_MAGS) { // OR >= 2?? We want 2+ 
readings but each reading has 3 components, so check for at least 6 elements 
in prevB? 
                // perform a linear regression over the last few readings 
                // np.arange returns an interval of evenly-spaced values, 
from -sizeof(prevB)+1 to 1, but 1 is not included 
                // if prevB has 4 readings, then would be DT-sized steps on 
interval [-3, 1) 
                // find abs val (1 - -3 = 4) then var starts at -3, while 
loop incrementing by +DT, while var < 1. 
                // use counter? to see how many elements the times array will 
need 
                //times = np.arange(-sizeof(prevB) + 1, 1) * DT; 
 
            } else { // (if we only have 1 previous B measurement) 
                // fall back to basic finite difference if not enough data 
                for (int k = 0; k < NUM_MAGS; k++) { 
                    dB[k] = B_body[k] - prevB[0] / DT; 
                } 
            } 
            for (int l = 0; l < NUM_MAGS; l++) { 
                desiredMagneticMoment[l] = -(K * dB[l]); 
            }             
        } 
 
        current_in[NUM_MAGS] = {0}; 
        for (int m = 0; m < NUM_MAGS; m++) { 
            n, a, epsilon = 0; 
            // find current for 2 ferro and 1 air core magnetorquers using 
dipole / nA*epsilon 
            if (m == 0 || m == 1) { // ferro 
                n =         FERRO_NUM_TURNS; 
                a =         FERRO_AREA; 
                epsilon =   FERRO_EPSILON; 
            } else { // air core (if l == 2) 
                n =         AIR_NUM_TURNS; 
                a =         AIR_AREA; 
                epsilon =   AIR_EPSILON; 
            } 
 
            current_in[m] = desiredMagneticMoment[m] / (n * a * epsilon); 
             
            if(m==0 || m==1){ // X or Y axis use torquerods 
              voltage_in[m] = current_in[m] * RESIS_FERRO_MAG; 
            } 
            else if(m==2){ // Z axis uses Air core 
              voltage_in[m] = current_in[m] * RESIS_AIR_MAG; 
            } 
 
            // Check to see if voltage exceeds maximum of 5V 
            if(voltage_in[m] >= FULL_VOLTAGE){ 



 

 

              voltage_in[m] = FULL_VOLTAGE; 
            } 
            else if(voltage_in[m] <= (-FULL_VOLTAGE)){ 
              voltage_in[m] = (-FULL_VOLTAGE); 
            } 
             
            // Flip voltage if ground command says so (hardware in backwards 
or something) 
            if(RTOSstateVars.flipVoltageX && m==0){ 
              voltage_in[m] = -voltage_in[m]; 
            } 
            else if(RTOSstateVars.flipVoltageY && m==1){ 
              voltage_in[m] = -voltage_in[m]; 
            } 
            else if(RTOSstateVars.flipVoltageZ && m==2){ 
              voltage_in[m] = -voltage_in[m]; 
            } 
        } 
/* 
        Serial.print("Voltage X: "); 
        Serial.println(voltage_in[0],10); 
        delay(1); 
        Serial.print("Voltage Y: "); 
        Serial.println(voltage_in[1],10); 
        delay(1); 
        Serial.print("Voltage Z: "); 
        Serial.println(voltage_in[2],10); 
        delay(1); 
*/ 
        //Calculate the duty cycles according to algorithm required voltage 
        dutyCycleX = int(round((voltage_in[0]/FULL_VOLTAGE)*255.0)); 
        dutyCycleY = int(round((voltage_in[1]/FULL_VOLTAGE)*255.0)); 
        dutyCycleZ = int(round((voltage_in[2]/FULL_VOLTAGE)*255.0)); 
         
        if((int(fmod(detumbleLoopCounter, 
(demoSwitchingTime/RTOSstateVars.DetumbleDelay))) == 0) && demo){ 
          demoDutyCycleX = -demoDutyCycleX; 
          demoDutyCycleY = -demoDutyCycleY; 
          demoDutyCycleZ = -demoDutyCycleZ; 
        } 
 
        // update magnetorquer outputs 
        if(demo){ 
          digitalWrite(DIR1X, demoDutyCycleX >= 0 ? LOW : HIGH); 
          digitalWrite(DIR2X, demoDutyCycleX >= 0 ? HIGH : LOW); 
          analogWrite(PWMX, abs(demoDutyCycleX)); 
 
          digitalWrite(DIR1Y, demoDutyCycleY >= 0 ? LOW : HIGH); 
          digitalWrite(DIR2Y, demoDutyCycleY >= 0 ? HIGH : LOW); 
          analogWrite(PWMY, abs(demoDutyCycleY)); 
 



 

 

          digitalWrite(DIR1Z, demoDutyCycleZ >= 0 ? LOW : HIGH); 
          digitalWrite(DIR2Z, demoDutyCycleZ >= 0 ? HIGH : LOW); 
          analogWrite(PWMZ, abs(demoDutyCycleZ)); 
        } 
        else{ 
          digitalWrite(DIR1X, dutyCycleX >= 0 ? LOW : HIGH); 
          digitalWrite(DIR2X, dutyCycleX >= 0 ? HIGH : LOW); 
          analogWrite(PWMX, abs(dutyCycleX)); 
 
          digitalWrite(DIR1Y, dutyCycleY >= 0 ? LOW : HIGH); 
          digitalWrite(DIR2Y, dutyCycleY >= 0 ? HIGH : LOW); 
          analogWrite(PWMY, abs(dutyCycleY)); 
 
          digitalWrite(DIR1Z, dutyCycleZ >= 0 ? LOW : HIGH); 
          digitalWrite(DIR2Z, dutyCycleZ >= 0 ? HIGH : LOW); 
          analogWrite(PWMZ, abs(dutyCycleZ)); 
        } 
/*         
        Serial.print("Duty Cycle X: "); 
        Serial.println(dutyCycleX); 
        delay(1); 
        Serial.print("Duty Cycle Y: "); 
        Serial.println(dutyCycleY); 
        delay(1); 
        Serial.print("Duty Cycle Z: "); 
        Serial.println(dutyCycleZ); 
        delay(1); 
*/ 
        //return voltage_in; //not sure what to do with return val - add to a 
queue maybe? 
      } 
    } 
    vTaskDelay( RTOSstateVars.DetumbleDelayTicks ); // wait for 1000 ms 
  } 
} 
 
void TaskSendAndAck(void *pvParameters)  // This is a task. 
{ 
  (void) pvParameters; 
 
  uint8_t downlinkBuf[UART_PACKET_SIZE]; // Used as buffer to send stuff to 
NSL FC  
  uint8_t uplinkBuf[UART_PACKET_SIZE]; // Used as buffer to send stuff to NSL 
FC  
 
  int numBytesAvailable = 0; 
 
  bool downlinkReady = false; 
 
  for(;;) 
  { 



 

 

    initBufAsZeros(downlinkBuf); 
    //Serial.println("Send and ACK"); 
    if(!RTOSstateVars.detumble && xQueueReceive(iridiumDownlinkBufQueue, 
&downlinkBuf, 10) == pdPASS) downlinkReady = true; 
    else if (xQueueReceive(downlinkBufQueue, &downlinkBuf, 10) == pdPASS) 
downlinkReady = true; 
 
    if (downlinkReady){ 
      downlinkReady = false; 
 
      initBufAsZeros(uplinkBuf); 
 
      digitalWrite(RTS_PIN, HIGH); 
      delay(200); 
      while(digitalRead(CTS_PIN) == LOW) delay(1); // check every 1ms to see 
if NSL FC is ready 
      delay(5); // delay before sending packet, as instructed to do by NSL 
     
      Serial3.write(downlinkBuf, sizeof(downlinkBuf)); 
/* 
      Serial.println("Packet Sent to NSL:"); 
      delay(5); 
      serPrintHex(downlinkBuf, UART_PACKET_SIZE); 
      Serial.println(""); 
      delay(5); 
*/ 
 
      // Wait for NSL to send the whole packet back, then set RTS to LOW 
      delay(50); 
 
      // Wait for NSL response... 
      while(!Serial3.available()) delay(1); 
      delay(50); // Allow full transmission over Serial3 
       
