Design Build Fly Senior Design Project: Autonomous Glider
Final Report

University of Notre Dame

=DBFZ;

ELECTRICAL
ENGINEERING

Ricardo Ortiz, Daniel Noronha, Matthew Zagrocki

University of Notre Dame
Department of Electrical Engineering

Senior Design II

Spring 2025 Ortiz, Noronha, Zagrocki

Table of Contents

1. INTrOdUCHION..ccueeeiiicrtinineneeesnecsaenseessseesssnessessssesssessssessssssssssssesssssssassssassssasssssssassssaesssssssssssases 5

L. 1. Problem OVEIVIEW......oouiiiiiiiiiieieiiteieete ettt ettt ettt sttt sttt et sbe et et e b enees 6

Figure 1. The Glider’s Bonus Points Landing BoX..........ccoceeverieniininicniencnicen. 7

1.2, SOIULION OVEIVIEW.....eitiiiiiiiiiiieieiitesie ettt ettt ettt ettt nbe sttt eabe bt et eaeesbeenees 7

Figure 2. Assembled Glider Isometric Projection in Autodesk Fusion 360 CAD...9

1.3, SumMmary Of RESUILS........cooiiiiiiiiieee ettt et 9

Figure 3. Final Assembly of the Glider...........ccccooiiiiiiiiiiiiii e 10

2. Detailed System ReqUIrements.........ccoveeersricssrecssnnicsssnicsssnessssnessssesssssessssnesssssesssssesssssssssees 11

Table 1. System Requir€ments.............cceeveeeiienieniiieniieeieesie et 11

2.1. Subsystem Hardware ReqUITEMENtS.........c.ccoueieiierieriieiie et 13

2.1.1. MICTOCONIIONIETttt st 13

212, SIISOTS. e ittt ettt ettt ettt reenane s 14

213 POWET .ttt et 14

2.1.4. Flight Control ACtUATION.cccuieriiieiieiie ettt st see e s eneeas 14

2.1.5. Release Detection and Strobe Lights..........ccceeiieiieniiiiiieniieieee e 14

2.1.6. Flight Data RECOTAET.......cc.uieiiiiiiiiieciie ettt 15

2.2, Software REqUITEMENLS.cccuiiiiiieiieiieeieeie ettt ettt et e e eeeas 15

3. Detailed Project DesCription......ccceeeneecsensseecsnenssnncssenssnesssesssnscssesssscsssesssssssssssssssssassssessases 16

3.1. System Hardware Block Diagram............ccceeiiriiiiiniiniiiiniinicciceeeeceeese e 16

Figure 4. System Hardware Block Diagram............ccoceveiviiniininniniincnnenicene 16

3.2, POWET COMPONEILS. ..ccuutiiiitieiiiieiiiieeiiteeeitee ettt e eieeesbeeesabteesabeeesabeeesateeessbeeenaeessseessaeens 17
Figure 5. Power System Block Diagram (excludes 3.3V-5V boost converter for

SEEODE LLEDIS).c ittt 17

Figure 6. Power System Schematic (1)......ccccceeiiiiiiiiiiniiiiiicceeee 17

Figure 7. Power System Schematic (2).......cccceevieniiiiiinieiiieieeeeeeeceeeeee 18

3.3, SENSOT SEIECLION.eeiiiuiieiietiete ettt ettt ettt ettt ettt e st e bt et esaeenaeenseeneas 20

3.4. Programming and Processing Capabilities...........c.cccveriiriiieniiieiiieiieeieesie e esiee e 22

Figure 8. ESP32 Microcontroller and Programming Components Schematic...... 22

3.5. Flight Control Surface Actuation Hardware.............ccceoveriienieniienieeiieiecveesee e 24

3.6. Release Detection and Strobe Lights...........cccieviiiiiiiieniiieicceceeceeeeee e 25

Figure 9. Strobe lights remained on after a test deployment and landing.............. 26

3.7. PCB and RF DESIZN......cciiiiiiiiiiiiieiieeieeste et eeite ettt ete e te e seaeeseeeaseebeessseensaessnaens 27

Figure 10. FInal PCB LayOUL........ccccieiiieiiieieeieeiteere ettt eve et sve e v ens 27

Figure 11. RF Design: GND stitching vias and impedance-matched antenna trace..

Spring 2025 Ortiz, Noronha, Zagrocki

27

Figure 12. JLC0416H-7628 4-layer impedance-controlled PCB stackup
description (1.6 mm thickness with 1 oz. outer copper weight and 0.5 oz. inner

COPPET WEIZNL)...oiiiiiiieiiecie ettt sttt eabeesee e 27

Figure 13. Final 3D PCB Design CAD......c.ccccvieiiieiiieiieiiecieeee et 29

3.8. System Software BIock Diagram............cccceevuiiriieiiiiiiieiieeie et 29
Figure 14. ESP32 FreeRTOS Control Code Flowchart............ccccoevveriieniiennennen. 30

3.0, AULOPILOL. ettt ettt ettt ettt e et eenbeeteeenbeeteeenbeenneas 31
3.10 Structural Design and ASSEMDIY..........ccieriieiiieiiieiieieeie et 33
Figure 15. Glider Bottom (left) and top (right) assembly...........c.ccccveverierirennrnnnen. 34

3.11 Release MEChanISIM......c...oiuiiiiriiiieieeiiesieee ettt ettt st 35
Figure 16. RC Aircraft Mounted Release Mechanism............ccccceevveeieeneeeneenen. 36

4. Testing 37
4.1. Flight Data ACQUISIEION.cccuiiitieiiieitieeieetie e etteste et e sare et e ssaeebeesaaeanseessnesnseenseesnseennns 37
Figure 17. Example of impartial flight test data collection...........c.cccoceevvervenenne. 37

4.2. Release Detection and Strobe Lights........cccoeeiiriiiiiiiiiiiiieiiciiee e 37
4.3. Servo Actuation (GroUNd TEST).......ceeriieriierieeiieriie et eeie ettt ettt e ereeeeeeeeebeessseennaens 38
4.4 FIGNE TESTINE.eeiiiiiieeiieiie ettt et ettt e et estteebeestaeesseessaeenseessaeenseenssesnsaesssesnseensnas 38

5. InStruction ManUAL.......ceeeeiineiiniinneninenneineiiniieiisiiseseiseestisesseessssssssssssssassssasssas 40
6. Potential Design Improvements 42
6.1. Aerodynamic Design and Flight Stability...........cccccoeeiieiiiiiiiiiiiniiciceeeee e 42
6.2. Release MEChaANISINLcc.eiiuiiiiiieieeieetee ettt sbe e 42
6.3. Homing (Proportional Integral Derivative Controller) Algorithm...............cccccveerurennnne. 42

7. CONCIUSION.cuccueeiiricueiieeisneesnecssensssessseesssecssnsssassssessssesssnsssansssessssssssassssssssassssesssasssassssassssssaass 44
8. APPENAIXouuuuuiiiirrrririrrnessrresssrnessnncssssisssssisssssssssssesssssesssssesssssesssssosssssssssssssssssosssssossssssssssssssssssses 45
8.1. Electrical SChemMALIC......ccueiiiriiiiiriieiieieeit et s 46
Figure 18. Electrical Schematic Page 1 of 6.........ccccoeviieiiiiiiiiiiieeeees 46

Figure 19. Electrical Schematic Page 2 of 6.........ccccooviieiiieiiiiiieiceeeeeeee 47

Figure 20. Electrical Schematic Page 3 of 6.........ccccoeviiiiiiiiiiiieieeeeeeee 48

Figure 21. Electrical Schematic Page 4 of 6.........ccccovviieiiiiiiiiiiicceeeees 49

Figure 22. Electrical Schematic Page 5 of 6........ccccoeviieiiiiiiiiiiiceeeeee 50

Figure 23. Electrical Schematic Page 6 of 6.........ccccooviieiieiiiiiieiiecieeeeee 51

8.2, PCB LAYOUL...cccuitiiiiiie ettt ettt ettt e et e et e ettt e et e e st e e sabteesabeeeeaneens 51
Figure 24. Circuit Board 3D VIEW (1)..cccieiiiiiiiiiiiiieieeeieeeee e 52

Figure 25. Circuit Board 3D VIEW (2)...ccuieiiiiiieiieeiieiieeeeeeeee e 52

Spring 2025

Ortiz, Noronha, Zagrocki

Figure 26. Circuit Board Layout VIEW..........cccovieiiiiieiiiieciieeceeeee e 52
Figure 27. Circuit Board CAD Drawing (Multiple VIEWS)........cccceeevveerieeenineennne. 53

8.3. Source Code Listing

Spring 2025 Ortiz, Noronha, Zagrocki

1. Introduction

This year, the AIAA Design Build Fly Competition (held in Tucson, AZ) outlined our primary
goal: to build an autonomous glider that separates from the main aircraft mid-flight, flashes
strobe lights, and lands in a designated landing zone. Teams are scored based on several criteria,
including the number of laps the main aircraft flies, the weight of the glider, and how close the
glider lands to the landing zone. Our Senior Design team, partnering with the Design Build Fly
(DBF) Club of Notre Dame, has taken on the challenge of creating the glider for this project. The
DBF Club is responsible for the structure and aecrodynamics of the glider. Our senior design
group will handle the electronics for the project. These include a printed circuit board equipped
with an ESP32 microcontroller that processes data input from several sensors and actuates the
aircraft’s control surfaces accordingly. This final report provides a comprehensive overview of

system requirements, design, testing, and results.

1.1. Problem Overview

The AIAA Design Build Fly Competition has a list of requirements and constraints on the glider

aircraft that must be met in order to be eligible for the competition.

Firstly, the glider can have a maximum weight of 0.55 pounds (250 grams). Teams are allowed to
determine means of flight control and navigation. However, no radio controlled receivers are
allowed to be integrated onto the glider. The glider must fit between the two external fuel tanks
on the airplane and be secured to the airplane for all stages of flight, except for the mission
during which it is launched. There is a minimum gap of 0.25 inches between any part of the
airplane fuselage and the wings of the glider. The glider must have strobe lights that turn on after
it is released from the airplane. No points will be received if the lights turn on before launch, or

fail to turn on after launch.

The glider must be launched from the Design Build Fly club’s main RC airplane at an altitude of
200-400 feet above the ground. To achieve bonus points, the glider must release itself from the

airplane and execute a 180 degree turn. Then, using a descending or gliding pattern of choice, the

Spring 2025 Ortiz, Noronha, Zagrocki

glider will land on the ground. If the glider comes to rest within one of the landing zones as
shown in Figure 1, bonus points will be awarded. The scoring calculation is shown below in
Equation 1.

Bonus Box Score
e oiehe (1)

Score = 2 + # of laps flown + Clider Weight

|‘7 ~275 feet —+— 200 feet —-|-— ~275 feet —'|
1

= |

1.0 point 2.5 points 1.0 point 200 feet

1

TIMPA Runway \ Safety Line

S‘“’:f”"i&‘h ~ (32.2653N, 111.2736W)
ine

Figure 1. The Glider’s Bonus Points Landing Box

The goal for our team is to allow the glider to receive as many bonus points as possible.
Therefore, it is critical the glider lands in the highest-scoring landing zone, makes a successful
180 degree turn, and has a working set of strobe lights that both turn on at the correct time and

are visible by the judges, while being as lightweight as possible.

1.2. Solution Overview

Our team was primarily responsible for the electronics inside the glider. To complete this project
successfully and achieve the highest possible competition score, we implemented several devices
that work together effectively and efficiently. At the core of our circuit board is the ESP32

microcontroller chip, which handles data collection, processing, and output. Several sensors

Spring 2025 Ortiz, Noronha, Zagrocki

interface with the microcontroller, including an inertial measurement unit (IMU), a differential
pressure sensor with a pitot tube (for airspeed), and a GPS module with ceramic chip antenna.
These sensors provide critical data for the glider’s navigation and autonomous control. All flight
data is recorded to an on-board microSD card and the entire system is powered by a 7.4V 2S

LiPo battery (300mAh) with appropriate level-shifting circuitry.

A proportional control algorithm processes the incoming sensor data to determine precise
adjustments necessary for stable flight and optimal control surface actuation to perform the
desired maneuvers (180 degree turn and landing in the box). This control strategy ensures the

glider accurately targets the landing zone, maximizing potential bonus points from the judges.

For control surface actuation, the ESP32 controls two servo motors (via PWM) connected to the
glider’s pitcherons. This allows the entire wing surface to rotate, ensuring adequate pitch and roll
authority. The design eliminates the need for an actuated rudder to reduce weight but includes a

fixed vertical stabilizer for aerodynamic stability.

Additionally, our team also had input on several of the structural and aerodynamic features of the
glider. To ensure the main electronics and fuselage of the glider survived impact upon landing,
carbon fiber plates were used with cutouts for the release mechanism and for weight reduction
and a wooden bar was used to extend the tail section for improved stability. The tail section is
also inverted so that the glider fits underneath the main aircraft’s fuselage and the overall design

is a high wing design as shown in the Figure 2 3D CAD rendering.

Spring 2025 Ortiz, Noronha, Zagrocki

Figure 2. Assembled Glider Isometric Projection in Autodesk Fusion 360 CAD

1.3. Summary of Results

The glider and its release mechanism can be demonstrated successfully on the ground. As soon
as it is released, the glider immediately activates its control surfaces to perform a 180 degree
right hand turn and begins flashing the strobe lights. As the right roll angle is increased manually,
the control surfaces respond by returning to their neutral position in a proportional manner. If
done outdoors (for GPS fix), once the 180 degree turn has been completed, the glider will actuate
its control surfaces to aim the glider in the direction that points towards its pre-programmed GPS
target coordinates and continuously updates this direction (and hence the control surface
commands) as the glider moves. Once the glider is approximately wings level and pointing in the
right direction, the pitcheron control commands focus on maintaining the airspeed within a
certain range by adjusting pitch to prevent stalling or overspeeding. Flight envelope protections
can also be demonstrated as if roll and/or pitch are outside the predefined flight envelope, the
control surfaces actuate maximally in the opposite direction to restore stable flight. All flight
data is also successfully logged to our on-board microSD card and can be retrieved and

examined later. An image of the final construction of the glider can be found below in Figure 3.

Spring 2025 Ortiz, Noronha, Zagrocki

Figure 3. Final Assembly of the Glider

However, during the competition itself, there was a structural issue caused by the attachment of
the wings, which interfered with the release mechanism and prevented the glider from

successfully detaching from the aircraft. This issue was later addressed in flight testing.

10

Spring 2025 Ortiz, Noronha, Zagrocki

2. Detailed System Requirements

Table 1 summarizes the system requirements based on the competition rules and derived

requirements from the DBF team or the EE Senior Design Course.

Table 1. System Requirements

System Requirement Category

The X-1 test vehicle is a glider capable of autonomous flight. Rules

The X-1 test vehicle will be launched from the airplane at an altitude of | Rules
200-400 feet above ground level.

The X-1 test vehicle must transition to stable flight after release from Rules

the airplane

The X-1 test vehicle must execute a 180-degree turn after launch Rules

The X-1 test vehicle must fly a descending pattern or orbit of the teams | Rules

choosing until landing on the ground

The X-1 test vehicle must land in one of the bonus boxes shown in Rules

Figure 1 or else no bonus points will be awarded.

The X-1 test vehicle shall have flashing lights or strobes that come on | Rules
after release from the airplane. If the lights come on before launch or

the lights fail to come on after launch, no bonus points will be awarded.

After the X-1 test vehicle comes to rest in a bonus box, the Rules

lights/strobes must still be working (flashing) to achieve bonus points.

The X-1 test vehicle flight control and navigation may include an Rules

11

Spring 2025 Ortiz, Noronha, Zagrocki

autopilot/flight control with or without GPS

No RadioControlled receivers may be integrated into the X-1 test Rules
vehicle.
The X-1 test vehicle shall have a maximum weight of 0.55 1bs. Rules

The X-1 test vehicle must be carried underneath the airplane fuselage Rules

There must be a minimum gap of 0.25 inches between any part of the Rules

airplane fuselage, wings, or outer surface and X-1 test vehicle wings.

The X-1 test vehicle must be secured to the airplane for all phases of Rules
flight — take-off, flight, and landing — other than intentional launch in

Mission 3.

The X-1 test vehicle must be capable of a commanded release from the | Rules

airplane via the pilot’s transmitter.

After completing the first lap or any subsequent lap, the X-1 test Rules
vehicle will be released after crossing the start/finish line and prior to
executing the upwind turn. Each team will determine the number of
laps flown prior to launching the X-1 test vehicle. The X-1 test vehicle

must be launched to achieve a successful mission score.

The X-1 test vehicle must come to rest on the ground within the Rules

S-minute flight window for any applicable bonus points to count.

The X-1 test vehicle must use an ESP32 microcontroller Derived from EE SD
The X-1 test vehicle must be powered by a LiPo battery Derived from DBF
Team

12

Spring 2025 Ortiz, Noronha, Zagrocki

The X-1 test vehicle board must use servos that interface with Derived from DBF

pitcherons for pitch and roll control Team

The X-1 test vehicle must be capable of logging data Derived from DBF
Team

The X-1 test vehicle board must have mounting holes to interface with | Derived from DBF

the rest of the vehicle team

It should be noted that not all competition requirements were fulfilled by the senior design team.
Some were directly fulfilled by the DBF team. However, coordination amongst both groups was

required to fulfill all requirements listed in Table 1.

2.1. Subsystem Hardware Requirements

The main hardware requirements for the project are having a sensor suite capable of providing
accurate flight data to a microcontroller that then actuates servos according to a control algorithm
to adjust the glider’s roll, pitch, and yaw. Reliable release detection and strobe lights are
additional requirements based on the competition rules. A robust power delivery system is also
critical to ensure that the system performs optimally. Although not strictly required, a flight data
recorder that stores all flight data is very useful for post-flight analysis, debugging, and control

algorithm tuning.

2.1.1. Microcontroller

The microcontroller chosen needs to have sufficient GPIO pins to receive inputs from all sensors
and for motor control. Additionally, it needs to have hardware PWM, 1°C, and SPI peripheral
support for sensors and a microSD card. It also needs to have a low power consumption as the
system must be powered by a battery. At the same time, it also needs to have high performance
for real-time data processing with fast program loop cycling (>10Hz). Lastly, as a course

requirement, it must be from the ESP32 family of microcontrollers.

13

Spring 2025 Ortiz, Noronha, Zagrocki

2.1.2. Sensors

The sensor suite must be capable of reliably and accurately sensing the glider’s orientation,
speed, and position. This information must then be sent to the microcontroller for processing. All
sensors should use a common data transmission protocol (e.g. I?C) for ease of use with the
microcontroller. Additionally, the sensors must have a sufficiently high sampling rate to prevent

bottlenecks and delayed control surface actuation.

2.1.3. Power

The system must be powered by a portable power source since it is an autonomous glider. The
power source should be lightweight while holding sufficient charge to power the system from the
time it is attached to the main aircraft until it lands. Additionally, appropriate level shifting is
necessary to ensure that the microcontroller’s circuitry only receives 3.3V. Powering the strobe

lights and servos will also require appropriate level-shifting circuitry and power multiplexing.

2.1.4. Flight Control Actuation
To minimize weight, only the glider’s wings will be actuated (as pitcherons) with the vertical
stabilizer section being fixed. This requires two servo motors that are small and lightweight

enough to fit on the glider while not drawing too much current when they actuate.

2.1.5. Release Detection and Strobe Lights

The glider’s release detection subsystem must be reliable enough to prevent false release
detection as that would cause strobe light flashing before actual release, resulting in
disqualification. At the same time, it should also not interfere with the glider’s physical release

mechanism and should decouple very easily as soon as the glider has been physically released.

14

Spring 2025 Ortiz, Noronha, Zagrocki

The only requirements for the strobe lights are that they need to be controlled by the
microcontroller in some way (to flash in a strobe pattern and not before release) and that they

need to be bright enough to be visible from 200-400 feet in the sky in daylight conditions.

2.1.6. Flight Data Recorder

This subsystem only needs to contain a non-volatile digital storage medium that is large enough
to store data from at least one flight. The interface should also not act as a bottleneck that slows
down the rest of the system. Therefore, a microSD Card was used to log all flight data from each
sensor to a .csv file for post-flight analysis. In addition to relevant sensor data and time, the
autopilot finite state machine modes, target roll, pitch, and bearing, as well as pitcheron
angle/direction commands are logged. This allows the SD card to act like a ‘black box’ or flight

data recorder for the glider.

2.2. Software Requirements

Because multiple sensors need to be read in parallel to avoid bottlenecks, a real-time operating
system (e.g. FreeRTOS) needs to be used to perform multiple tasks concurrently. This also
allows us to take advantage of the ESP32’s dual core processor so that one core is dedicated only
to sensor reading while the other core performs other functions (datalogging, autopilot, strobe

light control).

Although a proportional-integral-derivative (PID) control algorithm would be ideal for flight
control surface actuation, given time constraints and the amount of flight testing required to
fine-tune PID constants taking aerodynamics into consideration, a proportional control algorithm
is the minimum requirement for reasonably accurate flight control surface actuation. To
maximize performance, all software was written in C/C++ with the Arduino framework and

FreeRTOS functions on PlatformIO.

15

Spring 2025 Ortiz, Noronha, Zagrocki

3. Detailed Project Description
Based on the above requirements, the autonomous glider had the following design

characteristics.

3.1. System Hardware Block Diagram

7.4V
Battery

5.0 VUSB
LED Strobe Lights (Power)

Power Mux

5V Boost
Converter

3.3V Buck 8.4V Boost
Converter Converter

MKS Servo Motors for Flight
Control Surface Actuation

Ll 2l o LLLL D 3.3V Power Plane

All Other Components

Inertial Measurement Unit

ESP32-PICO-V3-02 LED Strobe Lights (Control)

Airspeed Sensor

Proximity Sensor

SD Card for Data Logging

Figure 4. System Hardware Block Diagram

16

Spring 2025

3.2. Power Components

GND.

ESP32 +

USB 5V PWR

GND

Power Mux (Highest
Voltage Operation
Mode)

3.3V Buck
Converter
GND

8.4V Boost
Converter
(adjusted)

-

2S LiPo 7.4V
Nominal
(~6.4V-8.4V)

PWR

GND

GND.

