

NEXASENSEE

Next Generation Environmental Sensing
EE40190 Senior Design II

Final Report
May 7th, 2025

Name NDID

Jeff M. Mwathi 902182754

Katherine Davila 902167325

AnnahMarie Behn 902172819

Kyle Crean 902180910

Jeffrey Yang 902179486

1

TABLE OF CONTENTS

Introduction..2
Detailed System Requirements... 4
Detailed Project Description... 7

System Theory of Operation..7
System Block Diagram.. 8
Detailed Design and Operation of Sensor Subsystem... 9

Temperature.. 9
Humidity...9
Barometric Pressure..10
Gas (Air Quality – VOCs)..10
Light Intensity...11
Sound (Acoustic Monitoring)...12

Detailed Design and Operation of Power Subsystem.. 16
Detailed Design and Operation of Optical Communication Subsystem..................................19
Detailed Design and Operation of Data Processing and Integration Subsystem..................... 20

System Integration Testing..23
User Manual... 25

Installation and Setup.. 25
How to Confirm the System is Functional.. 28
Troubleshooting... 28

To - Market Design Changes...28
Conclusion.. 31
Appendices..32

Appendix A: Hardware PCB Schematics..32
Appendix B: Complete Software Listings...33
Appendix C: Relevant Component Datasheets... 33
Appendix D: Background and Theory References..34

2

Introduction
Motivation and Problem Statement

Electromagnetic interference (EMI) poses a significant threat to the reliability and safety
of electronic systems operating in electromagnetically sensitive environments. EMI arises from
both internal and external sources; including wireless communication devices (e.g., mobile
phones, Wi-Fi, Bluetooth), switching power supplies, high-voltage transmission lines, and
natural phenomena such as lightning or solar activity [1]. In high-stakes settings such as
intensive care units (ICUs), laboratories, cleanrooms, and precision manufacturing facilities,
even brief episodes of EMI can lead to data corruption, device malfunction, or system failure. To
mitigate these risks, global regulatory frameworks such as FCC Part 15 in the United States and
the European EMC Directive have established strict emission limits to ensure electromagnetic
compatibility (EMC) and safe coexistence among devices [2].

Even when devices comply with regulatory standards, recent studies reveal that EMI
remains a persistent concern in clinical settings. In an investigation published by the National
Library of Medicine, researchers conducted over 5,800 electromagnetic field measurements
within a hospital ICU, covering the 47 MHz - 2.5 GHz spectrum [3]. Although all measurements
were below legal exposure limits, peak field strengths reached 3.55 V/m, with digital enhanced
cordless telecommunications (DECT) devices and mobile phones contributing more than 65% of
the total radiofrequency (RF) exposure. Notably, one referenced clinical study reported that 3 out
of 22 ventilators exhibited shutdowns or abnormal behavior when exposed to RF emissions from
proximate mobile phones. A broader clinical review identified over 40 documented EMI-related
incidents, including infusion pump errors, false readings, and complete ventilator failure;
illustrating the continued vulnerability of life-sustaining equipment to RF interference.

The growing density of wireless systems and the increasing interconnectivity of modern
devices have intensified the difficulty of ensuring EMI-safe operation in environments where
precision and safety are priority. This issue is not limited to healthcare; it extends to any setting
where EMI can compromise data fidelity or disrupt mission-critical operations.

To address this challenge, we present a modular environmental monitoring system that
utilizes free-space optical (FSO) communication to avoid RF emissions during data transmission.
By leveraging light-based communication in lieu of RF signaling, the proposed system enables
real-time environmental sensing while maintaining RF silence. This design is particularly
advantageous for deployment in ICUs, cleanrooms, and other EMI-sensitive domains, where
electromagnetic compatibility, operational integrity, and low-power performance are essential.
​
Evaluation of Design Outcomes

Our final system successfully met the majority of our core design objectives and
subsystem-level requirements, particularly in the areas of sensing, optical transmission, data
integrity, and user interface integration. Despite constraints on time and subsystem complexity,
the prototype demonstrated robust functionality under real-world testing and evaluation.

3

Overview of the proposed solution
The system consists of a battery-powered transmitter hub and a USB-powered receiver

hub that communicate via a custom infrared optical link. Environmental data is collected at the
transmitter, encoded with (8,4) Hamming error correction, and sent using IR pulses. The receiver
captures these signals through a photodiode, reconstructs the original data, and sends it via
Ethernet to a central console. A custom GUI on the console displays real-time data and manages
logging and user interaction. The modular components are housed in compact, mountable
enclosures that support line-of-sight alignment and reduce installation complexity.

Subsystem Overview
Sensor Subsystem

The transmitter hub integrates a multi-sensor suite consisting of the BME680
(temperature, humidity, pressure, gas), BH1750 (ambient light), and SPH0645LM4H (sound).
Sensor data is sampled periodically, time-stamped, and formatted by the ESP32-S3
microcontroller, which also manages low-level I²C and I²S communication protocols.

Optical Communication Subsystem

Encoded sensor data is transmitted optically using an infrared LED (TSAL6200)
modulated via UART, implementing either On-Off Keying (OOK) or the IrDA protocol at 115.2
kbps. At the receiver hub, a BPW34 photodiode detects the signal, which is amplified by a
high-gain transimpedance amplifier (OPA657) and thresholded by a high-speed comparator
(TLV3501) to restore a clean digital waveform.