      // Receive NSL ACK or NACK 
      numBytesAvailable = Serial3.available(); 
 
      digitalWrite(RTS_PIN, LOW); 
 
      // Read the NSL packet 
      for(int i=0; i<numBytesAvailable; i++){ 
        uplinkBuf[i] = Serial3.read(); 
      } 
/* 
      Serial.println("Received NSL Response:"); 
      serPrintHex(uplinkBuf, UART_PACKET_SIZE); 
      Serial.println(""); 
      delay(5); 
*/ 
      if(uplinkBuf[0] == 0xAA && uplinkBuf[1] == 0x05 && uplinkBuf[2] == 
0x00){ 



 

 

        Serial.println("ACK"); 
        delay(1); 
      } 
      else if(uplinkBuf[0] == 0xAA && uplinkBuf[1] == 0x05 && uplinkBuf[2] == 
0xFF){ 
        Serial.println("NACK"); 
        delay(1); 
      } 
      else{ 
        Serial.println("Not an ACK or NACK. Sent to packet decoder."); 
        delay(5); 
        xQueueSend(uplinkBufQueue, &uplinkBuf, portMAX_DELAY); // Send 
potentially important information to uplink decoding task 
      } 
    } 
    vTaskDelay( RTOSstateVars.SendAndAckDelayTicks );  
  } 
} 
 
void TaskMonitorCommands(void *pvParameters)  // This is a task. 
{ 
  (void) pvParameters; 
 
  uint8_t downlinkPacket[UART_PACKET_SIZE]; // Used as buffer to send stuff 
to NSL FC 
  char charFuncByte[2]; 
  uint8_t functionByte = 0x00; 
  int numBytesAvailable = 0; 
 
  uint8_t packetType; 
  SensorData sensorData; 
 
  for(;;) 
  { 
    //Serial.println("Monitor Commands"); 
 
    if(Serial.available()){ 
      numBytesAvailable = Serial.available(); 
     
      // Read in the available data on Serial 1 
      if (numBytesAvailable <= 3){ 
        for(int i=0; i<numBytesAvailable; i++){ 
          charFuncByte[i] = Serial.read(); 
        } 
        // Decode the instruction sent over serial monitor 
        functionByte = char2hex(charFuncByte, true, 0x00); 
        Serial.println("Function Byte: "); 
        Serial.println(functionByte); 
      } 
 
      xQueuePeek(sensorDataQueue, &sensorData, portMAX_DELAY); 



 

 

 
      initBufAsZeros(downlinkPacket); 
      constructDownlink(RTOSstateVars, functionByte, downlinkPacket, 
packetType, sensorData); 
      xQueueSend(downlinkBufQueue, &downlinkPacket, portMAX_DELAY);  
    } 
    vTaskDelay( RTOSstateVars.MonitorCommandsDelayTicks ); // wait for 1000 
ms 
  } 
} 
 
Appendix D – IrishSatRTOS.h Code List 
#include <Arduino.h> 
 
#include <stdint.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <limits.h> 
 
#include <semphr.h> // Include semaphore supoport 
#include <queue.h> // Include queue support 
 
#include <Adafruit_MLX90640.h> 
#include <ICM_20948.h> 
#include <Adafruit_LIS2MDL.h> 
#include <Adafruit_Sensor.h> 
 
// IMU scalars 
#define ACCEL_SCALE 2.0 / 32768.0 // Adjust based on IMU range 
#define GYRO_SCALE 250.0 / 32768.0 // Adjust for gyroscope range 
 
//Low Pass Filter Params 
#define LPF_SCALAR 0.5 
#define TIME_STEP 0.1 // seconds 
#define LPF_GAIN LPF_SCALAR*TIME_STEP 
 
#define CTS_PIN 4 // Clear-to-Send pin set high or low by NSL FC 
#define RTS_PIN 5 // Request-to-Send pin set high or low by IrishSat 
#define RX_PIN 6 // Receive uplink from NSL FC 
#define TX_PIN 7 // Send downlink data to NSL FC 
 
#define PRINT_TEMPERATURES 
#define MLX_ADDR 0x33 
#define TA_SHIFT 8 //Default shift for MLX90640 in open air 
#define SDA_PIN 47 
#define SCL_PIN 48  
 
// For MLX Photo Frame 
#define WIDTH 32 
#define HEIGHT 24 



 

 

 
// Needed for ICM20948 
#define IMU1_AD0_VAL 0 
#define IMU2_AD0_VAL 1  
 
// IMU scalars 
#define ACCEL_SCALE 2.0 / 32768.0 // Adjust based on IMU range 
#define GYRO_SCALE 250.0 / 32768.0 // Adjust for gyroscope range 
 
// Set up all bytes needed for constructing a packet 
#define SYNC_BYTE 0x50 // From ICD 
#define UART_PACKET_SIZE 205 
#define UART_DATA_SIZE 201 
#define DATASIZE 20 // Size of data payload... hardcoded for testing 
#define HEADERSIZE 4 // Fixed header size of 205 byte packet 
#define SEND_DOWNLINK 0xF5 //Check uplinks from NSL bus 
#define S4RECONFIG 0xF4 // Change S4 params 
#define CHKUPLINK 0x48 //Check uplinks from NSL bus 
#define NETREQ 0x47 // Request that iridium uplinks are checked by NSL bus, 
placed in uplink buffer if any message from ground 
 
#define START_UP 1 // Set initial states and stuff 
#define IDLE 2 // When payload is turned on, constantly update buffers and 
check uplink, wait for ground command 
#define SAFETY 3 // Minimal tasks running, not polling sensors, just checking 
uplink? 
#define DETUMBLE 4 // Run all tasks related to detumble, reduce rate of 
uplink check 
#define NADIR_POINT 5 // Run all tasks related to Nadir pointing, reduce rate 
of uplink check 
 
// Packet Types 
#define HSPACKET 0x31 
#define DETUMBLEHIGHRES 0x32 
#define DETUMBLELOWRES 0x33 
#define IMAGE 0x34 
 
 
 
 
//macros and var declarations for detumble (moved from inside loop) 
 
// UPDATE THESE VALS --> Resistance, Relative perm, Num of terms for air and 
ferro... spend time checing the rest 
 
#define NUM_MAGS            3 
#define RESIS_AIR_MAG       41.9 // ohms 
#define RESIS_FERRO_MAG     20.5 // ohms  
 
//#define PI                  M_PI   // pi already defined in Arduino.h 



 

 

#define DT                  0.1    // time step for simulation (how long 
between each iteration) (s) 
#define K                   3e-5    // detumbling constant gain (according to 
params.py, if GYRO_WORKING) 
#define RELATIVE_PERM_MM    80000.0   // relative permeability of MuMetal  
#define FERRO_LENGTH        7.0       // length of the rod (cm) 
#define FERRO_NUM_TURNS     2110.0   // number of turns of coil (MuMetal 
torquer) 
#define FERRO_ROD_RADIUS    0.32    // core rod radius (cm) (MuMetal torquer) 
#define FERRO_AREA          PI * pow(FERRO_ROD_RADIUS/100, 2)   // area of 
mumetal torquer (m^2) 
#define FERRO_RADIUS        FERRO_LENGTH/FERRO_ROD_RADIUS       // length-to-
radius ratio of the cylindrical torquer 
#define FERRO_DEMAG_FACTOR  (4 * log(FERRO_RADIUS - 1)) / (FERRO_RADIUS * 
FERRO_RADIUS - 4 * log(FERRO_RADIUS)) 
#define FERRO_EPSILON       (1 + (RELATIVE_PERM_MM - 1)) / (1 + 
FERRO_DEMAG_FACTOR * (RELATIVE_PERM_MM - 1)) 
 
#define AIR_NUM_TURNS       341     // number of turns of coil (aircore 
torquer) 
#define AIR_AREA            0.007901   // area of aircore torquer (m^2)  
#define AIR_EPSILON         1.0 
 
#define FULL_VOLTAGE        5.0 // Running magnetorquers off of the 5V line 
 
 
// Define magnetorquer control pins for X direction 
#define DIR1X 37 
#define DIR2X 38 
//#define PWMX 39 
#define PWMX 16 // Pin 9, A1 
 
#define DIR1Y 41 
#define DIR2Y 42 
// #define PWMY 44 
#define PWMY 17 // Pin 10, A0 
 