Sensors +
LEDs

e

PWR
|

3.3v
Power
Bus

8.4v
Power
Bus

PWR
RN S,

Left and
Right

Pitcheron
Servos

Ortiz, Noronha, Zagrocki

ND

ND

Figure 5. Power System Block Diagram (excludes 3.3V-5V boost converter for strobe LEDs)

Buck Converter

12
KFL4020-222MEC

+VHUX L3 +33v
A pyin 11 Sw.1 Y2
on R e s
1o fuin R L 15 VDD Is 3.3V for all digital logic
e vos |2 LE i
.IE“.EH_L sSR = GND
8
"'iuuFE.zanv_ o o [
| - Fsw
3 oo |2
GND ano [
b & eono.15 15
PaND 15 [LE
TPS62142RGTR &
___________________ M .
Boost Converte 05760~ 13POWERDIS_DIO-L
2
e o= :
+YHUX XAL5034-33 1 +BhY
2 $
3 8V for servos only
J e Jins s sic o o
“T22uF22uFTTeonF 42 viv . 3 TRuF
L 2 o sw L ngJ
5 ro |- R
GND N g(ﬁn
£
s o come [. g
| f %0, % <"
r1a e b 3388 W0
= o€ acnp (& “
TenZgE ponp U] ==
powerpaD [Tﬁ’g‘hﬁ“
TPSS5ILORTER Rt
& [
GND
&b b ab o Ao
5V Boost for LED
MUST PULL Enable Pin HIGH T0 3.3V
FOR BOOST CONVERTER TO WORK
12
MIC2875-5.0YMT-TS
+2av 13 feH o Sye
———sY Vol sw our -3 E"'l;‘gv 51
GND o pow0 7T e P Z7uF, 10v
GND 4= aono outs |4 bu
=)
==(30 &
4.7uF, 10Y) - ﬁﬁn
<+ of
GND)
<>
GND

Figure 6. Power System Schematic (1)

17

Spring 2025 Ortiz, Noronha, Zagrocki

J1
JSBL105-GF-AUSB4105_GLT U3
e . JPS2121RUXRRUX0012A
GND &80 3:352 B2 2. pN +5V +YMUX
a— Rt ST TS pp? |-B&5e DP L T out_2 |1
] D Poih6 | gpy [S = T oot B
e DMosBT] gy veus (-B4=A9in L
28 1 spu1 onp |Bizdidd eup HSE
6 1 pr1 vy 2
GND o SLGND
GND GND ST
GN
+VBATT vz o | LHD
2
B IN2 |
ILM 1?'_I 19
I=m .1uF
Y 12 N
42 Qv2 GND -—|
+VBATT 1769 | S G
1 2
—_ 1 2 GND GND
SZ5 Note: +VMUX can be 5V from USB
GND o] M or »6.4V-8.4V from 2S LIPo.

The higher voltage has priority.

GND No overvoltage protection needed for 5v usb.
Overvoltage protectlon set up to turn off IN2 If IN2>16v.
0Y1 and OV2 trigger If they are >= 1v. They will remaln
off and allow IN1 and IN2,respectively to pass.

Lurrent limit set to 3.82 amps

Figure 7. Power System Schematic (2)

e Source 1: USB (5V)

e Source 2: 300mAh Rechargeable LiPo Battery (~6.4V-8.4V)

e Power Mux: Texas Instruments TPS2121RUXR (Highest Voltage Operation, VMUX)
e DC-DC Buck Convertor: Texas Instruments TPS62142RGTR (VMUX=>3.3V Out)
e DC-DC Boost Convertor 1: Texas Instruments TPS55340RTER (VMUX=>8.4V Out)
e DC-DC Boost Convertor 2: Microchip Technology MIC 2875 (3.3V=>5V)

The system can be powered by either 5V USB or a 2-cell LiPo battery or both. If two
power sources are used, the power mux will choose the one with the highest voltage.
This allows the servos to run properly on a battery (laptop USB ports limit current

causing brownouts on servo actuation) while allowing serial port communication via

USB for testing and debugging (e.g. when trimming the servos). When the system is

18

Spring 2025 Ortiz, Noronha, Zagrocki

battery-powered, all sensors and the ESP32 operate on 3.3V. Supplying this 3.3V
requires a (fixed) buck converter since the 2S LiPo is at ~7.4V nominally. Operating the
servos at maximum torque requires 8.4V, so a boost converter (adjusted to 8.4V) is
included with a large 180uF capacitor. This has the added benefit of regulating the

servo voltage to minimize jitter and drops in voltage due to current spikes. To supply the
5V required for the NeoPixel LEDs, we could have used a 5V buck converter from the
power mux output (~7.4V=>5V) but instead decided to boost the 3.3V buck output to 5V
with a boost converter. This is because it minimizes routing complexity given that we
designed a 4-layer PCB stackup (Signal-GND-+3.3V-Signal) that allowed very easy
access to the 3.3V power plane since that was the most commonly used supply voltage.
Although this leads to some efficiency loss, it is worth the tradeoff given that the
alternative would be to use a much longer/more convoluted trace that would have

similar efficiency losses. All system components share a common ground.

Other power-related components included on the PCB are 4 LEDs: a (3.3V) power LED, a GPIO
‘built-in” LED, and TX/RX LEDs used when programming the ESP32 or communicating

via UART serial. The NEO-M9N GPS module recommends using a backup battery for

hot start, so a 1.5V coin cell is included solely for that purpose. No breakout pins or test

points were included for space/weight reasons with the exception of requesting

untented vias from the PCB fabrication company.

19

Spring 2025 Ortiz, Noronha, Zagrocki

3.3. Sensor Selection

The three sensor types used to accurately determine orientation, speed, and position are an
Inertial Measurement Unit (IMU), differential pressure sensor with pitot tube, and a GPS module
with ceramic chip antenna.

e BNOOSS5 Inertial Measurement Unit (IMU) to collect roll, pitch, and yaw data (Euler
angles normalized to 0-360 degrees) to determine the orientation of the glider in 3D at all
times. This is used to perform the 180-degree turn on release from the main aircraft and
for airspeed management via pitch control during descent (after successful GPS homing).
Additionally, it is used to determine whether the glider has exceeded its flight envelope
(roll and/or pitch) and take corrective action as required.

e ABP2DRRTO001PD2A3XX Difterential Pressure Sensor connected to a pitot tube that is
used to determine the glider’s airspeed using the difference between static and dynamic
pressure. This differential pressure sensor has a maximum rating of 1 psi, the equivalent
of about 200 ft/s, which is much higher than any airspeed it will encounter prior to
release from the main aircraft. This is the only through-hole mounted component
(excluding screw terminal block). Airspeed information is important to ensure that the
glider does not stall or overspeed, which would trigger emergency corrective measures.
Outside the envelope protection cases, airspeed data is also used for proportional control
of pitch to maintain the airspeed within an ideal predetermined range. After landing, the
airspeed reading (of 0) is used to trigger the “Landed” state which returns the pitcheron
servos to wings level. Below ~5m/s, the airspeed readings are unreliable and are hence
corrected to 0. Above Sm/s, Equation 2 is used to calculate airspeed from known air

density (based on local air pressure), p, and differential pressure, AP.

20

Spring 2025 Ortiz, Noronha, Zagrocki

_ [2ap
v =2 2)

o NEO-M9N-00B GNSS Receiver Module used to precisely determine the current location
of the glider using GPS satellites. This information is used for two purposes. Firstly,
knowledge of the current GPS coordinates together with the target GPS coordinates is
used to calculate the target bearing required to get from the current location to the target
location. Target GPS coordinates have been provided for the TIMPA runway (Arizona) in
the AIAA DBF Competition rules (32.2653N, 111.2736W). For testing purposes, the test
runway coordinates (in South Bend) will be used instead. Equation 3 is used to calculate
the (initial) bearing required for a straight line between the two points: the current GPS

coordinates and the target GPS coordinates.

0 = atan2(sin(AA) - cos(cpz), cos(cpl) . sin((pz) — sin(cpl) . cos((pl) - cos(Ar) (3)

Electrical schematics for all sensors (and the entire system) are included in the appendix.

21

Spring 2025

3.4. Programming and Processing Capabilities

[P2102

#

2102N-A82-GOFN2LQFN2L _(P2102N_SIL-L

Ortiz, Noronha, Zagrocki

a
c +@h Rk tpap 23 b2
2 & ¥s RIS 4 o EN
- 2 6N oo 25 .
q-u_;.L De DIR £ nre =
+33V —— 0- osk 2% 10K
vio XD 103/£SP32 RX LIR~ ip
; . V0D RXD Jm/F';;Ta: X R31 o N 10K als
. e VREGIN RTS TSI
S [6 vBUS s 8 R
T9-1“F$-7“F-r o UL # 2 psig suspenn & <> 2
< GND GND < ()P 1uF & Tufg 28 | N2 Ne LS GND JORLBOOT em | Lo, DIR
GND < GND < 4L GPI0.3/wWaKEUP SUSPENDB | —L X
ey 2 GPIO.2/RSLES GPIOB/TXT [
= GPlo1/Rxl 15 o
LED_GREEN -4 LED_RE%$;
. RX
2EE é - | |
& bz =
] ¥ ¥
L BEx, BEx,
Lo | L I
> + +
g
o
v
GND
ESP32-PICO-V3-02
v v
=] [3 (L B33V
VDDA - s
] vooasPs | 222 T | i FULE TN e PWR
v0D3P3_(PU e T 30
. voozesRre (A2 T k33vg ¢
GND] vop_solo |25¢
A &z 3 R s ? R GWD oo PINAD-1x2
: AN £N EN LNA_IN [~ AN P p2
o - ® 50 J Pummy RF Load %1 €D.GREEN
- e x‘{— VDET.1/13¢ CLK/I06 —%?x < (|
% RESET o e wvoer_2/13s gg:;:g; Ef: GND G%
H . 63 SENSOR_VP/(36 502/109 |25
— NSOR_VN, |—3%
S "6 SENSOR.NI3 SDI1018 I75& NC internal flash SPL pins & VDD_SDIO
%€ sensor_capp/i37
! - L1 sensorICapn/i3s MIDI/D1z [LB2
27 : + om0y (AEms
; 0 5
o MME UeTXD/101 HTMS/I014 _—D—Jﬂl—‘-
S .—-“.- GHD H03/ESP32 BY4B | yeprxp/ios HT00/1015 |2k Pin Assignments.
-4 o Tt 1021 - SDA
gowo 3= b v am—7 to1s i 1022 - St
L 3 7 /S0A 105 - (S/5S
= By ﬁ%l(T :g; :gg; & %/SEL 1013 - Left Pitcheron Servo
@l | poor 1025 2 L025/MISO 1014 - Right Pitcheron Servo
o| g0 loze |15 1026/M0SI 104 - Release Detection
k4 ~ 1027 [3 J027/SCK 1028 - Strobe Lights
0 £3P 1025 - MISB/SD0/S0
soxpio3e | L0322 1026 - MOSI/SOI/S]
& ™ | 326 xn/1033 A3 1027 - STK/CLK
~ p1
é 5SZJiEIJz_BLu[7 oD | 29222 fND
I
Ty < FSP32-PICO-V3-82 o
S GND GND
@

Figure 8. ESP32 Microcontroller and Programming Components Schematic

This subsystem consists of the following components:

e The ESP32-PICO-V3-02 microcontroller was chosen specifically because it is a

system-in-package (SIP), which contains an oscillator and flash memory embedded into a

single IC package which is extremely light and has a very small footprint

22

Spring 2025 Ortiz, Noronha, Zagrocki

(7mmx7mmx1.11mm). This is important because the team’s competition score for the
glider payload mission is inversely proportional to the glider’s weight, so minimizing
weight as much as possible is a priority for the team. Moreover, because of the physical
dimensions of the glider, the board dimensions must be limited to ~5.64” long but only
0.5” wide. Therefore, we decided not to use a module like the ESP32-WROOM. Only
minimal additional circuitry was required (only a few extra 0603 passives like
capacitors). A 50Q2 dummy load was connected in place of a WiFi/Bluetooth antenna
since those capabilities are unnecessary for the mission. Unused GPIO pins also did not
need to be broken out. The majority of the code consists of FreeRTOS task functions and
functions called by those functions given the complexity of the system and the need for
concurrency/parallelism using both processor cores for maximum performance. After
initializing all subsystems, the ESP32 goes into light sleep and only wakes up on release
detection (“interrupt’ on GPIO pin 4), after which all tasks are created (sensor reading,
data logging, autopilot, and strobe light) allowing the FreeRTOS scheduler to run.

e The CP2102N USB-UART Bridge was used with BJTs for DTR/RTS to allow
programming of the ESP32 through a USB-C port. Differential pair routing had to be
used for the USB signals for signal integrity.

e Boot and Reset buttons are included to allow the microcontroller to enter download mode
and to reset it respectively. Not including the 0.1uF capacitor on the boot button fixed a
minor issue where the reset button had to be pressed to make the microcontroller operate

correctly whenever it is first energized.

23

Spring 2025 Ortiz, Noronha, Zagrocki

The ESP32-PICO-V3-02 requires a good 3.3V power supply with at least 0.25mA
current-handling capability to operate well while the CP2102 requires both 3.3V for VIO/VDD

and 5V from the USB Bus for VBUS.

Communication with the CP2102N USB-UART bridge is done using UART serial (TX/RX). The
USB-UART bridge then communicates with the programming device (laptop) via USB
differential data signals. Communication with the flight data acquisition subsystem is done using
the SPI interface only for the microSD card. All sensors communicate with the ESP32 using the
I?C bus on default SDA and SCL pins. Release detection functions like an interrupt (GPIO
binary transition detection). All actuators and lights operate through GPIO control via hardware

PWM signals.

3.5. Flight Control Surface Actuation Hardware

This subsystem consists of two KST X08H Plus servo motors. These servos actuate the
connected pitcherons according to the autopilot task software commands. The manufacturer
recommended PWM frequency of 333Hz is used for each servo with a HIGH duration of 900us
to 2100us corresponding to -60° to +60° of actuation. The pitcherons combine the traditional
elevator and aileron control surfaces into a single surface. Although this reduces size and weight,
it limits control authority to only roll or pitch but not both simultaneously without losing

effectiveness.

The servo rated voltage is 7.4V but they are capable of operating from 3.8V to 8.4V (albeit less

effectively below 7.4V). To maximize servo effectiveness, using an 8.4V power supply for the

servos would be ideal. This also happens to be the nominal voltage of a fully charged 2-cell LiPo

24

Spring 2025 Ortiz, Noronha, Zagrocki

battery. Electrical current requirements would be up to 1.5A for both servos combined to allow

for a reasonable amount of air resistance acting against the servos in flight.

The servos were also selected due to their small package and lightweight, coming in at only 9.5g
each. This helps the team achieve a higher score since mission score is inversely proportional to
glider weight. Despite being small and lightweight, they provide 5.3Kgf.cm, which is more than
enough torque to handle the loads the servos would experience furing flight prior to deployment.
This is because the servo gears are made with hardened steel, much stronger than your typical
nylon gears found in 9g arduino servos. The main aircraft flew at an airspeed of about 100 ft/s,
so making sure the servos could withstand the wingloading at those higher speeds was critical, as
any structural failure prior to deployment of the glider would mean an automatic disqualification

from the mission.

3.6. Release Detection and Strobe Lights

A magnetic release detection sensor is connected to GPIO pin 4 which is capable of waking up
the ESP32 microcontroller from light sleep when a transition from LOW to HIGH is detected.
This normally only happens after the glider is released and is required according to the
competition rules for strobe light activation. The sensor is connected via a 2-pin screw terminal
and release detection functions like an interrupt (GPIO binary transition detection). A debounce

delay of 250ms is added to reduce the chance of failure.

The strobe lights chosen are Adafruit NeoPixel RGB LEDs which can be chained together into a

strip. They are required to blink after the glider is released and to continue blinking after landing

according to AIAA competition rules. The LEDs require quite low current (at most ~60mA per

25

Spring 2025 Ortiz, Noronha, Zagrocki

addressable LED), but require 5V to operate the data line. Since the ESP32 GPIO voltage is
3.3V, logic level shifting is required to correctly supply the LED data pin. This is done using a
n-channel MOSFET and 1 kOhm resistors. The 5V supply comes from the output of a 5V

DC-DC boost converter that uses the 3.3V plane as its power input.

Figure 9. Strobe lights remained on after a test deployment and landing

26

Spring 2025 Ortiz, Noronha, Zagrocki

3.7. PCB and RF Design

Figure 11. RF Design: GND stitching vias and impedance-matched antenna trace

Layer Material Type Thickness
Top Layer Copper 0.035mm
Prepreg 7628*1 0.21040mm
Inner Layer L2 Copper 0.0152mm
1.1mm H/HOZ with
Core Core 1.065mm
copper
Inner Layer L3 Copper 0.0152mm
Prepreg 7628™1 0.21040mm
Bottom Layer Copper 0.035mm

Figure 12. JLC0416H-7628 4-layer impedance-controlled PCB stackup description (1.6 mm
thickness with 1 oz. outer copper weight and 0.5 oz. inner copper weight)

27

Spring 2025 Ortiz, Noronha, Zagrocki

A GPS antenna RF circuit was custom-designed for the W3010 passive ceramic chip antenna
based on the manufacturer’s PCB layout recommendations. The antenna was placed at the very
edge of the board with a copper keepout zone maintained on all four layers in the footprint.
Additionally, JLCPCB’s controlled impedance calculator was used to determine the 50€2 trace
width for the JLC04161H-7628 stackup to be 13.75 mil to ensure a good impedance match and
minimum signal loss. Ground vias for stitching were also placed around the chip antenna and its
feedline according to manufacturer recommendations and the antenna was kept as far away from

other components as possible to minimize noise due to unwanted electromagnetic interference.

The PCB schematic and layout were completed in Autodesk Fusion 360 as it provided better
mechanical integration than KiCAD. The 3D board model could directly be exported and
included in DBF’s complete system CAD model. Moreover, Fusion 360 offers better
collaboration features since it is cloud-based. Before sending the board out for fabrication, ERC
and DRC checks were completed. Additionally, a DFM check was completed using JLCPCB’s
online tool to avoid unexpected fabrication issues. Overall PCB dimensions were 5.64 inches by
0.5 inches and the 4-layer stackup used consisted of Signal-GND-+3.3V-Signal with untented
vias. Figure 13 shows the PCB layout in 3D with component models included. The detailed PCB
layout and electrical schematics may be found in the Appendix. With very few exceptions, all

passive components were 0603 surface mount devices and board assembly was done in the EIH.

28

Spring 2025 Ortiz, Noronha, Zagrocki

‘ I il :@7

Figure 13. Final 3D PCB Design CAD

3.8. System Software Block Diagram

The flight control software running on the ESP32 microcontroller uses FreeRTOS tasks to
maximize system performance by leveraging parallelism across both cores and is outlined in
Figure 14. In addition to the flowchart code, an additional mode of operation is included in the
code (that can be enabled/disabled with a #define flag) to only allow servo trimming based on
commands/prompting sent via serial. Additional flags allow serial logging, SD logging, and/or

pitcheron servo actuation to be disabled as necessary.

29

Spring 2025 Ortiz, Noronha, Zagrocki

Activate
GPS Sensor
RTOS Task
Yes—p|
e Scheduler
(All Tasks) I’C Data

One of the activated tasks

iniilized+Relesss v Read GPS sPiosa " spcard) orrs(data.csv file
etected?
ndependent Task

Strobe

R UART Data CP2102
Light Task | Serial Monitor USB Port
GPS Data Queue Data Output
No (ESP32 light sleep while waiting for GPIO wakeup) *

Read
2 Read IMU Datalogger ; 2 Airspeed
IC Data IMU Data Queue Airspeed IC Datay P
@ RTOS Q RTOS phiagy Sensor+Pitot
Task Task Task Tube
A
Autopilot Data|Queue

. Evaluate Repeatedly
Flight Data Queue

¥ |

Airspeed Data Queue

|————

Autopilot (A/P)
Master RTOS

Flight

Heading Landed?
Envelope N | | Task (Finite State > Valid for -andec”
Exceeded! ~Evaluate Repeatedly| Machine valuhte mn Homing? (Airspeed=0)

Implementation)

I
Evaluate Repeatedly

180
Degree Turn
Completed

Once?

Y

AIP Flight Envelope AIP IMU
Protections (check Heading
roll/pitch vs. limits Select (Roll
OR stallloverspeed) Mode)

AIP GPS AIP Airspeed
Heading Hold within
Select (Roll [* Range (Pitch
Mode) - Speed Valid Mode)

-«
Roll Left or Roll Right

Roll Left or Roll Right Pitcheron

Servos Pitch Nose Up or Pitch Nose Down
Actuation
Corrections to return to flight envelope Function -«

Set Pitcherons to Wings Level (0° with trim offsets)
-«

Pitcheron Angle+Direction Request
Pitcheron Data Queue

Left/Right
Pitcheron
Servos

Figure 14. ESP32 FreeRTOS Control Code Flowchart

The system first performs an initialization routine that involves verifying that each of the
ESP32’s peripherals are functioning correctly. This includes the serial I/O, 12C bus for each
sensor (GPS, IMU, and airspeed), SD Card (SPI bus) data logging, strobe LED (initialized off),

and both wing actuation servos. Servo actuation tests confirm the servo range of travel and allow

30

Spring 2025 Ortiz, Noronha, Zagrocki

for verification of the servo trim settings necessary to maintain a neutral (level wings) position.
After initialization is complete, the microcontroller enters light sleep and suspends both CPUs
until a high to low transition is detected on GPIO pin 4 to which the magnetic release detection

sensor is attached.

Once release is detected, the following tasks are created and run: GPS reading, IMU reading,
airspeed reading, datalogger, autopilot, and strobe light. The strobe light task operates
independently and continues indefinitely after release is detected to ensure that the strobe LED
continues flashing periodically after the glider has landed. Using FreeRTOS queues, sensor data
is transferred to a central datalogger task that manages all data logging to the SD card (in a .csv
file) and/or the serial monitor. It also routes all relevant data to the autopilot task. All sensors
share an 12C mutex that only allows one sensor to access the [2C bus at a time to prevent
conflicts. Additionally, after running once, each task is suspended until all other tasks have also
run to prevent bottlenecks. After successful datalogging, all tasks are resumed before the next

execution loop (with an optional delay).