#define DIR1Z 14 
#define DIR2Z 21 
//#define PWMZ 13 
#define PWMZ 18 // Pin 11, A3 
 
// Demag params 
#define DEMAG_MAX_PWM 255 // 100% PWM 
#define DEMAG_STEP 15     // 15% PWM reduction per step 
#define DEMAG_DELAY 50    // .05 seconds 
 
typedef struct { 
  //State variables 
  int StateMachineDelay; // in ms 



 

 

  TickType_t StateMachineDelayTicks; // 1000 ms delay, task runs ~ every 
second 
  int PollSensorsDelay; // in ms 
  TickType_t PollSensorsDelayTicks; // 1000 ms delay, task runs ~ every 
second 
  int PollCamerasDelay; // in ms 
  TickType_t PollCamerasDelayTicks; // 1000 ms delay, task runs ~ every 
second 
  int InterpretUplinkDelay; // in ms 
  TickType_t InterpretUplinkDelayTicks; // 1000 ms delay, task runs ~ every 
second 
  int DetumbleDelay; // in ms 
  TickType_t DetumbleDelayTicks; // 1000 ms delay, task runs ~ every second 
  int SendAndAckDelay; // in ms 
  TickType_t SendAndAckDelayTicks; // 1000 ms delay, task runs ~ every second 
  int MonitorCommandsDelay; // in ms 
  TickType_t MonitorCommandsDelayTicks; // 1000 ms delay, task runs ~ every 
second 
  uint32_t IridiumReqTime; // in ms 
  uint32_t UplinkReqTime; // in ms 
  uint32_t IridiumPacketHighFreq; // in ms, 4 a minute, 120 in 30 minutes 
(960 total data points) 
  uint32_t IridiumPacketLowFreq; // in ms, 1 every 3 minutes, 10 in 30 
minutes (80 total data points) 
  uint16_t packetSeqNum; 
  uint8_t detumbleSequenceNum; 
  uint32_t RTOSStarttime; 
  int state; // startup state 
  int prevState; 
  bool newState; 
  bool startUp; 
  bool pollSensors; 
  bool pollCameras; 
  bool detumble; 
  bool flipVoltageX; 
  bool flipVoltageY; 
  bool flipVoltageZ; 
  bool useIMU2; 
  bool sensorUpdate; 
} StateVars; 
 
typedef struct { 
  TaskHandle_t taskSendAndAckHandle; 
  TaskHandle_t taskMonitorCommandsHandle; 
  TaskHandle_t taskMonitorUplinkHandle; 
  TaskHandle_t taskInterpretUplinkHandle; 
  TaskHandle_t taskPollSensorsHandle; 
  TaskHandle_t taskPollCamerasHandle; 
  TaskHandle_t taskDetumbleHandle; 
  TaskHandle_t taskStateMachineHandle; 
} TaskHandles; 



 

 

 
typedef struct { 
  //lis2mdl 
  float lisHardIron[3]; 
  //IMU1 
  float icm1Offsets[3][3]; 
  //IMU2 
  float icm2Offsets[3][3]; 
 
  // Board 2 Soft iron correction matrices 
  float lisSoftIron[3][3]; 
  float icm1SoftIron[3][3]; 
  float icm2SoftIron[3][3]; 
} sensorOffsets; 
 
typedef struct { 
  //After hard offsets 
  float finalXAccel; 
  float finalYAccel; 
  float finalZAccel; 
  float finalXGyro; 
  float finalYGyro; 
  float finalZGyro; 
  float correctedXMag; 
  float correctedYMag; 
  float correctedZMag; 
 
  //after soft offsets 
  float finalXMag; 
  float finalYMag; 
  float finalZMag; 
} tempOffsetCalcHolder; 
 
 
typedef struct { 
  float magXField; // micro teslas 
  float magYField; // micro teslas 
  float magZField; // micro teslas 
 
  float accX; // milli g's 
  float accY; // milli g's 
  float accZ; // milli g's 
 
  float gyrX; // degrees per second 
  float gyrY; // degrees per second 
  float gyrZ; // degrees per second 
 
  float temp; // degrees celsius 
} IMUData; 
 
typedef struct { 



 

 

  float magXField; // x-axis raw data 
  float magYField; // y-axis raw data 
  float magZField; // z-axis raw data 
} MagnetometerData; 
 
typedef struct { 
  float Image[24][32]; // 24 rows and 32 columns of pixels 
} IRCameraData; 
 
typedef struct { 
  unsigned long timeStamp; 
  IMUData imu1Data; 
  IMUData imu2Data; 
  MagnetometerData magData; 
  IRCameraData cam1Data; 
  IRCameraData cam2Data; 
} SensorData; 
 
// Structure to represent an RGB color 
typedef struct { 
  uint8_t r, g, b; 
} RGB; 
   
// define two tasks for Blink & AnalogRead 
void TaskSendAndAck( void *pvParameters ); 
void TaskMonitorCommands( void *pvParameters ); 
void TaskInterpretUplink( void *pvParameters ); 
void TaskPollSensors( void *pvParameters ); 
void TaskPollCameras( void *pvParameters ); 
void TaskDetumble( void *pvParameters ); 
void TaskStateMachine( void *pvParameters ); 
 
// All function definitions 
uint8_t char2hex (char c[2], bool firstConversion, uint8_t result); 
void serPrintHex(uint8_t *buf, size_t len); 
void initBufAsZeros(uint8_t buf[]); 
float normalize(float value, float min, float max); 
float grayscale_colormap(float normalized_temp); 
void temp_to_image(float image[24][32], int width, int height, float 
min_temp, float max_temp); 
void printSensorData(SensorData &SensorData, float pixel); 
void constructDownlink(StateVars &RTOSstateVars, uint8_t cmd, uint8_t 
downlinkPacket[], uint8_t packetType, SensorData &sensorData); 
void fliterAndPollIMU(ICM_20948_I2C &myICM, SensorData &sensorData, 
sensorOffsets &sensorOffsetBoardNum, tempOffsetCalcHolder &corrValStruct, 
bool startUp, int AD0val); 
void fliterAndPollMag(sensors_event_t &event, SensorData &sensorData, 
sensorOffsets &sensorOffsetBoardNum, tempOffsetCalcHolder &corrValStruct, 
bool startUp); 
 
  



 

 

Appendix E – IrishSatRTOS.cpp Code Listing 
#include "IrishSatRTOS.h" 
   
uint8_t char2hex (char c[2], bool firstConversion, uint8_t 
result){ 
    for(int i=0; i<2; i++){ 
        switch(c[i]){ 
        case 'F': 
        case 'f': 
            result = result + 0b1111; 
            break; 
        case 'E': 
        case 'e': 
            result = result + 0b1110; 
            break; 
        case 'D': 
        case 'd': 
            result = result + 0b1101; 
            break; 
        case 'C': 
        case 'c': 
            result = result + 0b1100; 
            break; 
        case 'B': 
        case 'b': 
            result = result + 0b1011; 
            break; 
        case 'A': 
        case 'a': 
            result = result + 0b1010; 
            break; 
        // Used for hex digits 0-9, cast char as a uint8_t and 
grab bottom four bits 
        default: 
            result = result + ((uint8_t)c[i] & 0x0F); // mask 
top four bits of 8 bit character 
            break; 
        } 
 
        // bit shift the first hex char (representing 4 bits) to 
the left (for example, changing 0x0F to 0xF0). 
        // This places the first hex value that is decoded in 
its proper position. 



 

 

        if(firstConversion){ 
        result = result<<4;  
        firstConversion = !firstConversion; 
        } 
    } 
    return result; 
} 
 
void serPrintHex(uint8_t buf[], size_t len){ 
    Serial.print("0x"); 
    for (int i=0; i<len; i++){ 
        if (buf[i] <= 0x0F){ 
        Serial.print("0"); 
        } 
        Serial.print(buf[i], HEX); 
        if (i != len-1){ 
        Serial.print(" "); 
        } 
    } 
} 
 
void initBufAsZeros(uint8_t buf[]){ 
    //Zero pad the rest of the packet 
    for(int i=0; i<UART_PACKET_SIZE; i++){ 
        buf[i] = 0x00; 
    } 
} 
 
// Function to normalize a value within a range 
float normalize(float value, float min, float max) { 
    return (value - min) / (max - min); 
} 
 
// Function to map temperature to a grayscale color 
float grayscale_colormap(float normalized_temp) { 
    float gray_value = (uint8_t)(normalized_temp * 255); 
    return gray_value; 
} 
   
// Function to convert 2D temperature array to RGB image data 
void temp_to_image(float image[24][32], int width, int height, 
float min_temp, float max_temp) { 



 

 

    for (int y = 0; y < height; y++) { 
        for (int x = 0; x < width; x++) { 
            float normalized_temp = normalize(image[y][x], 
min_temp, max_temp); 
            image[y][x] = grayscale_colormap(normalized_temp); 
        } 
    } 
} 
 
 
void printSensorData(SensorData &sensorData, float pixel){ 
 
    Serial.print("\033[2J"); // Clear screen 
    Serial.print("\033[H");  // Cursor to home (row=0, col=0) 
    
/*    
    //Print image data (for demonstration) 
    printf("----------------Image Data----------------\n"); 
    delay(5); 
    for (int y = 0; y < HEIGHT; y++) { 
    for (int x = 0; x < WIDTH; x++) { 
        pixel = sensorData.cam1Data.Image[y][x]; 
        printf("%.0f ", pixel); 
    } 
    printf("\n"); 
    } 
    delay(10); 
*/ 
    Serial.println("----------------IMU1 Data ----------------
"); 
    Serial.print("Times stamp:"); 
    delay(1); 
    Serial.println(sensorData.timeStamp); 
    delay(1); 
    Serial.println("Accel (mg):"); 
    delay(1); 
    Serial.print("  X: "); 
    delay(1); 
    Serial.print(sensorData.imu1Data.accX); // Convert to mg 
    delay(1); 
    Serial.print(" Y: "); 
    delay(1); 



 

 

    Serial.print(sensorData.imu1Data.accY); 
    delay(1); 
    Serial.print(" Z: "); 
    delay(1); 
    Serial.println(sensorData.imu1Data.accZ); 
    delay(1); 
 
    // Gyroscope 
    Serial.println("Gyro (dps):"); 
    delay(1); 
    Serial.print("  X: "); 
    delay(1); 
    Serial.print(sensorData.imu1Data.gyrX); // Convert to 
degrees per second 
    delay(1); 
    Serial.print(" Y: "); 
    delay(1); 
    Serial.print(sensorData.imu1Data.gyrY); 
    delay(1); 
    Serial.print(" Z: "); 
    delay(1); 
    Serial.println(sensorData.imu1Data.gyrZ); 
    delay(1); 
 
    // Magnetometer (assuming already in µT) 
    Serial.println("Mag (uT):"); 
    delay(1); 
    Serial.print("  X: "); 
    delay(1); 
    Serial.print(sensorData.imu1Data.magXField); 
    delay(1); 
    Serial.print(" Y: "); 
    delay(1); 
    Serial.print(sensorData.imu1Data.magYField); 
    delay(1); 
    Serial.print(" Z: "); 
    delay(1); 
    Serial.println(sensorData.imu1Data.magZField); 
    delay(1); 
 
    Serial.println("----------------IMU2 Data ----------------
"); 



 

 

    delay(1); 
    Serial.println("Accel (mg):"); 
    delay(1); 
    Serial.print("  X: "); 
    delay(1); 
    Serial.print(sensorData.imu2Data.accX); // Convert to mg 
    delay(1); 
    Serial.print(" Y: "); 
    delay(1); 
    Serial.print(sensorData.imu2Data.accY); 
    delay(1); 
    Serial.print(" Z: "); 
    delay(1); 
    Serial.println(sensorData.imu2Data.accZ); 
    delay(1); 
 
    // Gyroscope 
    Serial.println("Gyro (dps):"); 
    delay(1); 
    Serial.print("  X: "); 
    delay(1); 
    Serial.print(sensorData.imu2Data.gyrX); // Convert to 
degrees per second 
    delay(1); 
    Serial.print(" Y: "); 
    delay(1); 
    Serial.print(sensorData.imu2Data.gyrY); 
    delay(1); 
    Serial.print(" Z: "); 
    delay(1); 
    Serial.println(sensorData.imu2Data.gyrZ); 
    delay(1); 
 
    // Magnetometer (assuming already in µT) 
    Serial.println("Mag (uT):"); 
    delay(1); 
    Serial.print("  X: "); 
    delay(1); 
    Serial.print(sensorData.imu2Data.magXField); 
    delay(1); 
    Serial.print(" Y: "); 
    delay(1); 



 

 

    Serial.print(sensorData.imu2Data.magYField); 
    delay(1); 
    Serial.print(" Z: "); 
    delay(1); 
    Serial.println(sensorData.imu2Data.magZField); 
    delay(1); 
 
    Serial.println("----------------Magnetometer Data ----------
------"); 
    delay(1); 
    Serial.println("Mag (uT):"); 
    delay(1); 
    Serial.print("  X: "); 
    delay(1); 
    Serial.print(sensorData.magData.magXField); // Convert to mg 
    delay(1); 
    Serial.print(" Y: "); 
    delay(1); 
    Serial.print(sensorData.magData.magYField); 
    delay(1); 
    Serial.print(" Z: "); 
    delay(1); 
    Serial.println(sensorData.magData.magZField); 
    delay(1); 
} 
 
void constructDownlink(StateVars &RTOSstateVars, uint8_t cmd, 
uint8_t downlinkPacket[], uint8_t packetType, SensorData 
&sensorData){ 
 
    // Zero out the downlink packet first 
    //initBufAsZeros(uplinkPacket); 
 
    // Construct header 
    downlinkPacket[0] = SYNC_BYTE; 
    downlinkPacket[1] = SYNC_BYTE; 
    downlinkPacket[2] = SYNC_BYTE; 
    downlinkPacket[3] = cmd; 
 
    switch (cmd){ 
        case SEND_DOWNLINK: 
        { 



 

 

            switch (packetType){ 
                //F5 iridium packets 
                case HSPACKET: 
                { 
                    downlinkPacket[4] = 0x46; // H&S packets 
contain 70 out of 200 bytes 
                    downlinkPacket[5] = 
(uint8_t)((RTOSstateVars.packetSeqNum >> 8) & 0xFF); // high 
byte 
                    downlinkPacket[6] = 
(uint8_t)(RTOSstateVars.packetSeqNum & 0xFF);; // low byte 
                    downlinkPacket[7] = HSPACKET; 
                    downlinkPacket[8] = 
(uint8_t)((sensorData.timeStamp >> 24) & 0xFF); // high byte 
                    downlinkPacket[9] = 
(uint8_t)((sensorData.timeStamp >> 16) & 0xFF); 
                    downlinkPacket[10] = 
(uint8_t)((sensorData.timeStamp >> 8) & 0xFF); 
                    downlinkPacket[11] = 
(uint8_t)(sensorData.timeStamp & 0xFF);; // low byte; 
/* 
                    Serial.print("Time stamp:"); 
                    Serial.println(sensorData.timeStamp); 
*/ 
                    if(RTOSstateVars.useIMU2){ 
                        //Acceleration Conversion 
                        downlinkPacket[12] = 
(uint8_t)(((int16_t)sensorData.imu2Data.accX >> 8) & 0xFF); 
                        downlinkPacket[13] = 
(uint8_t)(((int16_t)sensorData.imu2Data.accX) & 0xFF); 
                        downlinkPacket[14] = 
(uint8_t)(((int16_t)sensorData.imu2Data.accY >> 8) & 0xFF); 
                        downlinkPacket[15] = 
(uint8_t)(((int16_t)sensorData.imu2Data.accY) & 0xFF); 
                        downlinkPacket[16] = 
(uint8_t)(((int16_t)sensorData.imu2Data.accZ >> 8) & 0xFF); 
                        downlinkPacket[17] = 
(uint8_t)(((int16_t)sensorData.imu2Data.accZ) & 0xFF); 
                        // Gyro Conversions 
                        downlinkPacket[18] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.gyrX*100) >> 8) & 
0xFF); // 10s of mdegs/s 



 

 