3.9. Autopilot

The autopilot master task is implemented as a finite state machine that uses the flight data during
each execution loop to determine the current state of the aircraft. These states can be either

929 9

“performing 180 degree turn,” ”GPS homing,” ”’speed-pitch control,” or ”landed.” Each state is
associated with one of the following autopilot modes: IMU heading select, GPS heading select,
or speed descent. In addition, all flight states (except for “landed”) are associated with

emergency flight envelope protection autopilot modes for roll, pitch, and airspeed. These have

the highest priority and always activate whenever a flight envelope exceedance condition is met

31

Spring 2025 Ortiz, Noronha, Zagrocki

(regardless of state). They ensure that corrective action is taken to avoid exceeding a bank angle
limit, pitch up/down limits, and stall and overspeed protections that use pitch adjustments to
increase or decrease airspeed as required. The autopilot also sends data back to the datalogger
task regarding the autopilot/flight modes, current wing angles, and target roll/pitch/bearing. Time
since release detection in seconds and a line number are also logged for easier reference during

post-flight data analysis.

The IMU heading select and GPS heading select modes are roll control modes that use the
current bearing and other flight data to determine the roll angle required to achieve the target
bearing. The IMU heading select mode uses the initial yaw angle detected on release and
subtracts 180 degrees from it to determine the target yaw angle. The target roll angle is
proportionally related to the difference between the current and target yaw angles. The wing
servo actuation angles are also proportionally related to the difference between the current and
target roll angles by adjusting the duty cycle of the PWM pulses. Once the 180-degree turn is
complete and roll angle is near 0, the autopilot’s GPS heading select mode is activated. This
mode operates very similarly to the IMU heading select mode but uses GPS heading instead of
IMU yaw angle. It continuously recalculates the target bearing, 6, with the current and target
GPS coordinates using Equation 3. Equation 3 is based on the spherical law of cosines, where ¢
and A represent latitude and longitude respectively, so that (¢,, A,) and (¢, A,) are the current and
target GPS coordinates respectively. The arctan function variant used, atan2, outputs a result that
lies in the first two quadrants only (i.e. in the -180 degree to +180-degree range). The target
bearing is normalized to the 0-to-360-degree range to match the GPS heading conventions used
to determine the current heading. The only edge case is when the current and target coordinates

are exactly equal, in which case the target bearing is made equal to the current bearing.

32

Spring 2025 Ortiz, Noronha, Zagrocki

The only regular pitch control autopilot mode is the speed descent mode, which only activates
after the glider is on the correct trajectory towards the landing zone and within roll angle limits.
It is always overridden by GPS heading select whenever the glider goes off-course, or by flight
envelope protections, and has the lowest priority. This mode actuates both wings in the same
direction with an angle proportional to the pitch error, which is itself proportional to the airspeed
error. For instance, if the target airspeed is higher than the current airspeed, the target pitch will
be negative (nose down) and the wings will tilt up proportionally to achieve this pitch angle. The
proportionality constants and flight envelope limits are fine-tuned based on flight testing results.
Lastly the autopilot’s landed state is activated when an airspeed of 0 ft/s is detected and simply
returns both wings to their neutral angles (wings level), disabling the autopilot to prevent
unwanted actuations from draining the battery after landing. Strobe light blinking and data
collection continue until the system is powered off or reset. For testing purposes, stall and
overspeed protections (and landed state) are disabled via compiler directives until a reasonable
airspeed envelope can be determined through further flight testing.

The complete code listing is included at the end of the appendix (section 8).

3.10 Structural Design and Assembly

The glider fuselage is constructed using two carbon fiber plates, the top being 5.9 inx 1.4 in x
0.079 in and the bottom being 6.3 in x 1.4 in x 0.079 in. The plates are vertically connected and
separated by four 0.4375 in threaded hex stand-offs, which are secured with 0.625 in head
screws. Carbon fiber was selected as the construction material of the vehicle because of its
superior durability and minimal weight, ensuring the vehicle is able to safely reach the

designated landing zone and withstand landing impact. The top plate features two water jet-cut

33

Spring 2025 Ortiz, Noronha, Zagrocki

incisions for the release mechanism as well as a 1 in x 0.13 in horizontal incision to allow for the
attachment of a magnetic proximity sensor for release confirmation. It also includes the screw

holes for both the stands and the servo mounting screws.

Figure 15. Glider Bottom (left) and top (right) assembly

The pitch and roll of the test vehicle are controlled using two foam wings. The foam wings were
taken from a commercial off the shelf glider that served as a donor. A low wing was initially
chosen to ensure a quarter inch clearance between the glider and main aircraft wings, but after
testing, the wings were found to break less frequently upon landing with a high wing design. In
order to compensate for the clearance needed between the wings, the release mechanism was

elongated, further explained in section 3.11.

These wings feature a semi-rectangular planform with lifted wingtips, actuated at the quarter
cord by the two X08H KST Servos. The wings move symmetrically to control the pitch and
asymmetrically to control the roll. The vehicle also includes a foam static horizontal and vertical
stabilizer to improve flight stability. The tail was mounted to a quarter by half inch piece of
basswood empennage that was epoxied onto the bottom of the top plate of the glider. The length

of the empennage was made to mimic the exact length of the distance between the wings and tail

34

Spring 2025 Ortiz, Noronha, Zagrocki

of the commercial foam glider that was used as a donor for the glider’s wings and tail. The only
major difference is that the vertical stabilizer was installed upside down so that it would not hit
the bottom of the fuselage of the main aircraft. This does not affect the overall stability of the

plane as the vertical stabilizer stabilizes the glider against forces perpendicular to it.

The pitot tube was glued on the underside of the glider while the LEDs where held on by velcro
on the underside of the glider, as this allowed the team to easily change the placement of the
LEDs for visibility. The battery was placed at the front of the glider and secured using a ziptie.
This was done to ensure that the CG of the glider would remain in front of the quarter chord of

the wings, as this is the ideal location for a stable aircraft.

3.11 Release Mechanism

The glider is attached to the main aircraft internally by two 3D-printed ABS plastic servo horns,
screwed into two servos attached to the underside of a flat piece of wood. This entire platform
and servo release mechanism system, shown in Figure 16, is removable, in compliance with
AITAA rules. Each servo horn consists of a 0.4 in diameter, 1.287 in long cylinder with four 0.268
in x 0.3 in x 0.15 in tabs that clamp around the top plate of the glider to secure it in place. When
the glider needs to be released, the servos rotate the horns 90 degrees and the cutout on the top
plate of the glider aligns with the shape of the servo horn, releasing the vehicle. When the release
mechanism is inserted into the plane, the servo horns slot into cutouts on a battery platform
placed 1.45 in above the floor of the plane’s fuselage, and protrude through holes on the floor of
the fuselage, allowing the glider to sit external to the plane. This release mechanism design was
selected because the servo horns are lightweight, minimally impede the airflow underneath the

main aircraft, and facilitate a secure attachment of the test vehicle to the main aircraft. The

35

Spring 2025 Ortiz, Noronha, Zagrocki

release mechanism was strategically placed near the quarter chord of the main aircraft wing to
ensure that once the glider was dropped, the CG of the main aircraft would be minimally

affected.

Figure 16. RC Aircraft Mounted Release Mechanism

36

Spring 2025 Ortiz, Noronha, Zagrocki

4. Testing

Testing was an essential part of this project and was designed to validate the glider's systems
under live conditions and ensure the competition requirements were met. This section details the
performance of the flight data acquisition system, release detection and strobe lights, servo
actuation, and overall flight testing across multiple environments. The outcomes of these tests

provided insight into the strengths of the design and identified areas for further refinement.

4.1. Flight Data Acquisition

From the successful test flights, the glider’s onboard sensors recorded a full set of flight data
including GPS coordinates, airspeed, IMU attitude (pitch, roll, yaw), control surface commands,

and system state transitions. An example of this data sheet can be seen below in Figure 17.

A B © D E F G H | J K L M N 0 P Q R s T u
1 LineNum ESP32Time IDO_IMU LinAccx LimAccy LinAccz Pitch Roll Yaw Gyro_x Gyroy Gyroz Magnet_uT_x Magnet_uT_y Magnet_uT_z Grav_x Gravy Gravz Quatre Quati Quat j
2 1 0035612 0 1.794 -0.782 -6.933 -1.307 205 250689 14772 -456688 -76.096 -31.875 5.125 22375 -3.435 0231 22556 0.008 0816 -0578
3 2 0.104043 [-2.576 2666 64117 -22.057 2998 245131 43308 -197.961 -78.894 -31.875 5.125 22375 -5.28 0 22223 0125 -0824 0532
4 3 0165547 [2576 10906 -30015 21294 24084 243908 271707 91427 -15107 -31875 5.125 22375 -12534 223 18942 027 -0.795 0541
5 4 0231234 [-3.358 4626 -74.024 1401 24436 248.045 -21.15 387.53 42188 -31.875 5.125 22375 -9.586 -9.356 -18.25 0241 079 0564
6 5 0308849 0 -9.676 6549 -53.801 6811 20128 261.836 84713 444602 153199 -31.875 5125 22375 164 7561 21531 0.094 075 0636
7 6 0388073 0 -16532 14.02 12662 20061 36314 281094 152.08 7162 7867 -31875 5.125 22375 5818 -13021 -18634 0.067 -0636 0688
8 7 0516703 [-5.306 6.767 -9.83 1674 22144 281886 -85.384 -130.258 -37.488 -31.875 5.125 22375 2153 3922 -23.94 0.009 -0633 0736
9 8 0632889 0 3934 4242 12726 1.356 10794 275963 111906 -98.925 8729 -31875 5.125 22375 -1.948 2666 24914 0054 -0.667 0739
10 9 0712922 [-0.051 12444 -10.855 -0.37 16409 276757 348.363 29319 -11191 -31875 5.125 22375 1692 -13.149 22376 0.097 -0.657 074
1 10 0921784 0 -0.115 20.941 -6.267 1494 55062 277213 365932 5.483 36.034 -31.875 5.125 22375 2025 21966 -14636 0297 -0.591 0661
12 11 09959 [8728 24106 -46.021 1499 79213 280173 168754 300915 181623 -31875 5.125 22375 -12.252 2394 3153 0417 -0.488 059
13 12 1076674 [16.827 198 -37.012 -40.853 105587 323.146 20543 225938 260581 -31.875 5.125 22375 -19839 -18.173 2153 0436 0.085 0625
14 13 1131818 [21.992 13995 -31565 65054 92074 34591 239031 138428 289053 -31.875 5.125 22375 24376 -10.099 -a.844 0.445 0312 0628
15 14 1228677 0 24.119 9714 3245 -83706 33866 66747 377123 115039 258614 -31.875 5.125 22375 -25375 -5.947 -5.588 0414 0554 0.488
16 15 1.306703 [22761 3178 -32475 -76817 -27.885 149.487 503120 134623 269.022 -31875 5.125 22375 -24.888 1179 -8.535 0341 0694 0345
17 16 1.370508 [14.443 1986 -40.985 -50.997 -16963 197.541 491378 164054 307629 -31.875 5.125 22375 -22.043 0256 -13662 0.067 0892 -0.073
18 17 1435793 0 10.778 2576 25926 -34.1 3733 228276 486119 208145 316917 -31.875 5125 22375 -19.685 1897 -16.532 0.148 -0.868 0.399
19 18 1626789 [7.113 4665 -14687 26319 16423 248619 350041 219671 33527 -31.875 5.125 22375 -14.994 5152 -20.121 0242 -0.778 057
20 19 1719766 [1.025 -5.37 8535 -28.293 7249 344073 158011 172111 38518 -31.875 5125 22375 -10.304 4255 -23.094 025 -0119 0961
21 20 1769533 [1692 -5.87 6344 29621 -9.805 23.04 98813 56512 252683 -31.875 5.125 22375 -8.484 7869 22992 0.266 0171 0948
2 21 1.839697 [3.063 -3.588 7536 -30.164 -9.861 33626 230078 91539 145925 -31.875 5125 22375 -8.689 5.229 -23.76 0272 0257 0927
23 22 1913894 0 4255 -0.09 9573 -34.801 0086 46094 317.029 -115823 96239 -31.875 5.125 22375 -10535 0461 -23684 0275 0374 0878
2 23 2072701 [7.869 8587 11944 -40.659 13.748 50.802 366156 -104.296 73298 -31.875 5125 22375 -14533 8971 -19.685 0263 0437 0823
2 24 2129506 0 11.227 16673 -33552 -49.271 40.507 5381 202634 63339 84601 -31875 5.125 22375 -18762 -17.301 -5.998 0.206 0515 0695
26 25 2.190497 [14.328 17442 -32962 58546 76479 72719 336725 155325 95232 -31.875 5.125 22375 -193% -17.276 -3.665 0011 065 0372
27 26 2.307696 [17.122 16737 -47.944 61871 74.395 95993 194157 134623 147.604 -31875 5.125 22375 2089 -15.481 2538 0111 -0.716 -0.226
28 27 2394841 [21.761 9637 54736 65743 69929 110253 331.689 86727 236233 -31875 5.125 22375 -24.658 -7.382 -2.409 0141 -0.743 -0.138
29 28 2.475522 [23.363 3255 64233 -79.825 18.427 20423 522153 60989 27305 -31875 5.125 22375 -25.247 0384 3717 0253 -0.719 0259
30 20 2552746 0 21.364 -5.088 70628 -69.193 -28313 300492 608.991 55953 298565 -31875 5.125 22375 -23376 4204 -8.382 0378 -0517 0624
31 30 2705542 [9215 3319 -42933 -54.343 968 342398 821613 202214 276295 -31.875 5.125 22375 -20.018 2691 -14.969 0438 -0174 087
32 31 2792784 0 2781 16584 -45432 -41.223 26678 19.751 558.97 386.187 34232 -31.875 5125 22375 -16609 -15456 -12.585 03 0236 0.883
33 32 2872754 [4.088 14431 -44766 -41443 60.556 112218 421325 332584 358434 -31.875 5.125 22375 -18788 -14815 -10.99 0221 077 -0.302
34 33 3.066683 [8817 9971 34244 -53989 49701 175476 197.626 223028 393797 -31.875 5125 22375 -20633 8971 -14.226 0358 -0815 0.159

Figure 17. Example of impartial flight test data collection.

4.2. Release Detection and Strobe Lights

The release detection system and strobe lights consistently operated when the glider was signaled
to separate from the plane. Upon successful release, the magnetic sensor immediately detected

the event and triggered the onboard ESP32 to initiate the flight sequence, including strobe light

37

Spring 2025 Ortiz, Noronha, Zagrocki

activation. Although mechanical separation was not always successful because of acrodynamic
forces and minor interference at the mounting clips, the electronic detection operated
independently and correctly regardless of physical release. This was confirmed through both
real-time ground observation and post-flight data logs, where timestamps for release detection
and strobe activation aligned with the expected moments of glider deployment. The brightness of
the strobe lights was not always sufficient for visual confirmation from the ground, but they

stayed on after landing, which was essential for competition scoring.

4.3. Servo Actuation (Ground Test)

The team performed several ground tests of the servo actuation that confirmed the usability of
the algorithm, and the correct orientation of the pitcherons. The team would perform a manual
180 degree turn of the glider, and then a tilt and turn test to ensure the control surfaces rotated as
expected. These ground tests proved the servos would as expected. Additionally, all flight
envelope protections were triggered correctly. If the glider rolled too far in any direction, the
control surfaces would undergo maximum deflection in the opposite direction to return the glider
to stable flight, and the same applies for pitch. Stall and overspeed protections were disabled for

obvious reasons during ground testing.

4.4 Flight Testing

Flight testing took place in several locations. These included an airfield in Tucson, Arizona, and
a model flying club (AMA) airfield in South Bend. The flight test in Tucson suggested that the
glider was being overcontrolled, so the maximum pitcheron angles were reduced from 14
degrees to 9 degrees, with proportionality constants adjusted accordingly. But the glide itself
appeared quite reasonable. The second flight test appeared worse because the glider entered a flat
spin almost immediately after release from the main aircraft (likely due to turbulent air from the
propeller). Without a movable rudder, spin recovery was impossible in that scenario. Given that
the glider still performed a 180 degree turn and landed within 100 feet of the target coordinates,

meeting the main flight requirements. Moreover, release detection worked perfectly and the

38

Spring 2025 Ortiz, Noronha, Zagrocki

strobe lights were visible immediately upon release and continued flashing after landing, which
met the remaining miscellaneous requirements and the glider’s final weight was 0.33 Ib, which is

under the 0.55 Ib limit, so all mission requirements were met successfully.

39

Spring 2025 Ortiz, Noronha, Zagrocki

S. Instruction Manual

This section details the required steps to drop the glider during a flight. The autonomous glider is
relatively straightforward to use, especially since it does not need to be manually controlled after
a drop. First, plug in the JST connector from the 7.4 V LiPo battery into the circuit board (the
plug and socket are slotted which prevents reversing the terminals). On the circuit board, a blue
LED will turn on, and the glider’s servo motors will then run through an initialization test to
ensure they are properly functioning. Once this test is over, the blue LED will turn off, and the
wings will pitch down at a 15 degree angle. This means the initialization stage is completed, and

the glider is ready to be mounted to the aircraft.

Next, the user should ensure the aircraft’s release clips are oriented in parallel to the fuselage of
the aircraft. This can be done by flipping the release switch on the aircraft’s RC controller. Then,
slide the glider into the clips, and ensure the black magnet at the front of the glider is connected
to the other black magnet on the underside of the aircraft. On the glider, the carbon fiber
mounting plate will have two complementary slots which receive the release clips from the main
aircraft. You must hold the glider in place while this process is being completed. After these clips
are slotted into the glider’s mounting plate, flip the release switch once again on the RC
controller. Now, release the glider from your grip. At this point, the blue LED should turn on
once again for 10 seconds. After these 10 seconds finish, the blue LED will turn off, and the

glider is prepared for flight.

You may now take-off using the RC aircraft. Once RC aircraft is up to the desired altitude, you
may flip the release switch on the RC controller. This will release the glider from the aircraft. At

this point, the glider will recognize its detachment from the plane, turn on the LED lights,

40

Spring 2025 Ortiz, Noronha, Zagrocki

complete its 180 degree turn, and head towards the programmed GPS coordinates. The glider
will automatically log all the flight data to the onboard microSD card. To repeat this process,
unplug the battery’s JST connector from the circuit board, and plug it back in. This will reset the

process and allow you to prepare the glider for another flight.

41

Spring 2025 Ortiz, Noronha, Zagrocki

6. Potential Design Improvements

There are several areas of this project that could be improved. These sections are outlined below,

along with explanations of where enhancements could be made.

6.1. Aerodynamic Design and Flight Stability

While the glider design saw significant improvements over the course of the semester, there is
still room to enhance the aerodynamic performance and overall stability of the glider. Although
flight data and visual characteristics provided clear evidence that lift was being generated after
release, additional measurements and testing could further optimize the design and improve
post-drop stability. Moreover, using an actuated rudder or at least elevators and ailerons instead
of pitcherons would have greatly improved flight stability and control because pitcherons can

correct roll or pitch, but not both at the same time (without a very advanced algorithm).

6.2. Release Mechanism

Another area for improvement is the reliability of the release mechanism. While the release
mechanism often activated correctly, the glider would occasionally fail to separate from the
plane. To address this, the team trimmed down the clips that connected the glider to the plane to
prevent unintended entanglements. This solution was effective but still leaves room for a

redesign in the release system design.

6.3. Homing (Proportional Integral Derivative Controller) Algorithm

The final major area for improvement lies within the proportional integral derivative controller
homing algorithm. Review of the flight data showed that the glider struggled to achieve
sufficient stability before adjusting its wing angles toward the GPS target. With additional

testing, the team would aim to refine the algorithm to achieve more stable flight and more

42

Spring 2025 Ortiz, Noronha, Zagrocki

accurate GPS-based guidance. Due to insufficient testing and data, only a proportional control
algorithm was implemented. But with more testing and/or aerodynamics simulations, we could
determine integral and derivative constants and fine tune them to achieve more precise control
over flight control surfaces that reduces induced oscillations by avoiding overcorrections. An
even further improvement would account for flight control surface effects at different airspeeds

to optimize actuation and flight response.

43

Spring 2025 Ortiz, Noronha, Zagrocki

7. Conclusion

This project successfully demonstrated the design, implementation, and testing of an autonomous
glider system capable of mid-air release, strobe light activation, and guided descent toward a
predefined landing zone. The team effectively used an ESP32 microcontroller and several
peripherals to manage flight control surfaces, data logging, and flight state transitions within a
FreeRTOS software architecture. This resulted in a glider that was capable of flying and

operating without continuous user input.

The glider consistently displayed the maneuvers of a 180-degree turn and GPS-based heading
adjustments during flight. Ground tests verified servo reliability and control logic. Flight tests
confirmed the functionality of the systems including release detection mechanism, LED strobe
light activation, and data acquisition. Although we experienced minor issues with the release
mechanism, which inhibited the glider’s scoring at competition, this issue was subsequently

addressed in later tests and resolved for a reliable result.

This project was an exploration into several important areas of research and showed the
intersection of embedded systems and autonomous intelligence in an aerospace application. The
team concluded that while the honing algorithm, release mechanism, and aerodynamic design
still require refinement, the project was an overall success. Overall, the objectives laid out in the
problem statement were achieved with the team having developed a lightweight glider capable of

autonomous flight.

44

Spring 2025 Ortiz, Noronha, Zagrocki

8. Appendix

This section contains all the appendices of this report. This includes the electrical schematic, the

PCB layout, and the source code.