                        downlinkPacket[19] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.gyrX*100)) & 0xFF); 
                        downlinkPacket[20] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.gyrY*100) >> 8) & 
0xFF); 
                        downlinkPacket[21] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.gyrY*100)) & 0xFF); 
                        downlinkPacket[22] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.gyrZ*100) >> 8) & 
0xFF); 
                        downlinkPacket[23] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.gyrZ*100)) & 0xFF); 
                        // Mag field Conversion 
                        downlinkPacket[24] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.magXField) >> 8) & 
0xFF); // uT 
                        downlinkPacket[25] = 
(uint8_t)(((int16_t)sensorData.imu2Data.magXField) & 0xFF); 
                        downlinkPacket[26] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.magYField) >> 8) & 
0xFF); 
                        downlinkPacket[27] = 
(uint8_t)(((int16_t)sensorData.imu2Data.magYField) & 0xFF); 
                        downlinkPacket[28] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.magZField) >> 8) & 
0xFF); 
                        downlinkPacket[29] = 
(uint8_t)(((int16_t)sensorData.imu2Data.magZField) & 0xFF); 
                    } 
                    else{ 
                        //Acceleration Conversion 
                        downlinkPacket[12] = 
(uint8_t)(((int16_t)sensorData.imu1Data.accX >> 8) & 0xFF); 
                        downlinkPacket[13] = 
(uint8_t)(((int16_t)sensorData.imu1Data.accX) & 0xFF); 
                        downlinkPacket[14] = 
(uint8_t)(((int16_t)sensorData.imu1Data.accY >> 8) & 0xFF); 
                        downlinkPacket[15] = 
(uint8_t)(((int16_t)sensorData.imu1Data.accY) & 0xFF); 
                        downlinkPacket[16] = 
(uint8_t)(((int16_t)sensorData.imu1Data.accZ >> 8) & 0xFF); 



 

 

                        downlinkPacket[17] = 
(uint8_t)(((int16_t)sensorData.imu1Data.accZ) & 0xFF); 
/* 
                        Serial.print("Acc X: "); 
                        
Serial.println(sensorData.imu1Data.accX); 
                        Serial.print("Acc Y: "); 
                        
Serial.println(sensorData.imu1Data.accY); 
                        Serial.print("Acc Z: "); 
                        
Serial.println(sensorData.imu1Data.accZ); 
                        delay(5); 
*/                         
                        // Gyro Conversions 
                        downlinkPacket[18] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.gyrX*100) >> 8) & 
0xFF); // 10s of mdegs/s 
                        downlinkPacket[19] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.gyrX*100)) & 0xFF); 
                        downlinkPacket[20] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.gyrY*100) >> 8) & 
0xFF); 
                        downlinkPacket[21] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.gyrY*100)) & 0xFF); 
                        downlinkPacket[22] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.gyrZ*100) >> 8) & 
0xFF); 
                        downlinkPacket[23] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.gyrZ*100)) & 0xFF); 
/* 
                        Serial.print("Gyro X: "); 
                        
Serial.println(sensorData.imu1Data.gyrX); 
                        Serial.print("Gyro Y: "); 
                        
Serial.println(sensorData.imu1Data.gyrY); 
                        Serial.print("Gyro Z: "); 
                        
Serial.println(sensorData.imu1Data.gyrZ); 
                        delay(5); 
*/ 



 

 

                        // Mag field Conversion 
                        downlinkPacket[24] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.magXField) >> 8) & 
0xFF); // uT 
                        downlinkPacket[25] = 
(uint8_t)(((int16_t)sensorData.imu1Data.magXField) & 0xFF); 
                        downlinkPacket[26] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.magYField) >> 8) & 
0xFF); 
                        downlinkPacket[27] = 
(uint8_t)(((int16_t)sensorData.imu1Data.magYField) & 0xFF); 
                        downlinkPacket[28] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.magZField) >> 8) & 
0xFF); 
                        downlinkPacket[29] = 
(uint8_t)(((int16_t)sensorData.imu1Data.magZField) & 0xFF); 
                    } 
                         
                    // Task State Variables 
                    downlinkPacket[30] = 
(uint8_t)(((uint16_t)RTOSstateVars.StateMachineDelay >> 8) & 
0xFF) ; // in ms 
                    downlinkPacket[31] = 
(uint8_t)((uint16_t)RTOSstateVars.StateMachineDelay & 0xFF) ; 
                     
                    downlinkPacket[32] = 
(uint8_t)(((uint16_t)RTOSstateVars.StateMachineDelayTicks >> 8) 
& 0xFF) ; 
                    downlinkPacket[33] = 
(uint8_t)((uint16_t)RTOSstateVars.StateMachineDelayTicks & 0xFF) 
; 
 
                    downlinkPacket[34] = 
(uint8_t)(((uint16_t)RTOSstateVars.PollSensorsDelay >> 8) & 
0xFF) ; 
                    downlinkPacket[35] = 
(uint8_t)((uint16_t)RTOSstateVars.PollSensorsDelay & 0xFF) ; 
                     
                    downlinkPacket[36] = 
(uint8_t)(((uint16_t)RTOSstateVars.PollSensorsDelayTicks >> 8) & 
0xFF) ; 



 

 

                    downlinkPacket[37] = 
(uint8_t)((uint16_t)RTOSstateVars.PollSensorsDelayTicks & 0xFF) 
; 
 
                    downlinkPacket[38] = 
(uint8_t)(((uint16_t)RTOSstateVars.PollCamerasDelay >> 8) & 
0xFF) ; 
                    downlinkPacket[39] = 
(uint8_t)((uint16_t)RTOSstateVars.PollCamerasDelay & 0xFF) ; 
 
                    downlinkPacket[40] = 
(uint8_t)(((uint16_t)RTOSstateVars.PollCamerasDelayTicks >> 8) & 
0xFF) ; 
                    downlinkPacket[41] = 
(uint8_t)((uint16_t)RTOSstateVars.PollCamerasDelayTicks & 0xFF) 
; 
 
                    downlinkPacket[42] = 
(uint8_t)(((uint16_t)RTOSstateVars.InterpretUplinkDelay >> 8) & 
0xFF) ; 
                    downlinkPacket[43] = 
(uint8_t)((uint16_t)RTOSstateVars.InterpretUplinkDelay & 0xFF) ; 
 
                    downlinkPacket[44] = 
(uint8_t)(((uint16_t)RTOSstateVars.InterpretUplinkDelayTicks >> 
8) & 0xFF) ; 
                    downlinkPacket[45] = 
(uint8_t)((uint16_t)RTOSstateVars.InterpretUplinkDelayTicks & 
0xFF) ; 
 
                    downlinkPacket[46] = 
(uint8_t)(((uint16_t)RTOSstateVars.DetumbleDelay >> 8) & 0xFF) ; 
                    downlinkPacket[47] = 
(uint8_t)((uint16_t)RTOSstateVars.DetumbleDelay & 0xFF) ; 
 
                    downlinkPacket[48] = 
(uint8_t)(((uint16_t)RTOSstateVars.DetumbleDelayTicks >> 8) & 
0xFF) ; 
                    downlinkPacket[49] = 
(uint8_t)((uint16_t)RTOSstateVars.DetumbleDelayTicks & 0xFF) ; 
 



 

 

                    downlinkPacket[50] = 
(uint8_t)(((uint16_t)RTOSstateVars.SendAndAckDelay >> 8) & 0xFF) 
; 
                    downlinkPacket[51] = 
(uint8_t)((uint16_t)RTOSstateVars.SendAndAckDelay & 0xFF) ; 
 
                    downlinkPacket[52] = 
(uint8_t)(((uint16_t)RTOSstateVars.SendAndAckDelayTicks >> 8) & 
0xFF) ; 
                    downlinkPacket[53] = 
(uint8_t)((uint16_t)RTOSstateVars.SendAndAckDelayTicks & 0xFF) ; 
 
                    downlinkPacket[54] = 
(uint8_t)(((uint16_t)RTOSstateVars.MonitorCommandsDelay >> 8) & 
0xFF) ; 
                    downlinkPacket[55] = 
(uint8_t)((uint16_t)RTOSstateVars.MonitorCommandsDelay & 0xFF) ; 
 
                    downlinkPacket[56] = 
(uint8_t)(((uint16_t)RTOSstateVars.MonitorCommandsDelayTicks >> 
8) & 0xFF) ; 
                    downlinkPacket[57] = 
(uint8_t)((uint16_t)RTOSstateVars.MonitorCommandsDelayTicks & 
0xFF) ; 
 
 
                    // Requesting and Downlink Timing 
                    downlinkPacket[58] = 
(uint8_t)((RTOSstateVars.IridiumReqTime >> 24) & 0xFF) ; 
                    downlinkPacket[59] = 
(uint8_t)((RTOSstateVars.IridiumReqTime >> 16) & 0xFF) ; 
                    downlinkPacket[60] = 
(uint8_t)((RTOSstateVars.IridiumReqTime >> 8) & 0xFF) ; 
                    downlinkPacket[61] = 
(uint8_t)(RTOSstateVars.IridiumReqTime & 0xFF) ; 
 
                    downlinkPacket[62] = 
(uint8_t)((RTOSstateVars.UplinkReqTime >> 24) & 0xFF) ; 
                    downlinkPacket[63] = 
(uint8_t)((RTOSstateVars.UplinkReqTime >> 16) & 0xFF) ; 
                    downlinkPacket[64] = 
(uint8_t)((RTOSstateVars.UplinkReqTime >> 8) & 0xFF) ; 



 

 

                    downlinkPacket[65] = 
(uint8_t)(RTOSstateVars.UplinkReqTime & 0xFF) ; 
 
                    downlinkPacket[66] = 
(uint8_t)((RTOSstateVars.IridiumPacketHighFreq >> 24) & 0xFF) ; 
                    downlinkPacket[67] = 
(uint8_t)((RTOSstateVars.IridiumPacketHighFreq >> 16) & 0xFF) ; 
                    downlinkPacket[68] = 
(uint8_t)((RTOSstateVars.IridiumPacketHighFreq >> 8) & 0xFF) ; 
                    downlinkPacket[69] = 
(uint8_t)(RTOSstateVars.IridiumPacketHighFreq & 0xFF) ; 
 
                    downlinkPacket[70] = 
(uint8_t)((RTOSstateVars.IridiumPacketLowFreq >> 24) & 0xFF) ; 
                    downlinkPacket[71] = 
(uint8_t)((RTOSstateVars.IridiumPacketLowFreq >> 16) & 0xFF) ; 
                    downlinkPacket[72] = 
(uint8_t)((RTOSstateVars.IridiumPacketLowFreq >> 8) & 0xFF) ; 
                    downlinkPacket[73] = 
(uint8_t)(RTOSstateVars.IridiumPacketLowFreq & 0xFF) ; 
 
                    // Packet Sequencing 
                    downlinkPacket[74] = 
(uint8_t)((RTOSstateVars.packetSeqNum >> 8) & 0xFF); 
                    downlinkPacket[75] = 
(uint8_t)((RTOSstateVars.packetSeqNum) & 0xFF); 
                    downlinkPacket[76] = 
RTOSstateVars.detumbleSequenceNum ; 
 
                    //Other State Variables 
                    downlinkPacket[77] = 
(uint8_t)((RTOSstateVars.RTOSStarttime >> 24) & 0xFF); 
                    downlinkPacket[78] = 
(uint8_t)((RTOSstateVars.RTOSStarttime >> 16) & 0xFF); 
                    downlinkPacket[79] = 
(uint8_t)((RTOSstateVars.RTOSStarttime >> 8) & 0xFF); 
                    downlinkPacket[80] = 
(uint8_t)((RTOSstateVars.RTOSStarttime) & 0xFF); 
 
                    downlinkPacket[81] = 
(uint8_t)RTOSstateVars.state ; 



 

 

                    downlinkPacket[82] = 
(uint8_t)RTOSstateVars.prevState ; 
                    downlinkPacket[83] = 
(uint8_t)RTOSstateVars.newState ; 
                    downlinkPacket[84] = 
(uint8_t)RTOSstateVars.startUp ; 
                    downlinkPacket[85] = 
(uint8_t)RTOSstateVars.pollSensors ; 
                    downlinkPacket[86] = 
(uint8_t)RTOSstateVars.pollCameras ; 
                    downlinkPacket[87] = 
(uint8_t)RTOSstateVars.detumble ; 
                    downlinkPacket[88] = 
(uint8_t)RTOSstateVars.flipVoltageX ; 
                    downlinkPacket[89] = 
(uint8_t)RTOSstateVars.flipVoltageY ; 
                    downlinkPacket[90] = 
(uint8_t)RTOSstateVars.flipVoltageZ ; 
                    downlinkPacket[91] = 
(uint8_t)RTOSstateVars.useIMU2 ; 
/* 
                        Serial.print("Mag X: "); 
                        
Serial.println(sensorData.imu1Data.magXField); 
                        Serial.print("Mag Y: "); 
                        
Serial.println(sensorData.imu1Data.magYField); 
                        Serial.print("Mag Z: "); 
                        
Serial.println(sensorData.imu1Data.magZField); 
                        delay(5); 
*/ 
 
/* 
                    downlinkPacket[30] = 
sensorData.magData.magXField; 
                    downlinkPacket[31] = 
sensorData.magData.magYField; 
                    downlinkPacket[32] = 
sensorData.magData.magZField; 
*/ 
                }break; 



 

 

                case DETUMBLEHIGHRES: 
                { 
                    downlinkPacket[4] = 0xC5; // high res 
detumble packets contain 197 out of 200 bytes 
                    downlinkPacket[5] = 
(uint8_t)((RTOSstateVars.packetSeqNum >> 8) & 0xFF); // high 
byte 
                    downlinkPacket[6] = 
(uint8_t)(RTOSstateVars.packetSeqNum & 0xFF);; // low byte 
                    downlinkPacket[7] = DETUMBLEHIGHRES; 
 
                    downlinkPacket[8  + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)((sensorData.timeStamp >> 24) & 0xFF); // high byte 
                    downlinkPacket[9  + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)((sensorData.timeStamp >> 16) & 0xFF); 
                    downlinkPacket[10 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)((sensorData.timeStamp >> 8) & 0xFF); 
                    downlinkPacket[11 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(sensorData.timeStamp & 0xFF);; // low byte; 
/*                     
                    Serial.print("Time stamp:"); 
                    Serial.println(sensorData.timeStamp); 
*/ 
                    if(RTOSstateVars.useIMU2){ 
                        //Acceleration Conversion 
                        downlinkPacket[12 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu2Data.accX >> 8) & 0xFF); 
                        downlinkPacket[13 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu2Data.accX) & 0xFF); 
                        downlinkPacket[14 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu2Data.accY >> 8) & 0xFF); 
                        downlinkPacket[15 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu2Data.accY) & 0xFF); 



 

 

                        downlinkPacket[16 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu2Data.accZ >> 8) & 0xFF); 
                        downlinkPacket[17 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu2Data.accZ) & 0xFF); 
                        // Gyro Conversions 
                        downlinkPacket[18 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.gyrX*100) >> 8) & 
0xFF); // 10s of mdegs/s 
                        downlinkPacket[19 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.gyrX*100)) & 0xFF); 
                        downlinkPacket[20 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.gyrY*100) >> 8) & 
0xFF); 
                        downlinkPacket[21 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.gyrY*100)) & 0xFF); 
                        downlinkPacket[22 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.gyrZ*100) >> 8) & 
0xFF); 
                        downlinkPacket[23 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.gyrZ*100)) & 0xFF); 
                        // Mag field Conversion 
                        downlinkPacket[24 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.magXField) >> 8) & 
0xFF); // uT 
                        downlinkPacket[25 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu2Data.magXField) & 0xFF); 
                        downlinkPacket[26 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.magYField) >> 8) & 
0xFF); 



 

 

                        downlinkPacket[27 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu2Data.magYField) & 0xFF); 
                        downlinkPacket[28 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu2Data.magZField) >> 8) & 
0xFF); 
                        downlinkPacket[29 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu2Data.magZField) & 0xFF); 
                    } 
                    else{ 
                        //Acceleration Conversion 
                        downlinkPacket[12 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu1Data.accX >> 8) & 0xFF); 
                        downlinkPacket[13 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu1Data.accX) & 0xFF); 
                        downlinkPacket[14 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu1Data.accY >> 8) & 0xFF); 
                        downlinkPacket[15 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu1Data.accY) & 0xFF); 
                        downlinkPacket[16 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu1Data.accZ >> 8) & 0xFF); 
                        downlinkPacket[17 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu1Data.accZ) & 0xFF); 
/* 
                        Serial.print("Acc X: "); 
                        