45

Spring 2025 Ortiz, Noronha, Zagrocki

8.1. Electrical Schematic

1020SDA 10225501

cs s
O1uF £70F
GND GND

2

1 I 2 I 3 I 4 | 5 3 T 7 3]
‘Servo JST Connectors | Release Detection Screw Terminal | 12C Pull-Up Network | CP2102
| | |
v 5 | a3V | | e
T Mz 3 > | | | CP2102N-AD2-GQFN24QFN24_CP2102N_SIL-L
A &—f‘. | | 1]
o ! I |
| | |
| | |
6
| | 1

cPoameT
URxT
LED| GREEN - #.ED RED
| GREEN JU#LED_RED 758
RX T

aav

&
urnany RF Load

Fab House:
JLCPCB

o

JLC04161H-7628 (1.59mm)

50Q Trace Width:
13.75mil

we oo
ESPaPICOVIGZ

i
i
|
|
P 4-layer Controlled Impedance PCB: i
i
|
|
|
|
|

10z/0.50z outer/inner copper

f
TITLE: Senior Design Board v149
Document Number. REV:
Date: 4/22/25 5:01PM [Sheet w6

Figure 18. Electrical Schematic Page 1 of 6

46

Spring 2025 Ortiz, Noronha, Zagrocki

1 I 2 3 I 2 5 6 I 7 8 9
usBe Power Mux
} } Buck Converter
a1
USB4105-GF-AUSB4105 GCT | uz |
a—— I TPS2LZRURRUKO0I2A I
A wiz oa [EDN | b | e us
= or2 [E—DP | " aurz T | 1
e — o - = R
= EER o % | ! o
1 | - o
G | ! s
L | st | c10 [e ssm L
. N | ouF TR a5 oer
_______________________ ﬁ _F 3 | s
" | G
= Xo o
|
I ——
B | TPS62142RGTR Fo
sy romuss O)» e
 _POSTE0-13POWERDIS

c
D
|
| 5V Boost for LED
|
|
[! MUST PULL Enabie Bin HIGH T0. 3.3 L
| FOR BOOST CONVERTER TO WORK
|
|
| cu
| 220, 10
E |
|
|
|
|
[| -
|
|
|
|
e |
| TITLE: Senior Design Board v149
|
| Document Number: REV:
|
| Date: 4/22/25 5:01 PM |Sheel 26

Figure 19. Electrical Schematic Page 2 of 6

47

Spring 2025 Ortiz, Noronha, Zagrocki

T T 2 T 3 7 5 6
Digital Differential Pressure Sensor | Decoupling |
1 | Capacitor |
ABP2DRRTO0LPD2AIXX | |
‘ +3.3V |
A \ c17 l
| 0.1uF |
|
ffffffffffffffff - |
|
| | D |
Pin Assi t
1021 SBA (E—
1022 - SCL
1005 - CSISS

1013 - Elevator Servo
1014 - Allerons Servo
B 1019 - Release Detection B

1020 - Strobe Lights
1025 - MISO/SDOISO
1026 - MOSI/SDI/SI
1027 - SCKICLK

c C|
D D|
E TITLE: Senior Design Board v149 E
Document Number: REV:
Date: 4/22/25 5:01 PM Sheet: 3/6

Figure 20. Electrical Schematic Page 3 of 6

48

Spring 2025

Ortiz, Noronha, Zagrocki

1 2 3 4 5 6
A
B
Intertial Measurement Unit
33V
1 c19 c20
| o U7 0.1uF 0.1uF
VDD
VvDDIO
XIN32
XOUT32/CLKSEL1
ENV_SCL o
C ENV_SDA GND
Pin Assignments:
ST = - SDA
) o 1022-scL
cAP 1005 - CSISS
= 1013 - Elevator Servo
19 1014 - Ailerons Servo
|| o RESV_NC . 1019 - Release Detection
et 1020 - Strobe Lights
1025 - MISO/SDO/SO
NO085 1026 - MOSI/SDI/SI
1027 - SCKICLK
D
E TITLE: Senior Design Board v149
Document Number: REV:
Date: 4/22/255:01 PM Sheet: 4/6

Figure 21. Electrical Schematic Page 4 of 6

49

Spring 2025 Ortiz, Noronha, Zagrocki

1 I 2 3 7 I 5 6
Chip Antenna. | GPs | Decoupling |
| | Capacitors |
BPS_CHIE_ANTENNAWS® | |
) | +33v 13av
1 | us | |
A P | - ‘ c21 | c22 ‘ A
v Bokp | —M_BCKP| | 100nE|_ 10uF |
GND o
<| VCC_RF [—X o | |
77777777777 x—{ ReSET N
GPS_ANT™ |
Hot Start Battery | e \ ‘
%—] SAFEBOOT N | GND |
| | »— D_SEL
s33v x—] ExTINT TIMEPULSE [— }7 777777 _
E | %— TXDISPI_MISO LNA_EN —x
.5A/LBV/L20m | %—! RXDISP_MOSI |
| 102205015 se1sel oLk |
:S 3 | 1021SDA" spasei_cs N ‘ o A?SS‘%}\MEHE
= 1022 - SCL
B | %— usaom _— | 1005 - CS/SS B
c25 *—{ USBDP RESERVED [—x 1013 - Elevator Servo
= 1R | o | 1014 - Ailerons Serva
s | | 1019 - Release Detection
— NEO-MSN-00B 1020 - Strobe Lights
MLA1LH_IVO[LE_BATTERY | o | 1025 - MISO/SDO/SO
GND 1026 - MOSI/SDI/SI
|| GRD | | 1027 - SCKICLK .
C C|
D D
E TITLE: Senior Design Board v149 E
Document Number: REV:
Date: 4/22/25 5:01 PM Sheet: 5/6

Figure 22. Electrical Schematic Page 5 of 6

50

Spring 2025 Ortiz, Noronha, Zagrocki

1 I 2 I 3 I 4 5 3
MicroSD Card Connector

Decoupling
Capacitors

433V +33V

| |
| |
| |
| Icza_Ic24 |
| 1L 0L | A
| |
| |

24 CARD_DETECT
CARD_DETECT1

= DATA_OUT
i e I

1026 - MOSI/SDI/SI
1027 - SCKICLK

E TITLE: Senior Design Board v149 E

Document Number: REV:

Date: 4/22/25 5:01 PM Sheet: 6/6

Figure 23. Electrical Schematic Page 6 of 6

8.2. PCB Layout

| usB (SV@ it

1

20250228

EESD/DBF
X~-1 Test Vehicle

=
i}
@
W
=3
—
=
=3
=)

Figure 24. Circuit Board 3D View (1)

51

Spring 2025 Ortiz, Noronha, Zagrocki

Figure 25. Circuit Board 3D View (2)

! e | e ‘
JviE . =702 ool P T
(o) ()N B oot : Il i

) [=4

Figure 26. Circuit Board Layout View

52

Spring 2025

<

Ortiz, Noronha, Zagrocki

PROJECT

EE Senior Design

TITLE

Senior Design Board

APPROVED

CHECKED

SIZE
B

CODE DWG NO REV

DRAWN

Ricardo Ortiz

4122125

SCALE 2:1

‘WEIGHT SHEET 1/1

Figure 27. Circuit Board CAD Drawing (Multiple Views)

53

Spring 2025

8.3. Source Code Listing

https://github.com/rortiz4/DBF2425/tree/main/Code/DBE_X1_Glider

Ortiz, Noronha, Zagrocki

// File: platformio.ini

; PlatformIO Project Configuration File

; Build options: build flags, source filter

; Upload options: custom upload port, speed and extra flags

; Library options: dependencies, extra library storages

; Advanced options: extra scripting

; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html

[env:esp32dev]

platform = espressif32

board = esp32dev

framework = arduino

lib_deps =

adafruit/Adafruit BNOOSx@"1.2.5

sparkfun/SparkFun u-blox GNSS Arduino Library@"2.2.27
stevemarple/MicroNMEA@"2.0.6
https://github.com/madhephaestus/ESP32Servo
adafruit/Adafruit NeoPixel@"1.12.4

// File: autopilot.h

#ifndef AUTOPILOT H
#define AUTOPILOT _H

// This struct will be used by datalogger

54

https://github.com/rortiz4/DBF2425/tree/main/Code/DBF_X1_Glider

Spring 2025 Ortiz, Noronha, Zagrocki

struct Autopilot Data {
unsigned int sensor _id; // 4
const char* flight phase;
const char* ap_mode;
float ap_target bearing;
float ap_target roll;
float ap_target pitch;

}3

enum AP_Modes {
AP_OFF, // 0 (Almost never used except on ground)
AP HDG SEL IMU, // 1
AP HDG SEL GPS, //2...
AP _SPD TRIM,
AP PITCH FIXED,
AP ROLL FIXED,

AP _ENVELOPE PROT, // Flight envelope protection modes below (AP_ ENVELOPE PROT
specifically not logged. See below for logged modes.)

AP _PROT ROLL MIN,
AP _PROT ROLL MAX,

AP _PROT PITCH MIN,

AP _PROT PITCH MAX,
AP PROT STALL,

AP _PROT OVERSPEED

}s

enum Flight Phases {
// Must always alternate between a Roll Mode and a Pitch Mode.
U TURN HDG, // Roll Mode: 180 degree turn after release using IMU only

GPS_HOMING, // TBD Roll Mode: Continuous update of target bearing + bearing correction
from current GPS coordinates + COG/heading. Target coordinates hard-coded. Same logic as
U _TURN _ HDG flight phase after that.

SPD_DESCENT, // Pitch Mode: Primary mode after U-Turn. Will alternate with
U _Turn HDG/GPS_HOMING as needed (common to both roll modes).

LANDED // Used to return pitcherons to neutral position and turn off autopilot after landing.

¥

55

Spring 2025 Ortiz, Noronha, Zagrocki

void Autopilot MASTER(void* pvParameters); // Calls on each of the below functions to
perform manoeuvres as required. Maintains flight envelope protections too.

bool Autopilot HDG SEL IMU(float roll, float yaw, float bearing change, Autopilot Data&
AP log data); // Current bearing from IMU "Yaw" Angle. Servo actuation done to turn by
bearing change (e.g. 180degree turn)

bool Autopilot SPD TRIM(float airspeed, float pitch, float target airspeed, Autopilot Data&
AP log data); // Controls pitch to maintain airspeed within +/-max_dev of target.

bool Autopilot HDG SEL_GPS(bool act_true, float roll, float current_heading, float current_lat,
float current long, float target lat, float target long, Autopilot Data& AP log data); // Current
bearing from GPS+current+target coordinates (used to calculate target bearing for turn). Used
after 180 degree turn for homing.

bool Autopilot FLT ENVELOPE PROT(float roll, float pitch, float airspeed, Autopilot Data&
AP _log data);

// Unused in AP MASTER

bool Autopilot ROLL FIXED(float roll, float target roll, Autopilot Data& AP log data); //
Will probably go unused, but included for completeness (direct roll control by angle.

bool Autopilot PITCH FIXED(float pitch, float target pitch, Autopilot Data& AP log data); //
Will probably go unused, but included for completeness (direct pitch control by angle.
Dangerous due to high stall potential! Good for levelling off.)

// Note: max_dev is allowed tolerance in each case for bearing/airspeed/pitch from target

#endif

// File: datalogger.h

#ifndef DATALOGGER _H
#define DATALOGGER H

extern float current time;

extern bool serial log;
extern bool SD_log;

56

Spring 2025

// This struct will be used in Autopilot
struct Flight Data {

float time; // will probably not be used

float pitch;

float roll;

float yaw;

float latitude;

float longitude;

float heading;

float airspeed;

float gnd speed; // could be used for wind corrections later

}s

void init_SD(bool serial log, bool SD log);
void log_data(void* pvParameters);

#endif

Ortiz, Noronha, Zagrocki

// File: pin_map.h

#ifndef PIN. MAP H
#define PIN. MAP H

/I For datalogger (SPI pins)
#define SD_CS 5

#define SD_MISO 25
#define SD_MOSI 26
#define SD_SCK 27

// For all sensors (I12C pins)

#define SDA_ PIN 21
#define SCL_PIN 22

57

Spring 2025 Ortiz, Noronha, Zagrocki

// Outputs (LEDs+Servos)
#define BUILTIN_LED PIN 2

#define RELEASE DET PIN 4
#define STROBE_LED PIN 20

/I Separate left and right servo pin defs
#define SERVO_L PIN 14
#define SERVO_R PIN 13

#endif

// File: pitcheron_servos.h

#ifndef PITCHERON SERVOS_H
#define PITCHERON SERVOS H

/l
https://cdn.shopify.com/s/files/1/0570/1766/3541/files/X08H_ V6.0 Technical Specifcation.pdf?
v=1700472376

/!
https://kstservos.com/collections/glider-wing-servos/products/x08h-plus-horizontal-lug-servo-5-
3kg-cm-0-09s-9-5g-8mm

#define MIN_SERVO_ANGLE -60 // deg (unused except for internal angle2us mapping or
manual trimming override because dangerous!)

#define MAX SERVO ANGLE 60 // deg (unused except for internal angle2us mapping or
manual trimming override because dangerous!)

#define SERVO_MIN_ALLOWED -9
#define SERVO MAX_ALLOWED 9

enum Pitcheron_Actions {
WINGS LEVEL, // 0 (could also do WINGS LEVEL = 0 for custom assignment, and so on.)
ROLL LEFT,//1

58

Spring 2025 Ortiz, Noronha, Zagrocki

ROLL RIGHT, // 2
PITCH_NOSE_UP, // 3
PITCH_NOSE_DOWN, // 4
MAINTAIN ANGLE // 5

}s

struct Pitcheron Data {
unsigned int sensor _id;
unsigned int angle target; // absolute value only
const char* action_target; // e.g. WINGS LEVEL, ROLL RIGHT, etc.
int raw_angle 1; // Angle including trim adjustments and CG/CW corrections (raw)
int raw_angle r; / Angle including trim adjustments and CG/CW corrections (raw)
/I All angles in degrees.

}s

// Functions just for initial testing/trimming (angle specified is directly used for actuation as-is)
void actuate servo_I(int angle);
void actuate servo_r(int angle);

void init_servos(bool actuation_test); // Use either init_servos or init_servos_trim in a program,
but NOT BOTH.

void init_servos_trim(void); // Do not use, except for in another program (not main())
exclusively to initialize for trimming individual servos.

void actuate pitcherons(unsigned int angle, enum Pitcheron Actions act_type direction); //
Specify PITCH or ROLL with direction for actuation type + direction (both servos use same
angle but potentially different trim offsets)

#endif

// File: queues.h

#ifndef QUEUES H
#define QUEUES H
#include <Arduino.h>

59

Spring 2025 Ortiz, Noronha, Zagrocki

// This just lets the compiler know that this queue is declared elsewhere so other files see it when
including this header

extern QueueHandle t IMU Queue;
extern QueueHandle t Airspeed Queue;
extern QueueHandle t GPS Queue;
extern QueueHandle t Autopilot Queue;
extern QueueHandle t Pitcheron Queue;

extern QueueHandle t Flight Data Queue;

void init_queues();

#endif

// File: semaphores.h

#ifndef SEMAPHORES H

#define SEMAPHORES H

#include <Arduino.h>

extern SemaphoreHandle t [2C MUTEX;

// extern SemaphoreHandle timu_done;

/I extern SemaphoreHandle t airspeed done;
/I extern SemaphoreHandle t gps done;

void init_semaphores();

#endif

60

Spring 2025 Ortiz, Noronha, Zagrocki

// File: sensors.h

#ifndef SENSORS H
#define SENSORS H

// Defining containers for data
struct IMU_Data {
unsigned int sensor _id;
float lin_accel[3]; // x,y,z
float euler[3];
float gyro[3]; // x,y,z
float magnetic[3]; // x,y,z
float gravity[3]; // x,y,z
float rotation[4]; // Quaternion - real, 1, j, k

}s

struct Airspeed Data {
unsigned int sensor _id;
float diff pressure;
float airspeed[2]; // raw, corrected
float temperature;

}s

struct GPS_Data {
unsigned int sensor _id;
float latitude;
float longitude;
float gnd_speed; // knots
float altitude;
float heading;
uint8_t hours;
uint8_t minutes;
uint8_t seconds;
uint8_t hundredths;

61

Spring 2025

uint8 t satellites;

}s

void init_low_level hw();

bool init_bno085(); // Unused in main
bool init_abp2(); / Unused in main
void init_all sensors();

void read _bno085(void* pvParameters);
void read_abp2(void* pvParameters);
void read_gps(void* pvParameters);

#endif

Ortiz, Noronha, Zagrocki

// File: strobe.h

#ifndef STROBE H
#define STROBE _H

void init_strobe(void);
void blink _strobe(void* pvParameters);

#endif

// File: tasks.h

#ifndef TASKS H
#define TASKS H
#include <Arduino.h>

extern TaskHandle tread imu task;
extern TaskHandle tread pitot task;

62

Spring 2025

extern TaskHandle tread gps task;

extern TaskHandle tlog data task; // Currently unused handle
extern TaskHandle t autopilot_task;

extern TaskHandle t strobe_task;

void init_tasks();

#endif

Ortiz, Noronha, Zagrocki

// File: trim_servos.h

#ifndef TRIM_SERVOS H
#define TRIM_SERVOS_H
#include <Arduino.h>

void trim_servos(void);

#endif

// File: autopilot.cpp

#include "autopilot.h"
#include "datalogger.h"
#include "queues.h"

#include "pitcheron_servos.h"

#define AP_ ENABLE true // Set true to enable Autopilot, false to disable.

#define LANDED DISABLED true // Disables LANDED state
#define ROLL PROT EN true

#define PITCH_PROT EN true

#define STALL PROT EN false

#define PITCH_SPEED CONTROL true

63

Spring 2025 Ortiz, Noronha, Zagrocki

#define OVSPD_PROT EN false

// Note: Convention used by autopilot: + means right/up, - means left/down. ALL ANGLES IN
DEGREES AND SPEEDS IN ft/s.

// Flight Envelope Limits

#define MAX PITCHERON ANGLE SERVO MAX ALLOWED // Defined in
pitcheron_servos.h

#define STALL SPEED 30
#define OVERSPEED 60
#define ROLL_LIM_MIN -30
#define ROLL_LIM_MAX 30
#define PITCH_LIM_MIN -18
#define PITCH_LIM_MAX 18

/I Autopilot Settings and Control Limits

#define U TURN BEARING CHANGE 180 // deg: From DBF 2024 Competition Rules
#define RIGHT TURN_BIAS true // Takes priority over LEFT TURN_BIAS if both are true
#define LEFT TURN_BIAS false

#define TURN_BIAS 20 // Will turn right for corrections up to -160 during U Turn

#define BULLSEYE LATITUDE 32.2653//32.2653 //32.1201// //41.5194 // degN: From DBF
2024 Competition Rules

#define BULLSEYE LONGITUDE -111.2736//-111.2736 //-110.7630// //-86.2400 // degW:
From DBF 2024 Competition Rules

#define HDG_TARGET DEVIATION LOW -5
#define HDG_TARGET DEVIATION HIGH 5
#define ROLL TARGET DEVIATION LOW -5
#define ROLL TARGET DEVIATION HIGH 5
#define SPD_TARGET 45 // ft/s

#define SPD_TARGET DEVIATION LOW -15 //-10 means STALL SPEED = 40 ft/s with 50
ft/s target

#define SPD_TARGET DEVIATION HIGH 15
#define PITCH _TARGET DEVIATION LOW -3
#define PITCH TARGET DEVIATION HIGH 3

// PID Proportionality Constants (leave margin for min/max to avoid exceeding flight envelope
limits)

64

Spring 2025 Ortiz, Noronha, Zagrocki

#define Kp ROLL BEARING_ CORR 1// Roll proportional to amount of turning required (yaw
change)

#define Kp PITCH SPD CORR -1/ MUST BE NEGATIVE!!! Pitch proportional to amount of
speed change required (current speed error from target)

#define Kp SERVO _ANGLE ROLL 0.3// Servo Angle proportional to error in roll from target

#define Kp SERVO_ANGLE PITCH 0.5// Servo Angle proportional to error in pitch from
target

// Utility Functions for bearings
// Wrap angle to range [0, 360)
float wrap angle(float angle) {
float wrapped = fmod(angle, 360.0); // Calculates remainder of angle/360 (wraps angle)
return wrapped < 0 ? wrapped + 360 : wrapped; // For negative angles
h
// To add bearings: wrap angle(angle 1+angle 2)
// To subtract bearings: wrap angle(angle 1-angle 2)
// This function gives the shortest necessary correction for bearings
// e.g. current_bearing = 10deg, target bearing = 350deg, returns -20deg
// Negative angles mean left turn needed. Positive angles mean right turn needed.
float signed bearing_correction(float current bearing, float target bearing) {
float brg_corr = wrap angle(target bearing - current bearing);
if (brg_corr > 180.0) {
brg corr -=360.0;
}

return brg_corr;
}
// Function to calculate the bearing from current and target GPS coordinates

float calculate bearing(float current lat, float current long, float target lat, float target long,
float current_bearing) {

float target bearing = current bearing; // Just setting default condition for variable
initialization (modified later).

// Edge case: Current latitude/longitude = Target latitude/longitude (prevents undefined target
bearing)

if (current_lat == target lat && current long == target long) target bearing =
current_bearing;

65

Spring 2025 Ortiz, Noronha, Zagrocki

else {
// Convert latitude and longitude from degrees to radians
current_lat = current lat * M_PI/ 180.0f;
current_long = current long * M_PI/ 180.0f;
target lat = target lat * M_PI/ 180.0f;
target long = target long * M_PI/ 180.0f;

// Calculate the difference in longitude
float delta long = target long - current_long;

// Calculate the components of the formula

float x = sinf(delta_long) * cosf(target lat);

float y = cosf(current_lat) * sinf(target lat) - sinf(current_lat) * cosf(target lat) *
cosf(delta_long);

// Calculate the initial bearing
float initial bearing = atan2f(x, y);

/I Convert bearing from radians to degrees and normalize to 0-360
target bearing = fmodf((initial bearing * 180.0f/ M_PI) + 360.0f, 360.0f);

return target bearing;

}

// Main Autopilot functions
void Autopilot MASTER(void* pvParameters) {
Flight Data sensor data;
Autopilot Data AP log data;
AP _log data.sensor id = 3;
intap flight phase =U TURN_ HDG;
AP log data.flight phase ="U TURN HDG";
AP log data.ap mode ="AP OFF";
bool started = false;

66

Spring 2025 Ortiz, Noronha, Zagrocki

bool u_turn done = false;
AP log data.ap target bearing = 0; // just for initialization
AP log data.ap target roll = 0; // just for initialization
AP log data.ap target pitch = 0; // just for initialization
if (AP_ENABLE) Serial.println("Autopilot ON!");
else Serial.println("Autopilot OFF. Maintaining Pitcheron Neutral Position.");
while(true) {
//Serial.println(" Autopilot Task");
xQueueReceive(Flight Data Queue, &sensor data, portMAX DELAY);

// First use the received data to identify the current phase of flight and AP Mode. But we
start with U-Turn immediately

// Landed
if !{AP_ENABLE) {

actuate_pitcherons(0, MAINTAIN ANGLE); // Do nothing if AP has been disabled
through flag.

}
else if (sensor_data.airspeed == 0 && !LANDED_ DISABLED) {
actuate pitcherons(0, WINGS LEVEL);
AP log data.flight phase = "LANDED";
AP _log data.ap mode ="AP_OFF";
}
else if (!started) {
/I Always start in HDG_SEL IMU mode to get correct 180 degree turn bearing

Autopilot HDG_SEL IMU(sensor data.roll, sensor data.yaw,
U TURN BEARING CHANGE, AP log data);

started = true;

}

else if ((ap_flight phase == U TURN HDG) && 'u_turn_done) {
AP log data.flight phase ="U TURN HDG";
/I Always verify flight envelope first

if (Autopilot FLT ENVELOPE PROT(sensor data.roll, sensor data.pitch,
sensor_data.airspeed, AP log data)) {

if (Autopilot HDG_SEL IMU(sensor data.roll, sensor data.yaw,
U TURN_BEARING _CHANGE, AP_log_data)) {

u_turn_done = true;
ap_flight phase = GPS HOMING;

67

Spring 2025 Ortiz, Noronha, Zagrocki

}
else ap_flight phase=U TURN _ HDG;
}
}
else if (ap_flight phase == GPS_HOMING) {
AP log data.flight phase = "GPS _HOMING";
/I Always verify flight envelope first

if (Autopilot FLT ENVELOPE PROT(sensor data.roll, sensor data.pitch,
sensor_data.airspeed, AP log data)) {

if (Autopilot HDG SEL GPS(true, sensor data.roll, sensor data.heading,
sensor_data.latitude, sensor data.longitude, BULLSEYE LATITUDE,
BULLSEYE LONGITUDE, AP log data) && PITCH_SPEED CONTROL) {

ap_flight phase = SPD DESCENT;
}
else ap flight phase = GPS HOMING;
}

}
else if (ap_flight phase == SPD DESCENT) {

AP log data.flight phase ="SPD DESCENT";
/I Always verify flight envelope first

if (Autopilot FLT ENVELOPE PROT(sensor data.roll, sensor data.pitch,
sensor_data.airspeed, AP _log_data)) {

if (Autopilot HDG_SEL_GPS(false, sensor data.roll, sensor data.heading,
sensor_data.latitude, sensor data.longitude, BULLSEYE LATITUDE,
BULLSEYE LONGITUDE, AP _log data)) {

if (Autopilot SPD TRIM(sensor_data.airspeed, sensor_data.pitch, SPD_TARGET,
AP log data)) {

ap_flight phase = GPS HOMING;
}
else ap flight phase = SPD_DESCENT;
}
else {
ap_flight phase = GPS HOMING;
}
}
}

68

Spring 2025 Ortiz, Noronha, Zagrocki

xQueueSend(Autopilot Queue, &AP log data, portMAX DELAY);
vTaskSuspend(NULL);

b
b

bool Autopilot HDG SEL IMU(float roll, float yaw, float bearing change, Autopilot Data&
AP log data) {

AP log data.ap mode ="AP HDG SEL IMU";

unsigned int pitcheron angle = 0;

static const float target bearing = wrap angle(yaw + bearing_change); // Gets target bearing
only from first yaw reading (on release detection).

float bearing_correction = signed bearing_correction(yaw, target bearing); // Continuously
recalculated from current bearing.

if ((bearing_correction >= -180) && (bearing_correction <= (-180+TURN_ BIAS)) &&
RIGHT TURN_BIAS) bearing_correction = -bearing_correction;

else if ((bearing_correction >= (180-TURN_BIAS)) && (bearing_correction <= 180) &&
LEFT TURN_BIAS) bearing_correction = -bearing_correction;

float target roll = Kp ROLL BEARING CORR#*bearing_correction; // To turn right, target
roll is right

if (target_roll <ROLL LIM_MIN) target roll= ROLL LIM MIN;

else if (target roll > ROLL LIM MAX) target roll= ROLL LIM MAX;
AP log data.ap target bearing = target bearing;

AP log data.ap target roll = target roll;

AP log data.ap target pitch = 0;

// First case: Flight within desired envelope for bearing

if ((bearing_correction >= HDG_TARGET DEVIATION LOW) && (bearing_correction <=
HDG TARGET DEVIATION HIGH)) {

target roll = 0;
AP log data.ap target roll = 0;
// ' Verify that roll also within desired envelope for 0 bearing correction

if ((target_roll-roll >= ROLL TARGET DEVIATION LOW) && (target roll-roll <=
ROLL TARGET DEVIATION HIGH)) {

actuate pitcherons(0, MAINTAIN ANGLE);
return true; // Don't do anything (Handover to AP SPD_TRIM)

}

69

Spring 2025 Ortiz, Noronha, Zagrocki

// Second case: Flight within desired envelope for bearing but not for roll
else {
// Could be greatly simplified to wings level, but doing this initially to match third case
pitcheron_angle = (unsigned int)round(Kp SERVO ANGLE ROLL*(fabs(target roll -
roll)));

if (pitcheron angle > MAX PITCHERON ANGLE) pitcheron angle =
MAX PITCHERON ANGLE;

if (target roll - roll > ROLL TARGET DEVIATION HIGH) {
/I Roll is too low (aircraft is banking too much to the right), correct right
actuate pitcherons(pitcheron angle, ROLL RIGHT);

§

else if (target roll - roll <-ROLL TARGET DEVIATION HIGH) {
// Roll is too high (aircraft is banking too much to the left), correct left
actuate pitcherons(pitcheron angle, ROLL LEFT);

h

else if (target roll - roll > -ROLL _TARGET DEVIATION LOW) {
// Roll is slightly low, apply small correction right
actuate pitcherons(pitcheron angle, ROLL RIGHT);

h

else if (target roll - roll <ROLL TARGET DEVIATION LOW) {
// Roll is slightly high, apply small correction left
actuate pitcherons(pitcheron_angle, ROLL LEFT);

h

else {
// Roll is within the acceptable range, no correction needed
actuate pitcherons(0, MAINTAIN ANGLE);

J

// return false; (by fall through)

h
h

// Third case: Flight outside of envelope for bearing (roll envelope irrelevant)
else {
// Figure out whether left or right turn is needed
// Left Turn Needed = Roll Left
pitcheron_angle = (unsigned int)round(Kp SERVO ANGLE ROLL*(fabs(target roll -

70

Spring 2025 Ortiz, Noronha, Zagrocki

roll)));
if (pitcheron_angle > MAX PITCHERON ANGLE) pitcheron _angle =
MAX PITCHERON ANGLE;

if (target roll - roll > ROLL TARGET DEVIATION HIGH) {
// Roll is too low (aircraft is banking too much to the right), correct right
actuate pitcherons(pitcheron angle, ROLL RIGHT);
}
else if (target roll - roll <-ROLL TARGET DEVIATION HIGH) {
// Roll is too high (aircraft is banking too much to the left), correct left
actuate pitcherons(pitcheron angle, ROLL LEFT);
}
else if (target roll - roll > -ROLL TARGET DEVIATION LOW) {
// Roll is slightly low, apply small correction right
actuate pitcherons(pitcheron angle, ROLL RIGHT);
}
else if (target roll - roll < ROLL TARGET DEVIATION LOW) {
// Roll is slightly high, apply small correction left
actuate pitcherons(pitcheron angle, ROLL LEFT);
}
else {
// Roll is within the acceptable range, no correction needed
actuate pitcherons(0, MAINTAIN ANGLE);

}

}

return false;

}

bool Autopilot HDG SEL_GPS(bool act_true, float roll, float current_heading, float current lat,
float current_long, float target lat, float target long, Autopilot Data& AP _log data) {

AP log data.ap mode ="AP HDG SEL GPS";
unsigned int pitcheron angle = 0;
float target bearing = calculate bearing(current lat, current long, target lat, target long,

current_heading); // Gets target bearing from current and target coordinates (continuously
recalculated)

float bearing_correction = signed bearing_correction(current_heading, target bearing); //

71

Spring 2025 Ortiz, Noronha, Zagrocki

Continuously recalculated from current bearing.

float target roll = Kp ROLL BEARING_ CORR*bearing_correction; // To turn right, target
roll is right

if (target roll <ROLL LIM MIN) target roll=ROLL LIM MIN;

else if (target roll > ROLL LIM MAX) target roll= ROLL LIM MAX;
AP log data.ap target bearing = target bearing;

AP log data.ap target roll = target roll;

AP log data.ap target pitch =0;

// First case: Flight within desired envelope for bearing

if ((bearing_correction >= HDG TARGET DEVIATION LOW) && (bearing correction <=
HDG TARGET DEVIATION HIGH)) {

target roll = 0;
AP log data.ap target roll = 0;
// Verify that roll also within desired envelope for 0 bearing correction

if ((target_roll-roll >= ROLL TARGET DEVIATION LOW) && (target roll-roll <=
ROLL TARGET DEVIATION HIGH)) {

if (act_true) actuate pitcherons(0, MAINTAIN ANGLE);
return true; // Don't do anything (Handover to AP_SPD TRIM)
h
/I Second case: Flight within desired envelope for bearing but not for roll
else {
// Could be greatly simplified to wings level, but doing this initially to match third case

pitcheron angle = (unsigned int)round(Kp SERVO_ANGLE ROLL*(fabs(target roll -
roll)));

if (pitcheron_angle > MAX PITCHERON ANGLE) pitcheron angle =
MAX PITCHERON_ ANGLE;

if (target roll - roll > ROLL TARGET DEVIATION HIGH) {
// Roll is too low (aircraft is banking too much to the right), correct right
actuate pitcherons(pitcheron angle, ROLL RIGHT);

h

else if (target roll - roll <-ROLL TARGET DEVIATION HIGH) {
// Roll is too high (aircraft is banking too much to the left), correct left
actuate pitcherons(pitcheron angle, ROLL LEFT);

}
else if (target roll - roll > -ROLL TARGET DEVIATION LOW) {

72

Spring 2025 Ortiz, Noronha, Zagrocki

// Roll is slightly low, apply small correction right
actuate pitcherons(pitcheron angle, ROLL RIGHT);

§

else if (target roll - roll <ROLL TARGET DEVIATION LOW) {
// Roll is slightly high, apply small correction left
actuate pitcherons(pitcheron_angle, ROLL LEFT);

§

else {
// Roll is within the acceptable range, no correction needed
actuate pitcherons(0, MAINTAIN ANGLE);

§

// return false; (by fall through)

§
h

// Third case: Flight outside of envelope for bearing (roll envelope irrelevant)
else {
// Figure out whether left or right turn is needed
// Left Turn Needed = Roll Left
pitcheron_angle = (unsigned int)round(Kp SERVO ANGLE ROLL*(fabs(target roll -

roll)));
if (pitcheron angle > MAX PITCHERON ANGLE) pitcheron angle =
MAX PITCHERON ANGLE;

if (target_roll - roll > ROLL_TARGET DEVIATION HIGH) {
// Roll is too low (aircraft is banking too much to the right), correct right
actuate pitcherons(pitcheron_angle, ROLL RIGHT);

¥

else if (target roll - roll <-ROLL TARGET DEVIATION HIGH) {
// Roll is too high (aircraft is banking too much to the left), correct left
actuate pitcherons(pitcheron angle, ROLL LEFT);

¥

else if (target roll - roll > -ROLL_TARGET DEVIATION LOW) {
// Roll is slightly low, apply small correction right
actuate pitcherons(pitcheron angle, ROLL RIGHT);

}
else if (target roll - roll <ROLL TARGET DEVIATION LOW) {

73

Spring 2025 Ortiz, Noronha, Zagrocki

// Roll is slightly high, apply small correction left
actuate pitcherons(pitcheron angle, ROLL LEFT);
}
else {
// Roll is within the acceptable range, no correction needed
actuate pitcherons(0, MAINTAIN ANGLE);

}

}

return false;

bool Autopilot SPD TRIM(float airspeed, float pitch, float target airspeed, Autopilot Data&
AP log data) {

AP log data.ap mode ="AP SPD TRIM";

unsigned int pitcheron angle = 0;

float speed correction = target airspeed - airspeed; // Positive speed correction = need to
speed up (too slow) => Pitch nose down.

float target pitch = Kp PITCH_SPD CORR*speed_correction; / Kp NEGATIVE! e.g. +10
speed correction = -10 target pitch

/I Limit checking for target pitch

if (target pitch <PITCH_LIM_MIN) target pitch =PITCH LIM MIN;

else if (target pitch > PITCH LIM_ MAX) target pitch =PITCH LIM MAX;
AP log data.ap target pitch = target pitch;

AP log data.ap target roll = 0;

// First case: Flight within desired speed envelope

if (((speed_correction >= SPD_TARGET DEVIATION LOW)) && (speed_correction <=
SPD TARGET DEVIATION HIGH)) {

target pitch = 0;
AP log data.ap target pitch = 0;
// Verify that pitch also within desired envelope for 0 airspeed correction
if ((target_pitch-pitch >= PITCH _TARGET DEVIATION LOW) && (target pitch-pitch
<=PITCH_TARGET DEVIATION HIGH)) {
actuate pitcherons(0, MAINTAIN ANGLE);
return true; // Don't do anything (handover to AP HDG_SEL IMU)

}

74

Spring 2025 Ortiz, Noronha, Zagrocki

// Second case: Flight within desired envelope for speed but not for pitch
else {
pitcheron_angle = (unsigned int)round(Kp SERVO ANGLE PITCH*(fabs(target pitch
- pitch)));
if (pitcheron angle > MAX PITCHERON ANGLE) pitcheron angle =
MAX PITCHERON ANGLE;

if (target_pitch-pitch > PITCH_TARGET DEVIATION HIGH)
actuate pitcherons(pitcheron angle, PITCH NOSE UP);

else if (target pitch-pitch <-PITCH TARGET DEVIATION HIGH)
actuate pitcherons(pitcheron angle, PITCH NOSE DOWN);

else if (target pitch-pitch > -PITCH_TARGET DEVIATION LOW)
actuate pitcherons(pitcheron angle, PITCH NOSE UP);

else if (target pitch-pitch < PITCH _TARGET DEVIATION LOW)
actuate pitcherons(pitcheron angle, PITCH NOSE DOWN);

else actuate pitcherons(0, MAINTAIN ANGLE);

j
b

// Third case: Flight outside of envelope for speed (pitch envelope irrelevant)
else {
// Figure out whether pitch up or pitch down is needed
// Pitch Up Needed = PITCH_NOSE UP
pitcheron_angle = (unsigned int)round(Kp SERVO ANGLE PITCH*(fabs(target pitch -
pitch)));

if (pitcheron_angle > MAX PITCHERON ANGLE) pitcheron angle =
MAX PITCHERON ANGLE;

if (target_pitch-pitch > PITCH_TARGET DEVIATION HIGH)
actuate pitcherons(pitcheron angle, PITCH NOSE UP);

else if (target pitch-pitch <-PITCH TARGET DEVIATION HIGH)
actuate pitcherons(pitcheron_angle, PITCH_NOSE DOWN);

else if (target pitch-pitch > -PITCH_TARGET DEVIATION LOW)
actuate pitcherons(pitcheron angle, PITCH NOSE UP);

else if (target pitch-pitch < PITCH _TARGET DEVIATION LOW)
actuate pitcherons(pitcheron_angle, PITCH NOSE DOWN);

else actuate pitcherons(0, MAINTAIN ANGLE);
}

return false;

75

Spring 2025 Ortiz, Noronha, Zagrocki

bool Autopilot FLT ENVELOPE PROT(float roll, float pitch, float airspeed, Autopilot Data&
AP log data) {

AP log data.ap mode ="AP FLT ENVELOPE PROT";
// Prority 1: Roll Protection
// Priority 2: Pitch Protection
// Priority 3: Speed Protection
if ((roll <ROLL LIM MIN) && ROLL_PROT _EN) {
AP log data.ap mode ="AP PROT ROLL MIN";
float target roll= ROLL LIM MAX;
AP log data.ap target roll = target roll;
AP log data.ap target pitch=0;
float pitcheron angle = (unsigned int)round(Kp SERVO ANGLE ROLL*(fabs(target roll
- roll)));

if (pitcheron_angle > MAX PITCHERON ANGLE) pitcheron angle =
MAX PITCHERON ANGLE;

actuate pitcherons(pitcheron angle, ROLL RIGHT);
}
else if ((roll > ROLL_LIM_MAX) && ROLL_PROT _EN) {
AP log data.ap mode ="AP PROT ROLL MAX";
float target roll = ROLL LIM MIN;
AP log data.ap target roll = target roll;
AP log data.ap target pitch=0;
float pitcheron angle = (unsigned int)round(Kp SERVO_ANGLE ROLL*(fabs(target roll
- roll)));

if (pitcheron_angle > MAX PITCHERON ANGLE) pitcheron angle =
MAX PITCHERON_ ANGLE;

actuate pitcherons(pitcheron angle, ROLL LEFT);
h
else if ((pitch < PITCH_LIM_MIN) && PITCH_PROT EN) {
AP log data.ap mode ="AP PROT PITCH MIN";
float target pitch = PITCH LIM MAX;
AP log data.ap target pitch = target pitch;
AP log data.ap target roll = 0;

float pitcheron angle = (unsigned
int)round(Kp SERVO ANGLE PITCH*(fabs(target pitch - pitch)));

76

Spring 2025 Ortiz, Noronha, Zagrocki

if (pitcheron_angle > MAX PITCHERON ANGLE) pitcheron _angle =
MAX PITCHERON_ ANGLE;

actuate pitcherons(pitcheron angle, PITCH NOSE UP);
h
else if ((pitch > PITCH_LIM_MAX) && PITCH_PROT _EN) {
AP log data.ap mode ="AP PROT PITCH MAX";
float target pitch = PITCH_LIM_MIN;
AP log data.ap target pitch = target pitch;
AP log data.ap target roll = 0;

float pitcheron angle = (unsigned
int)round(Kp SERVO ANGLE PITCH*(fabs(target pitch - pitch)));

if (pitcheron_angle > MAX PITCHERON ANGLE) pitcheron angle =
MAX PITCHERON ANGLE;

actuate pitcherons(pitcheron angle, PITCH NOSE DOWN);
h
else if ((airspeed < STALL SPEED) && STALL PROT EN) {
AP log data.ap mode ="AP PROT STALL";
// float target_airspeed = STALL SPEED+OVERCORRECTION SPEED;
float target pitch = PITCH LIM_ MIN;
AP log data.ap target pitch = target pitch;
AP log data.ap target roll = 0;

unsigned int pitcheron angle = (unsigned
int)round(Kp SERVO_ANGLE PITCH*(fabs(target pitch - pitch)));

if (pitcheron_angle > MAX PITCHERON ANGLE) pitcheron angle =
MAX PITCHERON_ ANGLE;

actuate pitcherons(pitcheron angle, PITCH NOSE DOWN);
h
else if ((airspeed > OVERSPEED) && OVSPD PROT _EN) {
AP log data.ap mode ="AP _PROT OVERSPEED";
// float target_airspeed = OVERSPEED-OVERCORRECTION_ SPEED;
float target pitch = PITCH LIM MAX;
AP log data.ap target pitch = target pitch;
AP log data.ap target roll = 0;

unsigned int pitcheron angle = (unsigned
int)round(Kp SERVO ANGLE PITCH*(fabs(target pitch - pitch)));

if (pitcheron_angle > MAX PITCHERON ANGLE) pitcheron angle =

77

Spring 2025 Ortiz, Noronha, Zagrocki

MAX PITCHERON ANGLE;
actuate pitcherons(pitcheron angle, PITCH NOSE UP);
}

else return true;

return false;

bool Autopilot ROLL FIXED(float roll, float target roll, Autopilot Data& AP _log data) {

AP log data.ap mode ="AP ROLL FIXED";

if (target_roll <ROLL LIM_MIN) target roll= ROLL LIM MIN;

else if (target roll > ROLL LIM MAX) target roll=ROLL LIM MAX;

AP log data.ap target roll = target roll;

AP log data.ap target pitch = 0;

if ((target_roll-roll >= ROLL TARGET DEVIATION LOW) && (target roll-roll <=
ROLL TARGET DEVIATION HIGH)) {

actuate pitcherons(0, MAINTAIN ANGLE);

return true; // Don't do anything (Handover to AP SPD TRIM)
}
/I Second case: Flight within desired envelope for bearing but not for roll
else {

float pitcheron angle = (unsigned int)round(Kp SERVO_ANGLE ROLL*(fabs(target roll
- roll)));

if (pitcheron_angle > MAX PITCHERON ANGLE) pitcheron angle =
MAX PITCHERON ANGLE;

if (target roll - roll > ROLL TARGET DEVIATION HIGH) {
// Roll is too low (aircraft is banking too much to the right), correct right
actuate pitcherons(pitcheron angle, ROLL RIGHT);

h

else if (target roll - roll <-ROLL TARGET DEVIATION HIGH) {
// Roll is too high (aircraft is banking too much to the left), correct left
actuate pitcherons(pitcheron angle, ROLL LEFT);

}

else if (target roll - roll > -ROLL TARGET DEVIATION LOW) {
// Roll is slightly low, apply small correction right

78

Spring 2025 Ortiz, Noronha, Zagrocki

actuate pitcherons(pitcheron angle, ROLL RIGHT);