Serial.println(sensorData.imu1Data.accX); 
                        Serial.print("Acc Y: "); 
                        
Serial.println(sensorData.imu1Data.accY); 
                        Serial.print("Acc Z: "); 
                        
Serial.println(sensorData.imu1Data.accZ); 
                        delay(5); 



 

 

*/ 
                        // Gyro Conversions 
                        downlinkPacket[18 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.gyrX*100) >> 8) & 
0xFF); // 10s of mdegs/s 
                        downlinkPacket[19 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.gyrX*100)) & 0xFF); 
                        downlinkPacket[20 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.gyrY*100) >> 8) & 
0xFF); 
                        downlinkPacket[21 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.gyrY*100)) & 0xFF); 
                        downlinkPacket[22 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.gyrZ*100) >> 8) & 
0xFF); 
                        downlinkPacket[23 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.gyrZ*100)) & 0xFF); 
/* 
                        Serial.print("Gyro X: "); 
                        
Serial.println(sensorData.imu1Data.gyrX); 
                        Serial.print("Gyro Y: "); 
                        
Serial.println(sensorData.imu1Data.gyrY); 
                        Serial.print("Gyro Z: "); 
                        
Serial.println(sensorData.imu1Data.gyrZ); 
                        delay(5); 
*/ 
                        // Mag field Conversion 
                        downlinkPacket[24 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.magXField) >> 8) & 
0xFF); // uT 



 

 

                        downlinkPacket[25 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu1Data.magXField) & 0xFF); 
                        downlinkPacket[26 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.magYField) >> 8) & 
0xFF); 
                        downlinkPacket[27 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu1Data.magYField) & 0xFF); 
                        downlinkPacket[28 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)(sensorData.imu1Data.magZField) >> 8) & 
0xFF); 
                        downlinkPacket[29 + 
(RTOSstateVars.detumbleSequenceNum* 22)] = 
(uint8_t)(((int16_t)sensorData.imu1Data.magZField) & 0xFF); 
/* 
                        Serial.print("Mag X: "); 
                        
Serial.println(sensorData.imu1Data.magXField); 
                        Serial.print("Mag Y: "); 
                        
Serial.println(sensorData.imu1Data.magYField); 
                        Serial.print("Mag Z: "); 
                        
Serial.println(sensorData.imu1Data.magZField); 
                        delay(5); 
*/ 
                    } 
                }break; 
/* 
                case DETUMBLELOWRES: 
                { 
                    downlinkPacket[4] = 0xC5; // low res 
detumble packets contain 197 out of 200 bytes 
                    downlinkPacket[5] = (uint8_t)((packetSeqNum 
>> 8) & 0xFF); // high byte 
                    downlinkPacket[6] = (uint8_t)(packetSeqNum & 
0xFF);; // low byte 
                    downlinkPacket[7] = DETUMBLELOWRES; 
                }break; 



 

 

*/ 
/* 
                case IMAGE: 
                { 
                    downlinkPacket[4] = 0xC4; // Image packets 
contain 196 out of 200 bytes 
                    downlinkPacket[5] = (uint8_t)((packetSeqNum 
>> 8) & 0xFF); // high byte 
                    downlinkPacket[6] = (uint8_t)(packetSeqNum & 
0xFF);; // low byte 
                    downlinkPacket[7] = IMAGE; 
                }break; 
*/ 
                default: 
                { 
                    Serial.println("Unable to interpret F5 
packet type request."); 
                }break; 
            } 
        }break; 
        case S4RECONFIG: 
        { 
            downlinkPacket[4] = 0x30; 
            downlinkPacket[5] = 0x60; 
            downlinkPacket[6] = 0x6A; 
        }break; 
        case CHKUPLINK: 
        { 
            // No further information needs adding 
        }break; 
        case NETREQ: 
        { 
            // No further information needs adding 
        }break; 
        default: 
        { 
            Serial.println("Unable to interpret packet 
request."); 
        }break; 
    } 
} 
 



 

 

void fliterAndPollIMU(ICM_20948_I2C &myICM, SensorData 
&sensorData, sensorOffsets &sensorOffsetBoardNum, 
tempOffsetCalcHolder &corrValStruct, bool startUp, int AD0val){ 
 
    if(AD0val == IMU1_AD0_VAL){ 
        corrValStruct.finalXGyro = (myICM.gyrX()) - 
sensorOffsetBoardNum.icm1Offsets[0][0]; 
        corrValStruct.finalYGyro = (myICM.gyrY()) - 
sensorOffsetBoardNum.icm1Offsets[0][1]; 
        corrValStruct.finalZGyro = (myICM.gyrZ()) - 
sensorOffsetBoardNum.icm1Offsets[0][2]; 
         
        corrValStruct.finalXAccel = (myICM.accX()) - 
(sensorOffsetBoardNum.icm1Offsets[1][0]); 
        corrValStruct.finalYAccel = (myICM.accY()) - 
sensorOffsetBoardNum.icm1Offsets[1][1]; 
        corrValStruct.finalZAccel = (myICM.accZ()) - 
sensorOffsetBoardNum.icm1Offsets[1][2]; 
 
        corrValStruct.correctedXMag = (myICM.magX()) - 
sensorOffsetBoardNum.icm1Offsets[2][0]; 
        corrValStruct.correctedYMag = (myICM.magY()) - 
sensorOffsetBoardNum.icm1Offsets[2][1]; 
        corrValStruct.correctedZMag = (myICM.magZ()) - 
sensorOffsetBoardNum.icm1Offsets[2][2]; 
         
        corrValStruct.finalXMag =   
sensorOffsetBoardNum.icm1SoftIron[0][0] * 
corrValStruct.correctedXMag +  
                                    
sensorOffsetBoardNum.icm1SoftIron[0][1] * 
corrValStruct.correctedYMag +  
                                    
sensorOffsetBoardNum.icm1SoftIron[0][2] * 
corrValStruct.correctedZMag; 
 
        corrValStruct.finalYMag =   
sensorOffsetBoardNum.icm1SoftIron[1][0] * 
corrValStruct.correctedXMag +  
                                    
sensorOffsetBoardNum.icm1SoftIron[1][1] * 
corrValStruct.correctedYMag +  



 

 

                                    
sensorOffsetBoardNum.icm1SoftIron[1][2] * 
corrValStruct.correctedZMag; 
 
        corrValStruct.finalZMag =   
sensorOffsetBoardNum.icm1SoftIron[2][0] * 
corrValStruct.correctedXMag +  
                                    
sensorOffsetBoardNum.icm1SoftIron[2][1] * 
corrValStruct.correctedYMag +  
                                    
sensorOffsetBoardNum.icm1SoftIron[2][2] * 
corrValStruct.correctedZMag; 
 
    } 
    else if(AD0val == IMU2_AD0_VAL){ 
        corrValStruct.finalXGyro = (myICM.gyrX()) - 
sensorOffsetBoardNum.icm2Offsets[0][0]; 
        corrValStruct.finalYGyro = (myICM.gyrY()) - 
sensorOffsetBoardNum.icm2Offsets[0][1]; 
        corrValStruct.finalZGyro = (myICM.gyrZ()) - 
sensorOffsetBoardNum.icm2Offsets[0][2]; 
         
        corrValStruct.finalXAccel = (myICM.accX()) - 
(sensorOffsetBoardNum.icm2Offsets[1][0]); 
        corrValStruct.finalYAccel = (myICM.accY()) - 
sensorOffsetBoardNum.icm2Offsets[1][1]; 
        corrValStruct.finalZAccel = (myICM.accZ()) - 
sensorOffsetBoardNum.icm2Offsets[1][2]; 
 
        corrValStruct.correctedXMag = (myICM.magX()) - 
sensorOffsetBoardNum.icm2Offsets[2][0]; 
        corrValStruct.correctedYMag = (myICM.magY()) - 
sensorOffsetBoardNum.icm2Offsets[2][1]; 
        corrValStruct.correctedZMag = (myICM.magZ()) - 
sensorOffsetBoardNum.icm2Offsets[2][2]; 
         
        corrValStruct.finalXMag =   
sensorOffsetBoardNum.icm2SoftIron[0][0] * 
corrValStruct.correctedXMag +  