§

else if (target roll - roll <ROLL TARGET DEVIATION LOW) {
// Roll is slightly high, apply small correction left
actuate pitcherons(pitcheron angle, ROLL LEFT);

J

else {
// Roll is within the acceptable range, no correction needed
actuate pitcherons(0, MAINTAIN ANGLE);

j
b

return false;

bool Autopilot PITCH FIXED(float pitch, float target pitch, Autopilot Data& AP log data) {
AP log data.ap mode ="AP PITCH FIXED";
if (target_pitch < PITCH_LIM_MIN) target pitch =PITCH_LIM_ MIN;
else if (target pitch > PITCH_LIM MAX) target pitch=PITCH_LIM_ MAX;
AP log data.ap target pitch = target pitch;
AP log data.ap target roll = 0;

if ((target_pitch-pitch >= PITCH_TARGET DEVIATION LOW) && (target pitch-pitch <=
PITCH TARGET DEVIATION HIGH)) {

actuate pitcherons(0, MAINTAIN ANGLE);

return true; // Don't do anything (handover to AP HDG SEL IMU)
}
else {

float pitcheron angle = (unsigned
int)round(Kp SERVO ANGLE PITCH*(fabs(target pitch - pitch)));

if (pitcheron_angle > MAX PITCHERON ANGLE) pitcheron angle =
MAX PITCHERON ANGLE;

if (target pitch-pitch > PITCH_TARGET DEVIATION HIGH)
actuate pitcherons(pitcheron_angle, PITCH NOSE UP);

else if (target pitch-pitch <-PITCH_TARGET DEVIATION HIGH)
actuate pitcherons(pitcheron angle, PITCH NOSE DOWN);

else if (target pitch-pitch > -PITCH_TARGET DEVIATION LOW)
actuate pitcherons(pitcheron_angle, PITCH _NOSE UP);

79

Spring 2025 Ortiz, Noronha, Zagrocki

else if (target pitch-pitch < PITCH_TARGET DEVIATION LOW)
actuate_pitcherons(pitcheron angle, PITCH NOSE DOWN);

else actuate pitcherons(0, MAINTAIN ANGLE);
// return false; (by fall through)
}

return false;

}

// File: datalogger.cpp

// This file contains all SD card related functions to initialize and write to the SD Card
#include <SPIL.h>

#include <SD.h>

#include "pin_map.h"
#include "datalogger.h"
#include "sensors.h"

#include "autopilot.h"
#include "pitcheron servos.h"
#include "tasks.h"

#include "queues.h"

#include "semaphores.h"

#define FILE_ COUNT_START 0

#define INIT _DELAY_SD 100

#define LINE_ NUM_START 1

#define DP_ DATA 3 // Decimal places to record
#define DP_GPS 6 // Latitude/Longitude decimal places

#define GPS_FIX DELAY THRESHOLD 0.250 // If more than 250ms passed since last fix,
take data from other sensors again

bool log to_serial;
bool log to SD;

80

Spring 2025 Ortiz, Noronha, Zagrocki

File datafile; // File object to handle file writing
SPIClass mySPI(VSPI);

void init_SD(bool serial log, bool SD_log) {
if (serial log) log to serial = true;
else log to_serial = false;
if (SD_log) log to SD = true;
else log to SD = false;
if (!log_to SD) return;
unsigned int file _counter = FILE COUNT_START; // Start the file counter at 1
char filename[16];
Serial.print("Initializing SD Card...");
pinMode(SD_CS, OUTPUT);
digitalWrite(SD_CS, HIGH);
mySPLbegin(SD_SCK, SD_MISO, SD_MOSI, SD_CS);
/I SPLsetFrequency(1000000);
if (!SD.begin(SD_CS, mySPI, 80000000)) {
Serial.println("Card failed, or not present.");
log to SD = false;
}
Serial.println("DONE!");
if (log_to_SD == true) {
Serial.println("Searching for next available filename");
/I Get next filenumber for filename
sprintf(filename, "/data%03u.csv", file_counter); // Create the filename with the counter
while(SD.exists(filename)) {
file_counter++;
if (file_counter >= 1000) {
file_counter = FILE COUNT _ START;
Serial.println("Overwriting file /data000.csv... 1000+ files in storage. Please DELETE
SOME!!!™);
sprintf(filename, "/data%03u.csv", file_counter); // Create the filename with the
counter

break;
}

81

Spring 2025 Ortiz, Noronha, Zagrocki

else sprintf(filename, "/data%03u.csv", file counter); // Create the filename with the
counter

}

datafile = SD.open(filename, FILE WRITE);
// Open File
if (datafile) {
Serial.printf("Writing to file: /data%03u.csv\n", file counter);
§
else {
Serial.printf("Failed to Open File: /data%03u.csv for writing!\n", file counter);
log to SD = false;
return;
§
// Write Header to file

const char csv_header[] =
"Line Num,ESP32 Time s,ID0O IMU,LinAcc x,LinAcc_y,LinAcc zPitch,Roll,Yaw,Gyro x,G
yro y,Gyro z,Magnet uT x,Magnet uT y,Magnet uT z,"

"Grav_x,Grav_y,Grav_z,Quat re,Quat i,Quat j,Quat k,IDI ASPD,RawPress Paitemp C,Raw
Airspeed,CorrAirspeed,"”

"ID2_GPS,latitude,longitude,heading,gnd speed,altitude,hours,mins,secs,hundredths,satellites,"
"ID3 AP[Flight Phase,AP Mode, AP HDG TGT,AP ROLL TGT,AP PITCH TGT,"

"ID4 SERVO,servo L angle,servo R angle,servo Angle TGT,servo Action TGT\n";

Serial.println("Writing .csv header:");

datafile.print(csv_header);

datafile.flush();

if (log_to_serial) {
Serial.print(csv_header);

}
Serial.println(".csv Header Writing DONE!");

82

Spring 2025 Ortiz, Noronha, Zagrocki

void log_data(void* pvParameters) {
float current_time = 0;
IMU_Data imu;
Airspeed Data pitot;
GPS_Data gps;
Flight Data ap input data;
Autopilot Data AP data;
Pitcheron Data pitcherons;
digitalWrite(BUILTIN _LED PIN, LOW);
unsigned long line num = LINE NUM_START; // These are only initialized once
while(true) {
//Serial.println("Datalogging Task");
static unsigned long start time = micros();
// Serial.println("Taking GPS Semaphore");
// xSemaphoreTake(gps_done, portMAX DELAY);
xQueueReceive(GPS_Queue, &gps, portMAX DELAY);

// Serial.println("Taking IMU Semaphore");
// xSemaphoreTake(imu_done, portMAX DELAY);
xQueueReceive(IMU_Queue, &imu, portMAX DELAY);

// Serial.println("Taking Airspeed Semaphore");
/I xSemaphoreTake(airspeed done, portMAX DELAY);
xQueueReceive(Airspeed Queue, &pitot, portMAX DELAY);

current_time = (float)((micros() - start_time)/1000000.0);

// Load received data onto Flight Data Queue for Autopilot
ap_input data.time = current_time;

ap_input data.pitch = imu.euler[0];

ap_input data.roll = imu.euler[1];

ap_input data.yaw = imu.euler[2];

ap_input data.airspeed = pitot.airspeed[1]; // Corrected airspeed
ap_input data.gnd speed = gps.gnd speed;

83

Spring 2025 Ortiz, Noronha, Zagrocki

ap_input_data.latitude = gps.latitude;
ap_input_data.longitude = gps.longitude;
ap_input_data.heading = gps.heading;

xQueueSend(Flight Data Queue, &ap input data, portMAX DELAY);

// Serial.println("Taking Autopilot Semaphore");
xQueueReceive(Autopilot Queue, &AP_data, portMAX DELAY);
xQueueReceive(Pitcheron Queue, &pitcherons, portMAX DELAY);
/IvTaskResume(autopilot task);

// Log Data to datafile
if (log_to _SD) {
// Line Num + ESP Time + IMU Data

datafile.printf("%lu,%.*f,%u,%.*f,%.*f,%.*£,%.*£,%.%1,%.*£,%.*{,%.*£,%.*£,%.*1,%.*£,%.*{,%.
*£,%.%1,%.%1,%.%1,%.%£,%.%1,%.*1,", line_num, 6, current time, imu.sensor_id, \

DP DATA, imu.lin_accel[0], \

DP DATA, imu.lin_accel[1], \

DP DATA, imu.lin_accel[2], \

DP_ DATA, imu.euler[0], \

DP_DATA, imu.euler[1], \

DP_DATA, imu.euler[2], \

DP_DATA, imu.gyro[0], \

DP_DATA, imu.gyro[1],\

DP_DATA, imu.gyro[2], \

DP_DATA, imu.magnetic[0], \

DP DATA, imu.magnetic[1], \

DP DATA, imu.magnetic[2], \

DP DATA, imu.gravity[0], \

DP DATA, imu.gravity[1], \

DP DATA, imu.gravity[2], \

DP_DATA, imu.rotation[0], \

DP_DATA, imu.rotation[1], \

DP_DATA, imu.rotation[2], \

84

Spring 2025 Ortiz, Noronha, Zagrocki

DP_DATA, imu.rotation[3]);

/I Airspeed/Pitot Tube Data
datafile.printf("%u,%.*f,%.*f,%.*f,%.*{,", pitot.sensor_id, \
DP DATA, pitot.diff pressure, \

DP_DATA, pitot.temperature, \

DP_DATA, pitot.airspeed[0], \

DP_DATA, pitot.airspeed[1]);

/I GPS Data

datafile.printf("%u,%.*f,%.*f,%.*f,%.*f,%.*f,%u,%u,%u,%u,%u,", gps.sensor id, \
DP_GPS, gps.latitude, \

DP_GPS, gps.longitude, \

DP_GPS, gps.heading, \

DP DATA, gps.gnd_speed, \

DP_GPS, gps.altitude, \

gps.hours, gps.minutes, gps.seconds, gps.hundredths, gps.satellites);

/I Autopilot Data
datafile.printf("%u,%s,%s,%.*f,%.*f,%.*f,", AP_data.sensor_id, AP_data.flight phase, \

AP data.ap mode, DP DATA, AP data.ap target bearing, DP_DATA,
AP data.ap target roll, DP_ DATA, AP data.ap target pitch);

/I Servo Data

datafile.printf("%u,%d,%d,%u,%s\n", pitcherons.sensor id, \
pitcherons.raw_angle I, \

pitcherons.raw_angle r, \

pitcherons.angle target, \

pitcherons.action_target); / Do not use comma in action target String!

datafile.flush();

if (log_to_serial) {
// Line Num + ESP Time + IMU Data

85

Spring 2025 Ortiz, Noronha, Zagrocki

Serial.printf("%Ilu,%.*f,%u,%.*f,%.*f,%.*f,%.*1,%.*1,%.*£,%.*1,%.*£,%.*{,%.*1,%.*£,%.*{,%.*
£,%.%£,%.%£,%.%£,%.*£,%.%,%.*f,", line_num, 6, current_time, imu.sensor_id, \

DP DATA, imu.lin_accel[0], \
DP DATA, imu.lin_accel[1], \
DP DATA, imu.lin_accel[2], \
DP_ DATA, imu.euler[0], \

DP DATA, imu.euler[1],\

DP DATA, imu.euler[2], \
DP_DATA, imu.gyro[0], \

DP DATA, imu.gyro[1],\

DP DATA, imu.gyro[2], \

DP_ DATA, imu.magnetic[0], \
DP DATA, imu.magnetic[1], \
DP DATA, imu.magnetic[2], \
DP DATA, imu.gravity[0], \
DP DATA, imu.gravity[1], \
DP DATA, imu.gravity[2], \
DP_DATA, imu.rotation[0], \
DP DATA, imu.rotation[1], \
DP_DATA, imu.rotation[2], \
DP_DATA, imu.rotation[3]);

// Serial.flush();

/I Airspeed/Pitot Tube Data
Serial.printf("%u,%.*f,%.*f,%.*f,%.*1,", pitot.sensor _id, \
DP DATA, pitot.diff pressure, \

DP_DATA, pitot.temperature, \

DP_ DATA, pitot.airspeed[0], \

DP DATA, pitot.airspeed[1]);

// Serial.flush();

// GPS Data
Serial.printf("%u,%.*f,%.*1,%.*,%.*t,%.*t,%u,%u,%u,%u,%u,", gps.sensor_id, \

86

Spring 2025 Ortiz, Noronha, Zagrocki

DP_GPS, gps.latitude, \

DP_GPS, gps.longitude, \

DP_ DATA, gps.heading, \

DP_GPS, gps.gnd speed, \

DP_ DATA, gps.altitude, \

gps.hours, gps.minutes, gps.seconds, gps.hundredths, gps.satellites);

/I Autopilot Data
Serial.printf("%u,%s,%s,%.*f,%.*f,%.*f,", AP_data.sensor id, AP_data.flight phase, \

AP_data.ap mode, DP_ DATA, AP data.ap target bearing, DP DATA,
AP data.ap target roll, DP DATA, AP data.ap target pitch);

/I Servo Data

Serial.printf("%u,%d,%d,%u,%s\n", pitcherons.sensor id, \
pitcherons.raw_angle I, \

pitcherons.raw_angle r, \

pitcherons.angle target, \

pitcherons.action target); / Do not use comma in action target String!

// Serial.flush();

line num-++;
// Resume suspended reading tasks after logging data to SD card and loop again.
if((digitalRead(BUILTIN _LED PIN) ==LOW) && (gps.satellites !=0)) {
digitalWrite(BUILTIN_LED_PIN, HIGH);
}
else {
digitalWrite(BUILTIN_LED_ PIN, LOW);

}

/IvTaskDelay(pdMS TO_ TICKS(10)); // Extra Delay (in milliseconds) to make serial
monitor data human-readable. Too fast otherwise!

vTaskResume(read gps task);
vTaskResume(read imu_task);

87

Spring 2025

vTaskResume(read_pitot_task);
vTaskResume(autopilot_task);

b
b

Ortiz, Noronha, Zagrocki

// File: main.cpp

#include <Arduino.h>
/f#include "soc/soc.h"
/[#include "soc/rtc_cntl reg.h"
#include "esp_sleep.h"
#include "tasks.h"

#include "queues.h"

#include "semaphores.h"
#include "sensors.h"

#include "datalogger.h"
#include "pitcheron_servos.h"
#include "trim_servos.h"
#include "strobe.h"

#include "autopilot.h"
#include "pin_map.h"

#define SERIAL LOG true // Log Data to Serial

#define SD_LOG true // Log Data to SD Card file (failsafe for SD card popping out if true is

included. If that happens, true constant is ignored.)

#define TRIM_SERVOS false // Choose whether to run this program in regular or servo

trimming mode

#define SERVO_ACTUATION_TESTS true // Perform pitcheron servo tests during

initialization? (ignored if TRIM_SERVOS=true)

#define RELEASE INIT false // Wait for release before running main code

#define BOOTUP_DELAY 2000 //ms

Spring 2025 Ortiz, Noronha, Zagrocki

#define INSTALL DEBOUNCE_DELAY 250 //ms
#define INSTALL DELAY 10000
#define RELEASE DELAY 250 //ms

void setup() {
delay(BOOTUP_DELAY);
//WRITE_PERI REG(RTC_CNTL BROWN OUT REG, 0);
pinMode(RELEASE DET PIN, INPUT);
esp_sleep enable ext0 wakeup((gpio num t)RELEASE DET PIN, HIGH);
init_low_level hw();
init_strobe();
init_queues();
init_semaphores();
init_all sensors();

if (TRIM_SERVOS == false) init_servos(SERVO ACTUATION TESTS);

else trim_servos(); // Note: this instruction is blocking. No further lines of code in this file will
execute and RTOS Scheduler never starts.

init SD(SERIAL LOG, SD LOG); // FORMAT SD CARD TO FAT32 BEFORE FIRST USE

if (RELEASE_INIT) {

Serial.println("All Systems Initialized. Waiting for GPIO 19 release detection
(HIGH==LOW=>HIGH)...");

digitalWrite(BUILTIN_LED_ PIN, LOW);
while (true) {
while (true) {
if (digitalRead(RELEASE DET PIN) == HIGH)
delay(INSTALL DEBOUNCE DELAY);
else {
delay(INSTALL DEBOUNCE DELAY);
if (digitalRead(RELEASE DET PIN) == LOW) break;
}
}

&9

Spring 2025 Ortiz, Noronha, Zagrocki

digital Write(BUILTIN_LED PIN, HIGH);

delay(INSTALL DELAY);

if (digitalRead(RELEASE DET PIN) == HIGH) {
digitalWrite(BUILTIN_LED PIN, LOW);
delay(250);
digital Write(BUILTIN_LED PIN, HIGH);
continue;

}

else break;

}
digitalWrite(BUILTIN _LED PIN, LOW);

while (digitalRead(RELEASE DET PIN) == LOW) {
esp_light sleep_start();
delay(RELEASE DELAY); // for debouncing release detection magnet

}
}
init_tasks();
Serial.println("All Systems ONLINE! All Tasks Started Successfully! RTOS Task Scheduler
RUNNING!\n");

void loop() {
;//vTaskStartScheduler();

}

// File: pitcheron_servos.cpp

#include <Arduino.h>
#include <ESP32Servo.h>

90

Spring 2025 Ortiz, Noronha, Zagrocki

#include "pin_map.h"
#include "pitcheron_servos.h"
#include "queues.h"

#define DISABLE SERVO L false
#define DISABLE SERVO R false

// Basic Assumption: Pitcheron Angle = Servo Angle

/!
https://cdn.shopify.com/s/files/1/0570/1766/3541/files/X08H V6.0 Technical Specifcation.pdf?
v=1700472376

/!
https://kstservos.com/collections/glider-wing-servos/products/x08h-plus-horizontal-lug-servo-5-
3kg-cm-0-09s-9-5g-8mm

// Servos 1 and r are connected to left and right pitcherons as viewed from behind the glider.

// CW_CONVENTION: Clockwise = Positive Angle, Counterclockwise = Negative Angle. Set
CONVENTION to -1 if opposite (still assumes 2 identical servos)

#define CW_CONVENTION -1 // 1=Clockwise Positive, -1=Counterclockwise Positive

/I CG_CONVENTION: Determine whether fully assembled glider CG is behind or in front of the
pitcherons (wingtip test!)

#define CG_CONVENTION 1 // 1 = Pitcherons point up, nose goes down (pitcherons behind
CQG, like elevators). -1 = Pitcherons point up, nose goes up (pitcherons in front of CG).

// Note: center would be 0 degrees left and right in code, but may not be the case in real life.
Trim offset added to center

#define RAW_TRIM L 9 // deg. Set this to whatever angle must be requested in independent
servo tests (actuate servo 1) to center left servo when testing (regardless of CONVENTION).

#define RAW_TRIM R 7 // deg. Set this to whatever angle must be requested in independent
servo tests (actuate_servo r) to center right servo when testing (regardless of CONVENTION).

// Define Servo Physical Limits

#define MIN_SERVO us 1000 // us
#define MAX SERVO us 2000 // us
#define PWM_FREQUENCY 333 // Hz
#define INITIAL ANGLE 14

91

Spring 2025 Ortiz, Noronha, Zagrocki

#define ACTUATION DELAY ms 1000 // How long to wait after each actuation test

Servo left servo;
Servo right_servo;

void init_servos_trim(void) {
Serial.println("Initializing Servos...");

if (DISABLE_SERVO _L) Serial.println("Left Servo Disabled. Code will run as if it is
enabled, but without physically initializing/actuating.");

if (DISABLE SERVO R) Serial.println("Right Servo Disabled. Code will run as if it is
enabled, but without physically initializing/actuating.");

........ if (!DISABLE_SERVO L) ESP32PWM::allocateTimer(0); // Allocate timer for both servos
........ if (!DISABLE_SERVO_R) ESP32PWM::allocateTimer(1); / Allocate timer for both servos

if ('IDISABLE_SERVO L) left servo.setPeriodHertz(PWM_FREQUENCY); //333 Hz
Servo

if IDISABLE_SERVO R) right_servo.setPeriodHertz(PWM_FREQUENCY); // 333 Hz
SE€rvo

if ('IDISABLE_SERVO L) left servo.attach(SERVO_L _PIN, 900, 2100); // Attach left servo
to pin

if (\DISABLE SERVO R)right servo.attach(SERVO R PIN, 900, 2100); // Attach right
servo to pin

Serial.println("Servo Initialization Complete. Start Trimming.");

}

// This function maps angles to microseconds (PWM width) based on servo datasheet
int angle2us(int angle, int angle min, int angle _max, int us_min, int us_max) {
if (angle < angle min) angle = angle min; // Handle limit
else if (angle > angle max) angle = angle max; // Handle limit
return us_min + ((angle - angle min) * (us_max - us_min)) / (angle_max - angle _min);

}

void actuate servo_l(int raw_angle servo 1) {

if (!DISABLE_SERVO L) left_servo.writeMicroseconds(angle2us(raw_angle servo I,
MIN SERVO_ANGLE, MAX SERVO_ANGLE, MIN SERVO us, MAX SERVO us));

}

92

Spring 2025 Ortiz, Noronha, Zagrocki

void actuate_servo_r(int raw_angle servo r) {

if (!DISABLE _SERVO R) right servo.writeMicroseconds(angle2us(raw_angle servo r,
MIN _SERVO_ANGLE, MAX SERVO_ANGLE, MIN _SERVO us, MAX SERVO us));

}

// This function initializes the servos, checks range of travel, and then centers servos
void init_servos(bool actuation test = true) {
Serial.println("Initializing Servos...");

if (DISABLE SERVO L) Serial.println("Left Servo Disabled. Code will run as if it is
enabled, but without physically initializing/actuating.");

if (DISABLE _SERVO_R) Serial.printIn("Right Servo Disabled. Code will run as if it is
enabled, but without physically initializing/actuating.");

........ if '{DISABLE SERVO L) ESP32PWM::allocateTimer(0); // Allocate timer for both servos
........ if '{DISABLE SERVO R) ESP32PWM::allocateTimer(1); / Allocate timer for both servos

if IDISABLE_SERVO L) left_servo.setPeriodHertz(PWM_FREQUENCY); //333 Hz
SE€rvo

if ('IDISABLE_SERVO _R) right_servo.setPeriodHertz(PWM_FREQUENCY); //333 Hz
Servo

if !\DISABLE _SERVO L) left servo.attach(SERVO L PIN, 900, 2100); // Attach left servo
to pin

if ('IDISABLE_SERVO _R) right_servo.attach(SERVO_R_PIN, 900, 2100); // Attach right
servo to pin

// Set servos to 0 position

Serial.printf("Centering LEFT servo centered with trim @%ddeg.\n", RAW_TRIM L);
actuate servo 1(RAW_TRIM L+0);

Serial.printf("Centering RIGHT servo centered with trim @%ddeg.\n", RAW_TRIM_R);
actuate servo r(RAW_TRIM_ R+0);

Serial.println("Servo Initialization Complete! Verify both pitcherons are now correctly
trimmed/centered.");

if (CW_CONVENTION == -1) Serial.println("Note: Using alternate convention for angles (+
=> counterclockwise, - => clockwise).");

else if (CW_CONVENTION != 1) Serial.printin("INVALID CW_CONVENTION
SPECIFIED! STOP! Roll control will be scaled incorrectly!");

delay(ACTUATION DELAY ms);
if (actuation_test == true) {
Serial.println("Testing Servos... Observe movement carefully to verify correct

93

Spring 2025 Ortiz, Noronha, Zagrocki

actuation/response.");
// If both servos turn counterclockwise or clockwise, Pitcherons = Ailerons
/I If one turns clockwise and the other counterclockwise, Pitcherons = Elevator

// Turn both servos in same direction (counterclockwise: counter-rotating pitcherons). Left
pitcheron points down, right points up (roll left)

actuate_servo I(RAW_TRIM_L+(SERVO MIN ALLOWED*CW_CONVENTION));
actuate_servo r(RAW TRIM R+(SERVO MIN ALLOWED*CW_CONVENTION));

Serial.printf("Test #1/6: Confirm that LEFT pitcheron points DOWN and RIGHT pitcheron
points UP (both@min allowed deflection = %ddeg).\n", SERVO MIN ALLOWED);

delay(ACTUATION DELAY ms);

// Turn both servos in same direction (clockwise: counter-rotating pitcherons). Left
pitcheron points up, Right points down (roll right)

actuate_servo I(RAW_TRIM_L+SERVO MAX ALLOWED*CW _CONVENTION));
actuate_servo r(RAW TRIM_R+SERVO MAX ALLOWED*CW _CONVENTION));

Serial.printf("Test #2/6: Confirm that LEFT pitcheron points UP and RIGHT pitcheron
points DOWN (both@max allowed deflection = %ddeg).\n", SERVO MAX ALLOWED);

delay(ACTUATION DELAY ms);

/I Center servos
actuate_servo I(RAW_TRIM_L+0);
actuate _servo r(RAW_TRIM_R+0);

Serial.printf("Test #3/6: Confirm that BOTH pitcherons are CENTERED (servo_1
trim@%ddeg; servo_r trim@%ddeg).\n", RAW_TRIM L, RAW TRIM R);
delay(ACTUATION DELAY ms);

// Turn servos in opposite directions (L: clockwise, R: counterclockwise). Left pitcheron
points up, Right points up (pitch nose down/up)

actuate_servo I[(RAW_TRIM L+(SERVO MAX ALLOWED*CW_CONVENTION));
actuate_servo r(RAW_TRIM R+(SERVO MIN ALLOWED*CW_CONVENTION));
Serial.println("Test #4/6: Confirm that BOTH pitcherons point UP (max deflection).");

if (CG_CONVENTION == 1) Serial.println("Pitcherons are BEHIND CG. Confirm this
action causes NOSE PITCH DOWN.");

else if (CG_CONVENTION == -1) Serial.println("Pitcherons are IN FRONT OF CG.
Confirm this action causes NOSE PITCH UP.");

94

Spring 2025 Ortiz, Noronha, Zagrocki

else Serial.printin("INVALID CG_CONVENTION SPECIFIED! STOP! There will be no
pitch control in-flight (only roll)!");
delay(ACTUATION DELAY ms);

// Turn servos in opposite directions (L: counterclockwise, R: clockwise). Left pitcheron
points down, Right points down (pitch nose up/down)

actuate_servo I(RAW_TRIM_ L+(SERVO_MIN ALLOWED*CW_CONVENTION));
actuate_servo r(RAW_TRIM R+(SERVO MAX ALLOWED*CW_CONVENTION));
Serial.println("Test #5/6: Confirm that BOTH pitcherons point DOWN (max deflection).");

if (CG_CONVENTION == 1) Serial.println("Pitcherons are BEHIND CG. Confirm this
action causes NOSE PITCH UP.");

else if (CG_CONVENTION == -1) Serial.println("Pitcherons are IN FRONT OF CG.
Confirm this action causes NOSE PITCH DOWN.");

else Serial.printin("INVALID CG_CONVENTION SPECIFIED! STOP! There will be no
pitch control in-flight (only roll)!");
delay(ACTUATION DELAY ms);

/I Center servos
actuate servo 1(RAW_TRIM L+0);
actuate servo r(RAW_ TRIM_ R+0);

Serial.printf("Test #6/6: Confirm that BOTH pitcherons are CENTERED (servo |
trim@%ddeg; servo_r trim@%ddeg).\n", RAW_TRIM L, RAW_TRIM R);
delay(ACTUATION_ DELAY ms);

Serial.println("Servo Testing Complete! Verify both pitcherons are now correctly
trimmed/centered.");

}

// This function actuates 2 servos using actuate servo 1 and actuate servo r. Specify
ROLL LEFT/ROLL RIGHT/PITCH NOSE UP/PITCH_NOSE DOWN or WINGS LEVEL
for act type direction.

void actuate pitcherons(unsigned int angle, enum Pitcheron Actions act type direction) {

/I Never call this function twice in a row unless xQueueReceive(Pitcheron Queue,
&pitcherons, portMAX DELAY) has been called in between.

95

Spring 2025 Ortiz, Noronha, Zagrocki

Pitcheron Data new_pitcheron data;
new_pitcheron data.sensor id = 4;
new_pitcheron data.angle target = angle;
new_pitcheron data.raw_angle 1=RAW_ TRIM L+0;
new_pitcheron data.raw_angle r= RAW_TRIM_R+0;
new_pitcheron data.action_target = "MAINTAIN ANGLE";
switch(act_type direction) {
case WINGS LEVEL:
/I Angle ignored (same as doing any action with angle=0)
actuate_servo I(RAW_TRIM_L+0);
actuate servo r(RAW_TRIM_ R+0);
new_pitcheron data.action_target = "WINGS LEVEL";
new_pitcheron data.raw_angle 1=RAW_TRIM L+0;
new_pitcheron data.raw_angle r = RAW_TRIM_ R+0;
break;
case ROLL LEFT:
// Servo rotation in same direction = Pitcherons actuate in opposite directions
actuate_servo I(RAW_TRIM L-(angle*CW_CONVENTION));
actuate_servo r(RAW_TRIM R-(angle*CW_CONVENTION));
new_pitcheron data.action target = "ROLL LEFT";
new_pitcheron data.raw_angle 1=RAW _TRIM L-(angle*CW_CONVENTION);
new_pitcheron data.raw_angle r = RAW_TRIM_R-(angle*CW_CONVENTION);
break;
case ROLL RIGHT:
// Servo rotation in same direction = Pitcherons actuate in opposite directions
actuate_servo I(RAW_TRIM_ L+(angle*CW_CONVENTION));
actuate_servo r(RAW_TRIM_R+(angle*CW_CONVENTION));
new_pitcheron data.action target ="ROLL RIGHT";
new_pitcheron data.raw_angle 1=RAW _TRIM L+(angle*CW_CONVENTION);
new_pitcheron data.raw_angle r= RAW_TRIM_R+(angle*CW_CONVENTION);
break;
case PITCH _NOSE UP:
// Servo rotation in opposite direction = Pitcherons actuate in same directions
actuate_servo I(RAW_TRIM L-(angle*CW_CONVENTION*CG_CONVENTION));
actuate_servo r(RAW_TRIM R+(angle*CW_CONVENTION*CG_CONVENTION));

96

Spring 2025 Ortiz, Noronha, Zagrocki

new_pitcheron data.action_target = "PITCH _NOSE UP";

new_pitcheron data.raw_angle 1=
RAW_TRIM L-(angle*CW_CONVENTION*CG_CONVENTION);

new_pitcheron_data.raw_angle r=
RAW_TRIM R-+(angle*CW_CONVENTION*CG_CONVENTION);

break;

case PITCH NOSE DOWN:
// Servo rotation in opposite direction = Pitcherons actuate in same directions
actuate_servo I(RAW_TRIM_ L+(angle*CW_CONVENTION*CG_CONVENTION));
actuate_servo r(RAW_TRIM R-(angle*CW_CONVENTION*CG_CONVENTION));
new_pitcheron data.action target = "PITCH_NOSE DOWN";

new_pitcheron data.raw_angle 1=
RAW_TRIM L+(angle*CW_CONVENTION*CG_CONVENTION);

new pitcheron data.raw angle r=
RAW_TRIM_R-(angle*CW_CONVENTION*CG_CONVENTION);

break;

case MAINTAIN ANGLE:
new_pitcheron data.action target = "MAINTAIN ANGLE";
break;

default:
// Just center and do nothing else (same as WINGS LEVEL).
actuate_servo I(RAW_TRIM_L+0);
actuate _servo r(RAW_TRIM_R+0);
new_pitcheron data.action target = "WINGS LEVEL";
new_pitcheron data.raw_angle 1=RAW_TRIM L+0;
new_pitcheron data.raw_angle r = RAW_TRIM_R+0;
break;

}
xQueueSend(Pitcheron_Queue, &new_pitcheron data, portMAX DELAY);

}

// File: queues.cpp

97

Spring 2025 Ortiz, Noronha, Zagrocki

#include "queues.h"

#include "sensors.h"

#include "pitcheron_servos.h"
#include "autopilot.h"
#include "datalogger.h"

// Declare queues (allocate space) for externs in queues.h
QueueHandle t IMU Queue = NULL;

QueueHandle t Airspeed Queue = NULL;
QueueHandle t GPS Queue = NULL,;

QueueHandle t Autopilot Queue = NULL;
QueueHandle t Pitcheron Queue = NULL;

QueueHandle t Flight Data Queue = NULL; // internal (not datalogged)

void init_queues() {
// 1-element queues containing structs defined in queues.h
IMU_ Queue = xQueueCreate(1, sizeof(IMU_Data));
Airspeed Queue = xQueueCreate(1, sizeof(Airspeed Data));
GPS_Queue = xQueueCreate(1, sizeof(GPS_Data));
Autopilot Queue = xQueueCreate(1, sizeof(Autopilot Data));
Pitcheron Queue = xQueueCreate(1, sizeof(Pitcheron Data));

Flight Data Queue = xQueueCreate(1, sizeof(Flight Data));

// File: semaphores.cpp

#include "semaphores.h"
SemaphoreHandle t 12C MUTEX = NULL,;

// SemaphoreHandle timu done = NULL;
// SemaphoreHandle t airspeed done = NULL;

98

Spring 2025 Ortiz, Noronha, Zagrocki

/I SemaphoreHandle t gps done = NULL,;

// Note: Mutex is a type of semaphore but with task ownership
void init_semaphores() {

// Mutex

[12C_MUTEX = xSemaphoreCreateMutex();

// Binary Semphores

// imu_done = xSemaphoreCreateBinary();

// airspeed_done = xSemaphoreCreateBinary();
/I gps_done = xSemaphoreCreateBinary();

// File: sensors.cpp

// This file contains all sensor related code functions to initialize and read from sensors.
#include <Arduino.h>

#include <Wire.h>

#include "pin_map.h"

#include "sensors.h"

#include "queues.h"

#include "semaphores.h"

/* Include Sensor Libraries */

#include <Adafruit BNOO8x.h>

#include <SparkFun u-blox GNSS Arduino Library.h> //Click here to get the library:
http://librarymanager/All#SparkFun_u-blox GNSS

#include <MicroNMEA .h> //http://librarymanager/All#MicroNMEA

#define RHO 1.142363 //1.225 //kg/m”3 - from
https://www.omnicalculator.com/physics/air-density#what-is-the-density-of-air

#define ROLL INVERTED true // true if PCB is inverted (top) relative to airplane

#define SERIAL. MONITOR BAUDRATE 250000 // bits/sec

99

Spring 2025 Ortiz, Noronha, Zagrocki

#define STARTUP_DELAY 2500 // ms x2

#define [2C_BUS_SPEED 400000 // 100kHz Default

#define MIN_AIRSPEED 5*3.28084 // m/s (pitot reads 0 if under Sm/s due to inaccuracy)
#define UTC_TIMEZONE OFFSET -4 // EST is 4 hours behind UTC

#define GPS_ SAMPLE RATE 25 // Hz (25Hz max)

#define NMEA BUFFER SIZE 255

#define INIT DELAY 100

/* Instantiate sensor classes and types */

// BNO085

Adafruit BNOO8x bno085(-1);

sh2 SensorValue t bno085 value;

// GPS

SFE UBLOX_ GNSS myGNSS;

// Create buffer variables for NMEA Sentence Parsing
char nmeaBuffery NMEA BUFFER SIZE];
MicroNMEA nmea(nmeaBuffer, sizeof(nmeaBuffer));

// Initialize Serial and 12C hardware

void init_low_level hw() {
// Startup Delay is blocking but that's ok.
Serial.begin(SERIAL. MONITOR_BAUDRATE);
delay(STARTUP DELAY);

Serial.println("\nESP32 DBF 2025 Payload X1 Glider RTOS Data Collection Software -
v3.4");

Serial.println("By Daniel Noronha, Ricky Ortiz, and Matthew Zagrocki");
Serial.println("Last Software Update: April 03, 2025");
Serial.println("Wish Me Luck!!!\n");

delay(STARTUP_DELAY);

Wire.begin(SDA_PIN, SCL_PIN);
Wire.setClock(I2C_BUS SPEED);

Serial.println("Serial IO & 12C Initialized Successfully!");
pinMode(BUILTIN_LED PIN, OUTPUT);
digitalWrite(BUILTIN_LED_PIN, HIGH);

100

Spring 2025 Ortiz, Noronha, Zagrocki

/* Sensor Initialization Functions */
// IMU
bool init_bno085() {
Serial.print("Initializing BNO085 IMU...");

// Reports Available: SH2 ACCELEROMETER, SH2 GYROSCOPE CALIBRATED,
SH2 MAGNETIC FIELD CALIBRATED,

// SH2 LINEAR ACCELERATION, SH2 GRAVITY, SH2 ROTATION_ VECTOR,
SH2 GEOMAGNETIC ROTATION VECTOR,

// SH2_ GAME_ROTATION VECTOR, SH2 STEP COUNTER,
SH2 STABILITY CLASSIFIER, SH2 RAW_ACCELEROMETER,

// SH2 RAW_GYROSCOPE, SH2 RAW_MAGNETOMETER, SH2 SHAKE DETECTOR,
SH2 PERSONAL ACTIVITY CLASSIFIER

if (!bno085.begin 12C()) {
Serial.println("\nFailed to find BNOO8x chip!");
return false;

J

if (!bno085.enableReport(SH2 ROTATION VECTOR)) {
Serial.println("\nCould not enable rotation vector");
return false;

j

if (!bno085.enableReport(SH2 LINEAR ACCELERATION)) {
Serial.println("\nCould not enable accelerometer (linear acceleration)");
return false;

h

if (bno085.enableReport(SH2 GRAVITY)) {
Serial.println("\nCould not enable gravity vector output");
return false;

h

if (!bno085.enableReport(SH2 GYROSCOPE CALIBRATED)) {
Serial.println("\nCould not enable gyroscope");
return false;

}

if (!bno085.enableReport(SH2 MAGNETIC FIELD CALIBRATED)) {
Serial.println("\nCould not enable magnetic field calibrated");

101

Spring 2025 Ortiz, Noronha, Zagrocki

return false;

Serial.println("DONE!");
return true;

// Differential Pressure Sensor (Pitot Tube Airspeed)

bool init_abp2() {
Serial.print("Initializing ABP2 Differential Pressure/Airspeed Sensor...");
Serial.println("DONE!");
return true;

bool init_gps() {
Serial.print("Initializing GPS...");
// Starting communication with GPS (assume default [2C Address)
if (!ImyGNSS.begin()) {
Serial.println("\nError communicating with sensor!");
return false;

myGNSS.setl2COutput(COM_TYPE UBX | COM_TYPE NMEA); //Set the 12C port to
output both NMEA and UBX messages

myGNSS.saveConfigSelective(VAL CFG_SUBSEC IOPORT); //Save (only) the
communications port settings to flash and BBR

myGNSS.setProcessNMEAMask(SFE UBLOX FILTER NMEA GGA |
SFE UBLOX FILTER NMEA RMC); // We only want GGA and RMC NMEA Messages,
ignore others

myGNSS.setNavigationFrequency(GPS_ SAMPLE RATE); // 5 Hz originally

Serial.println("DONE!");
return true;

void init_all sensors() {

102

Spring 2025 Ortiz, Noronha, Zagrocki

while (!init_bno085()) {
delay(INIT DELAY);
Serial.println("BNOO85 IMU INITTIALIZATION FAILED. RETRYING...");

}

while (linit_abp2()) {
delay(INIT DELAY);
Serial.println("MS4525DO DIFFERENTIAL PRESSURE SENSOR INITIALIZATION
FAILED. RETRYING...");
§
while(!init_gps()) {
delay(INIT DELAY);
Serial.println("GPS INITIALIZATION FAILED. RETRYING...");
}

Serial.println("All Sensors Initialized Successfully!");

}

void quat2eul (float re, float i, float j, float k, float* euler angles, bool degrees=true) {
float sqre = sq(re);
float sqi = sq(i);
float sqj = sq(j);
float sqk = sq(k);
// Note: re/real part = w; 1,J,k are X,y,z in w+xi+yj+zk quaternion components
if (degrees) {
euler angles[0] = RAD TO DEG * (asin(-2.0 * (i * k - j * re) / (sqi + sqj + sqgk + sqre))); //
Pitch
euler_angles[1]=RAD_TO DEG * (atan2(2.0 * (j * k +1 * re), (-sqi - sqj + sqk + sqre)));
// Roll
euler angles[2] = RAD TO DEG * (atan2(2.0 * (i * j + k * re), (sqi - sqj - sqk + sqre))); //
Yaw
}
else {
euler _angles[0] = asin(-2.0 * (1 * k - j * re) / (sqi + sqj + sqk + sqre)); // Pitch
euler_angles[1] =atan2(2.0 * (j * k +1 * re), (-sqi - sqj + sgk + sqre)); // Roll
euler angles[2] =atan2(2.0 * (i * j + k * re), (sqi - sqj - sqk + sqre)); // Yaw
}

103

Spring 2025 Ortiz, Noronha, Zagrocki

/* Sensor Reading Functions */
// IMU
void read _bno085(void* pvParameters) {
// Initialize IMU Data struct
IMU_Data new_imu_data;
new_imu_data.sensor_id = 0;
while(true) {
//Serial.println("BNO Reading Task");
bool rot_read = false;
bool acc_read = false;
bool grav_read = false;
bool gyro read = false;
bool mag_read = false;
int read_count = 0;

while(read count < 5) {

xSemaphoreTake(12C_MUTEX, portMAX DELAY); // This is blocking.
xSemaphoreGive() is not

/l Try to get sensor data
if (!bno085.getSensorEvent(&bno085 value)) {
xSemaphoreGive(I2C_MUTEX);
continue;
h
// Once data is obtained, find out which sensor it belongs to
switch(bno085 value.sensorld) {
case SH2 ROTATION VECTOR:
// Only read data from a particular sensor once in the while loop
if(!rot_read) {
new imu_data.rotation[0] = bno085 value.un.rotationVector.real; / w
new imu_data.rotation[1] = bno085 value.un.rotationVector.i; // x
new imu_data.rotation[2] = bno085 value.un.rotationVector.j; // y
new imu_data.rotation[3] = bno085 value.un.rotationVector.k; // z

104

Spring 2025 Ortiz, Noronha, Zagrocki

xSemaphoreGive(12C_MUTEX);

float euler vector[3] = {0.0,0.0,0.0};

quat2eul(new_imu_data.rotation[0],new imu_data.rotation[1],new imu data.rotation[2],new_im
u_data.rotation[3],euler vector,true);

new_imu_data.euler[0] = -euler vector[0]; // Pitch
if (ROLL_INVERTED) {
if (euler _vector[1] > 0) euler vector[1] -= 180;
else euler vector[1] += 180;
j
new_imu_data.euler[1] = euler vector[1]; // Roll

new_imu_data.euler[2] = -euler vector[2]+180; / Yaw (normalized from 0 to
360)

if (new_imu_data.euler[2] <0) new imu_data.euler[2] = 0;
else if (new_imu_data.euler[2] > 360) new_imu_data.euler[2] = 360; // This
matches GPS heading range.

read count++;
rot_read = true;
}
else xSemaphoreGive(I2C_MUTEX);
break;
case SH2 LINEAR ACCELERATION:
// Only read data from a particular sensor once in the while loop
if(lacc_read) {
new_imu_data.lin_accel[0] = bno085 value.un.linearAcceleration.x * 3.28084; //

ft/s"2

new imu_data.lin accel[1] = bno085 value.un.linearAcceleration.y * 3.28084; //
ft/s"2

new_imu_data.lin_accel[2] = bno085 value.un.linearAcceleration.z * 3.28084; //
ft/s"2

xSemaphoreGive(I12C_MUTEX);
read count++;
acc_read = true;

105

Spring 2025 Ortiz, Noronha, Zagrocki

else xSemaphoreGive(I2C_MUTEX);
break;
case SH2 GRAVITY:
// Only read data from a particular sensor once in the while loop
if(!grav_read) {
new_imu_data.gravity[0] = bno085_ value.un.gravity.x * 3.28084; // ft/s"2
new_imu_data.gravity[1] = bno085_ value.un.gravity.y * 3.28084; // ft/s"2
new_imu_data.gravity[2] = bno085_ value.un.gravity.z * 3.28084; // {t/s"2
xSemaphoreGive(12C_MUTEX);
read count++;
grav_read = true;
}
else xSemaphoreGive(I2C_MUTEX);
break;
case SH2 GYROSCOPE CALIBRATED:
// Only read data from a particular sensor once in the while loop
if(!gyro_read) {
new_imu_data.gyro[0] = RAD TO DEG * bno085_value.un.gyroscope.x; // rad/s

->deg/s

new imu_data.gyro[1]=RAD TO DEG * bno085 value.un.gyroscope.y; // rad/s
> deg/s

new_imu_data.gyro[2] = RAD TO DEG * bno085_value.un.gyroscope.z; // rad/s
=> deg/s

xSemaphoreGive(I2C_MUTEX);
read_count++;
gyro_read = true;

h

else xSemaphoreGive(I2C_ MUTEX);

break;

case SH2 MAGNETIC FIELD CALIBRATED:

// Only read data from a particular sensor once in the while loop

if(!mag_read) {
new imu_data.magnetic[0] = bno085 value.un.magneticField.x; // uT
new imu_data.magnetic[1] = bno085 value.un.magneticField.y; // uT
new imu_data.magnetic[2] = bno085 value.un.magneticField.z; // uT

106

Spring 2025 Ortiz, Noronha, Zagrocki

xSemaphoreGive(12C_MUTEX);
read count++;
mag_read = true;
}
else xSemaphoreGive(I2C_MUTEX);
break;
default:
xSemaphoreGive(12C_MUTEX);
break;

}

}
xQueueSend(IMU_Queue, &new_imu_data, portMAX DELAY);

/I xSemaphoreGive(imu_done);

vTaskSuspend(NULL); // Data logging task will resume this as soon as all data has been
logged.