 

 

                                    
sensorOffsetBoardNum.icm2SoftIron[0][1] * 
corrValStruct.correctedYMag +  
                                    
sensorOffsetBoardNum.icm2SoftIron[0][2] * 
corrValStruct.correctedZMag; 
                                     
        corrValStruct.finalYMag =   
sensorOffsetBoardNum.icm2SoftIron[1][0] * 
corrValStruct.correctedXMag +  
                                    
sensorOffsetBoardNum.icm2SoftIron[1][1] * 
corrValStruct.correctedYMag +  
                                    
sensorOffsetBoardNum.icm2SoftIron[1][2] * 
corrValStruct.correctedZMag; 
 
        corrValStruct.finalZMag =   
sensorOffsetBoardNum.icm2SoftIron[2][0] * 
corrValStruct.correctedXMag +  
                                    
sensorOffsetBoardNum.icm2SoftIron[2][1] * 
corrValStruct.correctedYMag +  
                                    
sensorOffsetBoardNum.icm2SoftIron[2][2] * 
corrValStruct.correctedZMag; 
 
    } 
 
    if(startUp){ // No filtering if it is the first time 
polling. 
        if(AD0val == IMU1_AD0_VAL){ 
            // Poll Gyro Data (dps): 
            sensorData.imu1Data.gyrX = corrValStruct.finalXGyro; 
            sensorData.imu1Data.gyrY = corrValStruct.finalYGyro; 
            sensorData.imu1Data.gyrZ = corrValStruct.finalZGyro; 
            // Poll Acceleration Data (mg): 
            sensorData.imu1Data.accX = 
corrValStruct.finalXAccel; 
            sensorData.imu1Data.accY = 
corrValStruct.finalYAccel; 



 

 

            sensorData.imu1Data.accZ = 
corrValStruct.finalZAccel; 
            // Poll Magnet Field (uT): 
            sensorData.imu1Data.magXField = 
corrValStruct.finalXMag; 
            sensorData.imu1Data.magYField = 
corrValStruct.finalYMag; 
            sensorData.imu1Data.magZField = -
corrValStruct.finalZMag; 
        } 
        else if(AD0val == IMU2_AD0_VAL){ 
            // Poll Gyro Data (dps): 
            sensorData.imu2Data.gyrX = corrValStruct.finalXGyro; 
            sensorData.imu2Data.gyrY = corrValStruct.finalYGyro; 
            sensorData.imu2Data.gyrZ = corrValStruct.finalZGyro; 
            // Poll Acceleration Data (mg): 
            sensorData.imu2Data.accX = 
corrValStruct.finalXAccel; 
            sensorData.imu2Data.accY = 
corrValStruct.finalYAccel; 
            sensorData.imu2Data.accZ = 
corrValStruct.finalZAccel; 
            // Poll Magnet Field (uT): 
            sensorData.imu2Data.magXField = 
corrValStruct.finalXMag; 
            sensorData.imu2Data.magYField = 
corrValStruct.finalYMag; 
            sensorData.imu2Data.magZField = -
corrValStruct.finalZMag; 
        } 
    } 
    else{ 
        if(AD0val == IMU1_AD0_VAL){ 
            // Filter data after correcting for offsets and 
store new filtered value 
            sensorData.imu1Data.gyrX = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalXGyro) + 
sensorData.imu1Data.gyrX); 
            sensorData.imu1Data.gyrY = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalYGyro) + 
sensorData.imu1Data.gyrY); 



 

 

            sensorData.imu1Data.gyrZ = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalZGyro) + 
sensorData.imu1Data.gyrZ); 
             
            sensorData.imu1Data.accX = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalXAccel) + 
sensorData.imu1Data.accX); 
            sensorData.imu1Data.accY = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalYAccel) + 
sensorData.imu1Data.accY); 
            sensorData.imu1Data.accZ = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalZAccel) + 
sensorData.imu1Data.accZ); 
 
            sensorData.imu1Data.magXField = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalXMag) + 
sensorData.imu1Data.magXField); 
            sensorData.imu1Data.magYField = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalYMag) + 
sensorData.imu1Data.magYField); 
            sensorData.imu1Data.magZField = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalZMag) + 
sensorData.imu1Data.magZField); 
        } 
        else if(AD0val == IMU2_AD0_VAL){ 
            // Filter data after correcting for offsets and 
store new filtered value 
            sensorData.imu2Data.gyrX = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalXGyro) + 
sensorData.imu2Data.gyrX); 
            sensorData.imu2Data.gyrY = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalYGyro) + 
sensorData.imu2Data.gyrY); 
            sensorData.imu2Data.gyrZ = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalZGyro) + 
sensorData.imu2Data.gyrZ); 
             
            sensorData.imu2Data.accX = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalXAccel) + 
sensorData.imu2Data.accX); 



 

 

            sensorData.imu2Data.accY = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalYAccel) + 
sensorData.imu2Data.accY); 
            sensorData.imu2Data.accZ = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalZAccel) + 
sensorData.imu2Data.accZ); 
 
            sensorData.imu2Data.magXField = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalXMag) + 
sensorData.imu2Data.magXField); 
            sensorData.imu2Data.magYField = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalYMag) + 
sensorData.imu2Data.magYField); 
            sensorData.imu2Data.magZField = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalZMag) + 
sensorData.imu2Data.magZField); 
        } 
    } 
} 
 
void fliterAndPollMag(sensors_event_t &event, SensorData 
&sensorData, sensorOffsets &sensorOffsetBoardNum, 
tempOffsetCalcHolder &corrValStruct, bool startUp){ 
 
    corrValStruct.correctedXMag = (event.magnetic.x) - 
sensorOffsetBoardNum.lisHardIron[0]; 
    corrValStruct.correctedYMag = (event.magnetic.y) - 
sensorOffsetBoardNum.lisHardIron[1]; 
    corrValStruct.correctedZMag = (event.magnetic.z) - 
sensorOffsetBoardNum.lisHardIron[2]; 
 
    corrValStruct.finalXMag =   
sensorOffsetBoardNum.lisSoftIron[0][0] * 
corrValStruct.correctedXMag +  
                                
sensorOffsetBoardNum.lisSoftIron[0][1] * 
corrValStruct.correctedYMag +  
                                
sensorOffsetBoardNum.lisSoftIron[0][2] * 
corrValStruct.correctedZMag; 
                                     



 

 

    corrValStruct.finalYMag =   
sensorOffsetBoardNum.lisSoftIron[1][0] * 
corrValStruct.correctedXMag +  
                                
sensorOffsetBoardNum.lisSoftIron[1][1] * 
corrValStruct.correctedYMag +  
                                
sensorOffsetBoardNum.lisSoftIron[1][2] * 
corrValStruct.correctedZMag; 
 
    corrValStruct.finalZMag =   
sensorOffsetBoardNum.lisSoftIron[2][0] * 
corrValStruct.correctedXMag +  
                                
sensorOffsetBoardNum.lisSoftIron[2][1] * 
corrValStruct.correctedYMag +  
                                
sensorOffsetBoardNum.lisSoftIron[2][2] * 
corrValStruct.correctedZMag; 
 
    if(startUp){ // No filtering if it is the first time 
polling. 
        // Poll Acceleration Data (mg): 
        sensorData.magData.magXField = corrValStruct.finalXMag; 
        sensorData.magData.magYField = corrValStruct.finalYMag; 
        sensorData.magData.magZField = corrValStruct.finalZMag; 
    } 
    else{ 
        // Poll Acceleration Data (mg): 
        sensorData.magData.magXField = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalXMag) + 
sensorData.magData.magXField); 
        sensorData.magData.magYField = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(corrValStruct.finalYMag) + 
sensorData.magData.magYField); 
        sensorData.magData.magZField = (1/(LPF_GAIN + 1)) * 
(LPF_GAIN*(-corrValStruct.finalZMag) + 
sensorData.magData.magZField); 
    } 
} 
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