/I If queue sending fails, it will try again without suspending.

b
b

// ABP2DRRTO001PD2A3XX
void read_abp2(void* pvParameters) {
// Initialize Airspeed Data struct
Airspeed Data new_airspeed data;
uint8 tid = 0x28; // i2c address
uint8 t data[7]; // holds output data
uint8 t cmd[3] = {0xAA, 0x00, 0x00}; / command to be sent

// float outside temp = 32; // in farenheit
// float airpressure = 100000; // in pascals
// float dewpoint = 28; // in farenheit

// float relative _humidity = 0;

float outputmax = 15099494; // output at maximum pressure [counts]

float outputmin = 1677722; // output at minimum pressure [counts]
float pmax = 1; // maximum value of pressure range in psi

107

Spring 2025 Ortiz, Noronha, Zagrocki

float pmin = -1; / minimum value of pressure range in psi
float PSI to pascal = 6894.7572931783;

float percentage = 0; // holds percentage of full scale data

new_airspeed data.sensor id = 1;

while(true) {
//Serial.println("Pitot Reading Task");
xSemaphoreTake(I2C_MUTEX, portMAX DELAY);

Wire.beginTransmission(id);

int stat = Wire.write (cmd, 3); / write command to the sensor
stat |= Wire.endTransmission();
vTaskDelay(pdMS_TO TICKS(10));
Wire.requestFrom(id, (uint8 t)7); // read back Sensor data 7 bytes
inti=0;
for(i=0;1<7;i++) {
data [i] = Wire.read();
}

xSemaphoreGive(12C_MUTEX);

float press_counts = data[3] + data[2] * 256 + data[1] * 65536; // calculate digital pressure
counts

float temp counts = data[6] + data[5] * 256 + data[4] * 65536, // calculate digital
temperature counts

float temp_C = (temp_counts * 200 / 16777215) - 50; // calculate temperature in deg c

//calculation of pressure value according to equation 2 of datasheet

float pressure PSI = (((press_counts - outputmin) * (pmax - pmin)) / (outputmax -
outputmin)) + pmin;

float raw_diff pressure = -pressure PSI * PSI to pascal;

float raw_airspeed = (sqrt(fabs(2 * raw_diff pressure / RHO)))*3.28084;

if (raw_diff pressure < 0) raw_airspeed *=-1;

108

Spring 2025 Ortiz, Noronha, Zagrocki

float corr_airspeed = (raw_airspeed < MIN_AIRSPEED) ? 0.0:raw_airspeed; // Based on
Calibration (airspeed inaccurate below ~5m/s)

new_airspeed data.diff pressure =raw_diff pressure;
new airspeed data.airspeed[0] = raw_airspeed;

new airspeed data.airspeed[1] = corr airspeed;

new airspeed data.temperature = temp C;

xQueueSend(Airspeed Queue, &new airspeed data, portMAX DELAY);
/I xSemaphoreGive(airspeed done);

vTaskSuspend(NULL); // Data logging task will resume this as soon as all data has been
logged.

j
j

void read_gps(void* pvParameters) {
// Initialize GPS_Data struct
GPS Data new gps data;
bool first fix = false;
new_gps_data.sensor_id = 2;
while(true) {
//Serial.println("GPS Reading Task");
xSemaphoreTake(I12C_MUTEX, portMAX DELAY);
myGNSS.checkUblox();
xSemaphoreGive(12C_MUTEX);
// Fetch GPS data character by character
if('nmea.isValid()) {
if (first_fix) {
new_gps_data.latitude = 0;
new_gps_data.longitude = 0;
new_gps_data.heading = 0;
new_gps data.gnd speed = 0;
new_gps_data.altitude = 0;
new_gps_data.hours = 0;
new_gps_data.minutes = 0;

109

Spring 2025 Ortiz, Noronha, Zagrocki

new_gps_data.seconds = 0;
new_gps_data.hundredths = 0;
new_gps_data.satellites = 0;
xQueueSend(GPS_Queue, &new gps data, portMAX DELAY);
// xSemaphoreGive(gps_done);
vTaskSuspend(NULL);
§
//xQueueSend(GPS_Queue, &new gps data, portMAX DELAY);
//IxSemaphoreGive(gps_done);
//vTaskSuspend(NULL);
continue;
§
if (Mirst_fix) {
first_fix = true;
Serial.printf("First GPS Fix Acquired! (in %f seconds)\n", ((float)micros())/1000000.0);
J
/I Store NMEA parsed data (with consistent type-casting)

uint8 t num_sats = nmea.getNumSatellites(); // Can be int but makes queue implementation
much easier

if (num_sats < 1) continue; / Even if NMEA is valid, we do not want to send data with no
satellites (inaccurate)

long alt long;

long heading_long;

float latitude_mdeg = (float)nmea.getLatitude();
float longitude mdeg = (float)nmea.getLongitude();
float heading = (float)nmea.getCourse();

float gnd speed = (float)nmea.getSpeed();

bool altitude = nmea.getAltitude(alt_long);

float alt = (float)alt _long;

uint8 t hours = ((nmea.getHour() + UTC_TIMEZONE OFFSET + 24) % 24); // EST is 4
hours behind UTC

uint8 t minutes = nmea.getMinute();
uint8 t seconds = nmea.getSecond();
uint8 t hundredths = nmea.getHundredths();
/I Clear nmea buffer

110

Spring 2025 Ortiz, Noronha, Zagrocki

nmea.clear(); / We already stored the data in variables above.
/I Adjusting Entries!

latitude mdeg = latitude_mdeg / 1000000;

longitude mdeg = longitude mdeg / 1000000;

gnd_speed = gnd_speed * (1.68781 / 1000); // Knots to ft/s
alt = (alt / 1000)*3.28084; // m to ft

heading = heading / 1000;

// Store Data in struct, then send to queue
new_gps_data.latitude = latitude mdeg;
new_gps_data.longitude = longitude mdeg;
new_gps_data.heading = heading;
new_gps_data.gnd speed = gnd_speed;
new_gps_data.altitude = alt;
new_gps_data.hours = hours;
new_gps_data.minutes = minutes;
new_gps_data.seconds = seconds;
new_gps_data.hundredths = hundredths;
new_gps_data.satellites = num_sats;

xQueueSend(GPS_Queue, &new gps data, portMAX DELAY);
/I xSemaphoreGive(gps_done);
vTaskSuspend(NULL);

//This function gets called from the SparkFun u-blox Arduino Library

//As each NMEA character comes in you can specify what to do with it

//Useful for passing to other libraries like tinyGPS, MicroNMEA, or even

//a buffer, radio, etc.

void SFE_ UBLOX_ GNSS::processNMEA(char incoming)

{
//Take the incoming char from the u-blox I12C port and pass it on to the MicroNMEA lib
//for sentence cracking

111

Spring 2025 Ortiz, Noronha, Zagrocki

nmea.process(incoming);

}

// File: strobe.cpp

#include <Arduino.h>

#include "Adafruit NeoPixel.h"
#include "strobe.h"

#include "pin_map.h"

#define NOT NEOPIXEL false
#define BLINK ON_TIME ms 200
#define BLINK OFF TIME ms 200
#define BLINK RESET TIME ms 0

#define TEST DELAY_ ms 1000
#define LED BRIGHTNESS PERCENT 100 // %
#define NUM_LEDS 3

Adafruit NeoPixel leds = Adafruit NeoPixelNUM_LEDS, STROBE LED PIN, NEO GRB +
NEO_KHZ800);

void init_strobe() {
if (NOT_NEOPIXEL) {

// For Regular LEDs
pinMode(STROBE _LED PIN, OUTPUT);
digitalWrite(STROBE_LED_PIN, HIGH);
Serial.println("Testing LED. Confirm it lights up!");
delay(TEST DELAY ms);
//while(true);
digitalWrite(STROBE_LED_PIN, LOW);

112

Spring 2025 Ortiz, Noronha, Zagrocki

Serial.println("Strobe LED Initialized (ensure OFF).");
h
else {
/I For Addressable LEDs
leds.begin();
leds.setBrightness((uint8_t)((LED _BRIGHTNESS PERCENT/100.0)*255));
for (unsigned int i = 0; i < NUM_LEDS; i++) leds.setPixelColor(i, leds.Color(0, 0, 0));
leds.show();
if (NUM_LEDS == 1) Serial.println("Testing LED. Confirm it lights up!");
else Serial.printf("Testing LEDs. Confirm all %d light up!\n", NUM_LEDS);
delay(TEST DELAY ms);
//while(true);
for (unsigned int i = 0; i < NUM_LEDS; i++) leds.setPixelColor(i, leds.Color(179, 255, 0));
leds.show();
delay(TEST DELAY ms);
for (unsigned int i = 0; i < NUM_LEDS; i++) leds.setPixelColor(i, leds.Color(0, 0, 0));
leds.show();
Serial.println("Strobe LEDs Initialized.");

void blink _strobe(void* pvParameters) {
while(true) {

// Serial.println("Strobe Task");

// Pattern: BlinkBlink......BlinkBlink......

if (NOT_NEOPIXEL) {
// For Regular LEDs
digitalWrite(STROBE_LED_PIN, HIGH);
vTaskDelay(pdMS_TO_TICKS(BLINK ON_TIME ms));
digitalWrite(STROBE_LED_PIN, LOW);
vTaskDelay(pdMS_TO TICKS(BLINK OFF TIME ms));

digital Write(STROBE_LED PIN, HIGH);

vTaskDelay(pdMS_TO_ TICKS(BLINK ON_TIME ms));
digitalWrite(STROBE _LED_ PIN, LOW);

113

Spring 2025 Ortiz, Noronha, Zagrocki

vTaskDelay(pdMS_TO TICKS(BLINK OFF TIME ms));

vTaskDelay(pdMS_TO TICKS(BLINK RESET TIME ms));
}
else {
// For Addressable LEDs
for (unsigned int i = 0; i < NUM_LEDS; i++) leds.setPixelColor(i, leds.Color(179, 255,
0));
leds.show();
vTaskDelay(pdMS TO TICKS(BLINK ON TIME ms));
for (unsigned int i = 0; 1 < NUM_LEDS; i++) leds.setPixelColor(i, leds.Color(0, 0, 0));
leds.show();
vTaskDelay(pdMS TO TICKS(BLINK OFF TIME ms));
for (unsigned int i = 0; 1 < NUM_LEDS; i++) leds.setPixelColor(i, leds.Color(179, 255,
0));
leds.show();
vTaskDelay(pdMS TO TICKS(BLINK ON TIME ms));
for (unsigned int i = 0; i < NUM_LEDS; i++) leds.setPixelColor(i, leds.Color(0, 0, 0));
leds.show();
vTaskDelay(pdMS TO TICKS(BLINK OFF TIME ms));

vTaskDelay(pdMS_TO TICKS(BLINK RESET TIME ms));

// File: tasks.cpp

#include <Arduino.h>
#include "tasks.h"
#include "sensors.h"
#include "datalogger.h"
#include "autopilot.h"

114

Spring 2025 Ortiz, Noronha, Zagrocki

#include "strobe.h"

#define COMMON_STACK SIZE 4096 // bytes. All 4 tasks work with 3072, but not 2048, so
4096 chosen to give enough margin.

#define CPUO 0
#define CPUI 1

TaskHandle tread imu task = NULL;

TaskHandle tread pitot task = NULL;

TaskHandle tread gps task = NULL;

TaskHandle tlog data task = NULL; // Currently Unused handle
TaskHandle t autopilot task = NULL;

TaskHandle t strobe task = NULL;

void init_tasks() {
// 4 Tasks in total: read each of the three sensors and log the data
xTaskCreatePinned ToCore(
log data,
"Task to log Data to SD Card",
COMMON _STACK SIZE,
NULL,
2,
&log data task,

CPUI1 // CPU 1 - Logging can happen independently of data collection to speed things up
(separate processor)

)i
Serial.println("SD Logging Task Started");

xTaskCreatePinnedToCore(
read_gps,
"Task to read GPS Data",
COMMON STACK SIZE,
NULL,
1,

115

Spring 2025 Ortiz, Noronha, Zagrocki

&read gps_task,
CPUO // CPU 0 (All sensors on same core since MUTEX needed for 12C bus anyway, also
same priority.)

)i
Serial.println("GPS Data Logging Task Started");

xTaskCreatePinned ToCore(
read bno085,
"Task to read IMU Data",
COMMON _STACK SIZE,
NULL,
1,
&read imu_task,
CPUO

)i
Serial.println("IMU Data Logging Task Started");

xTaskCreatePinned ToCore(
read abp2,
"Task to read Pitot Tube (Airspeed) Data",
COMMON _STACK SIZE,
NULL,
1,
&read pitot_task,
CPUO

);
Serial.println("Pitot Tube Reading Task Started");
xTaskCreatePinned ToCore(

Autopilot MASTER,

"Full Autopilot (HDG, SPD, ROLL, PITCH) + ENV_PROT",
32768,

116

Spring 2025

NULL,

2,
&autopilot_task,
CPU1

);

Serial.println(" Autopilot Task Started");

xTaskCreatePinnedToCore(
blink_strobe,
"Strobe Light Blinking Task",
COMMON STACK SIZE,
NULL,
1,
&strobe task,
CPU1

);

Serial.println("Strobe Light Blinking Task Started");

}

Ortiz, Noronha, Zagrocki

// File: trim_servos.cpp

#include "trim_servos.h"
#include "pitcheron_servos.h"

// Mini-program for trimming servos if requested by setting TRIM_SERVOS flag

void trim_servos() {
init_servos_trim();
int trim_1=0;
int trim_r = 0;

Serial.println("Servo Trim Program Running. Note down RAW_TRIM L, RAW TRIM R,

and CW_CONVENTION needed to CENTER PITCHERONS.");

117

Spring 2025 Ortiz, Noronha, Zagrocki

Serial.println("Reset/Reprogram with TRIM_SERVOS set to false to disable trim mode.
Then update RAW_TRIM flags in pitcheron_servos.cpp.");

Serial.println("Send all commands over Serial when prompted as Text (ASCII) with \\n (LF)
LINE TERMINATOR.");

Serial.println(" Always use (int)DEGREES for any angles (+/-).");
actuate servo 1(0);
actuate servo r(0);
Serial.printf("Current trim settings: trim_1 = %ddeg, trim_r = %ddeg\n", trim_1, trim_r);
while(true) {
Serial.printf("Select Servo to Trim [L/R]: ");
while (Serial.available() <= 0); // Wait for user input
String user_input = Serial.readStringUntil("\n");
user_input.trim();

if ((user_input =="L") || (user_input =="1")) {
while(true) {

Serial.printf("Enter angle in degrees for LEFT servo (range: %ddeg to %ddeg) or
press Enter to stop trimming: ", MIN_SERVO_ANGLE, MAX SERVO ANGLE);

while (Serial.available() <= 0); // Wait for user input

user input = Serial.readStringUntil("\n');

user_input.trim();

if (user input =="") break;

int user_trim = user_input.tolnt();

/I Check limits

if (user_trim < MIN_SERVO_ANGLE) {
user_trim = MIN_ SERVO ANGLE;
Serial.printf("WARNING: Trim value OUT OF RANGE (too LOW). Setting

trim_1 to Minimum (%ddeg)\n", MIN_SERVO_ANGLE);

}

else if (user_trim > MAX SERVO_ ANGLE) {
user_trim = MAX SERVO ANGLE;

Serial.printf("WARNING: Trim value OUT OF RANGE (too HIGH). Setting
trim_1 to Maximum (%ddeg)\n", MAX SERVO_ANGLE);

}
trim_1=user_trim;
actuate servo l(trim_I);

118

Spring 2025 Ortiz, Noronha, Zagrocki

Serial.printf("Current trim settings: trim_1 = %ddeg, trim_r = %ddeg\n", trim_1,
trim_r);

else if ((user_input =="R") || (user input =="r1")) {
while(true) {

Serial.printf("Enter angle in degrees for RIGHT servo (range: %ddeg to %ddeg) or
press Enter to stop trimming: ", MIN_SERVO ANGLE, MAX SERVO ANGLE);

while (Serial.available() <= 0); // Wait for user input
user_input = Serial.readStringUntil("\n");
user_input.trim();
if (user_input =="") break;
int user_trim = user_input.tolnt();
// Check limits
if (user_trim < MIN_SERVO_ ANGLE) {
user_trim = MIN_SERVO_ANGLE;

Serial.printf("WARNING: Trim value OUT OF RANGE (too LOW). Setting
trim_r to Minimum (%ddeg)\n", MIN_SERVO_ANGLE);

}
else if (user_trim > MAX SERVO_ ANGLE) {
user trim = MAX SERVO ANGLE;

Serial.printf("WARNING: Trim value OUT OF RANGE (too HIGH). Setting
trim_r to Maximum (%ddeg)\n", MAX SERVO_ANGLE);

trim_r = user_trim;
actuate_servo_r(trim_r);

Serial.printf("Current trim settings: trim_1 = %ddeg, trim_r = %ddeg\n", trim 1,
trim_r);

else {

Serial.println("Invalid input provided! Try again and enter only 'L' or 'R’
(case-insensitive).");

}

119

Spring 2025 Ortiz, Noronha, Zagrocki

120

	Ricardo Ortiz, Daniel Noronha, Matthew Zagrocki
	
	Table of Contents
	
	1. Introduction
	1.1. Problem Overview
	Figure 1. The Glider’s Bonus Points Landing Box

	1.2. Solution Overview
	Figure 2. Assembled Glider Isometric Projection in Autodesk Fusion 360 CAD

	1.3. Summary of Results
	Figure 3. Final Assembly of the Glider

	
	2. Detailed System Requirements
	Table 1. System Requirements
	2.1. Subsystem Hardware Requirements
	2.1.1. Microcontroller
	2.1.2. Sensors
	2.1.3. Power
	2.1.4. Flight Control Actuation
	2.1.5. Release Detection and Strobe Lights
	2.1.6. Flight Data Recorder

	2.2. Software Requirements

	3. Detailed Project Description
	3.1. System Hardware Block Diagram
	
	Figure 4. System Hardware Block Diagram

	3.2. Power Components
	 Figure 5. Power System Block Diagram (excludes 3.3V-5V boost converter for strobe LEDs)
	
	Figure 6. Power System Schematic (1)
	
	Figure 7. Power System Schematic (2)

	3.3. Sensor Selection
	3.4. Programming and Processing Capabilities
	Figure 8. ESP32 Microcontroller and Programming Components Schematic

	3.5. Flight Control Surface Actuation Hardware
	3.6. Release Detection and Strobe Lights
	Figure 9. Strobe lights remained on after a test deployment and landing

	3.7. PCB and RF Design
	Figure 10. Final PCB Layout
	Figure 11. RF Design: GND stitching vias and impedance-matched antenna trace
	Figure 12. JLC0416H-7628 4-layer impedance-controlled PCB stackup description (1.6 mm thickness with 1 oz. outer copper weight and 0.5 oz. inner copper weight)
	Figure 13. Final 3D PCB Design CAD

	3.8. System Software Block Diagram
	Figure 14. ESP32 FreeRTOS Control Code Flowchart

	3.9. Autopilot
	3.10 Structural Design and Assembly
	
	Figure 15. Glider Bottom (left) and top (right) assembly

	3.11 Release Mechanism
	Figure 16. RC Aircraft Mounted Release Mechanism

	4. Testing
	4.1. Flight Data Acquisition
	Figure 17. Example of impartial flight test data collection.

	4.2. Release Detection and Strobe Lights
	4.3. Servo Actuation (Ground Test)
	4.4 Flight Testing

	
	5. Instruction Manual
	
	6. Potential Design Improvements
	6.1. Aerodynamic Design and Flight Stability
	6.2. Release Mechanism
	6.3. Homing (Proportional Integral Derivative Controller) Algorithm

	
	7. Conclusion
	
	8. Appendix
	8.1. Electrical Schematic
	Figure 18. Electrical Schematic Page 1 of 6
	Figure 19. Electrical Schematic Page 2 of 6
	Figure 20. Electrical Schematic Page 3 of 6
	Figure 21. Electrical Schematic Page 4 of 6
	Figure 22. Electrical Schematic Page 5 of 6
	Figure 23. Electrical Schematic Page 6 of 6

	8.2. PCB Layout
	Figure 24. Circuit Board 3D View (1)
	Figure 25. Circuit Board 3D View (2)
	Figure 26. Circuit Board Layout View
	Figure 27. Circuit Board CAD Drawing (Multiple Views)

	8.3. Source Code Listing