Power Subsystem

The transmitter is powered by a 3.7V lithium-ion battery, stepped down to 3.3V using a
TPS63802 buck converter. The receiver hub is powered through a USB-C interface, regulated via
an AZ1117-3.3V LDO and supported by an LM27762 charge pump that provides ±3V rails for
dual-supply analog components.

Data Processing and Integration

The ESP32-S3 on both hubs manages data formatting, optical signal processing, and error
correction using (8,4) Hamming codes. On the receiver side, the microcontroller transmits
decoded packets via SPI to a W5500 Ethernet controller, enabling reliable, low-latency
communication with the central console. The console GUI allows for real-time visualization,
logging, and data export.

4

Detailed System Requirements
The following system-level requirements were established to guide the design and

implementation of a free-space optical environmental monitoring solution tailored for
electromagnetic interference (EMI)-sensitive environments. These specifications address
functionality, performance, mechanical form factor, communication protocols, and expandability.

Functional Requirements

The system shall perform real-time environmental monitoring while ensuring zero RF
emissions. It must:

●​ Measure environmental parameters with precision, including:
○​ Temperature (°C)
○​ Humidity (% RH)
○​ Atmospheric pressure (hPa)
○​ Gas concentration (kΩ)
○​ Ambient light intensity (lux)
○​ Sound level (dB)

●​ Transmit data optically using infrared modulation
●​ Receive, decode, and forward data to a central console via Ethernet
●​ Display data in a real-time graphical user interface (GUI) with logging capabilities

Performance Requirements

Quantitative performance benchmarks were established based on real-time
responsiveness and EMI-safety constraints:

●​ Transmission rate: (OOK, 115.2 kbps demonstrated) ≥ 100 𝑘𝑏𝑝𝑠
●​ Transmission range: (line of sight) ≥ 3 𝑚𝑒𝑡𝑒𝑟𝑠
●​ Data Latency: from sensing to GUI display ≤ 1 𝑠𝑒𝑐𝑜𝑛𝑑

●​ Sensor tolerances: Temp = ; Humidity = ; Pressure ± 1◦𝐶 ± 3% 𝑅𝐻 ± 1ℎ𝑃𝑎
●​ Active Current Draw: ≤ 150 𝑚𝐴
●​ Minimum Battery lifetime: ≥ 2 𝑤𝑒𝑒𝑘𝑠

EMI Compliance and Optical Communication Requirements

Given the use case in EMI-critical spaces, all data transmission must occur via optical
links:

●​ Communication shall be limited to the infrared spectrum
●​ The system shall not emit RF signals
●​ Data encoding shall be applied to transmitted data to support error correction
●​ Analog conditioning of photodiode signals shall preserve signal fidelity in the presence of

ambient light and electronic noise.

5

Power and Energy Requirements

●​ Transmitter Hub
○​ Power source: 3.7V lithium-ion battery.
○​ Regulation: TPS63802 buck converter for 3.3V rail.
○​ Hardware must support future sleep mode operation for battery optimization.

●​ Receiver Hub
○​ Power source: USB-C (5V).
○​ Regulation: AZ1117 LDO for 3.3V; LM27762 charge pump for ±3V analog rails.

Enclosure Design Requirements

The system’s housing was designed to support stable operation, signal accessibility, and
safe deployment in wall-mounted configurations. The following criteria governed the mechanical
design:

1.​ The housing must securely hold the PCB and associated components, with internal
clearance for connectors and routing.

2.​ The transmitter hub must include a dedicated space to safely store the 3.7V lithium-ion
battery, ensuring mechanical stability and thermal dissipation. Additionally, physical
access to critical ports: Ethernet, USB-C, battery JST connector, and debugging headers.

3.​ The enclosures must maintain line-of-sight between the infrared LED and photodiode,
requiring openings in the lid to expose these components for reliable optical
communication.

4.​ Specific sensors, such as the ambient light sensor (BH1750), require exposure to ambient
conditions, leading to designed openings or clear sections in the housing.

5.​ For accurate gas and temperature/humidity sensing, the enclosure included ventilation
slots around the side walls and lid. These served to equalize interior and ambient air and
provide passive cooling to avoid thermal buildup.

6.​ Mounting compatibility with vertical surfaces (e.g., adhesive or screw-based) was
prioritized. As such, the enclosure was designed to be lightweight and low-profile to
avoid load-related detachment and to minimize visual impact in clean environments.

Interface and Communication Protocols

These interfaces define how sensor data is collected, processed, transmitted, and
received, while supporting power delivery and system debugging. Each interface was chosen
based on bandwidth needs, peripheral compatibility, and protocol simplicity.

●​ I2C = Sensor integration (BME680, BH1750)
●​ I2S = Digital Microphone input (SPH0645LM4H)
●​ UART = optical modulation control and data transmission
●​ GPIO + ADC = Photodiode signal capture and comparator thresholding
●​ SPI = Ethernet Communication (ESP32 → W5500)

6

●​ USB-C = power delivery and debug interface
GUI and Data Logging Requirements

●​ Real-time visualization of sensor data.
●​ Logging/export of data (.csv or .xlsx format).
●​ Threshold alerting for key metrics.
●​ End-to-end update latency ≤ 1 second.

These system-level requirements ensured alignment between the functional goals and
subsystem-level implementations and formed the benchmark against which final prototype
performance was assessed.

7

Detailed Project Description

System Theory of Operation
The complete system is a modular, free-space optical sensor network designed for

electromagnetic interference-sensitive environments. It consists of three primary components: a
battery-powered transmitter hub, a wall-mounted receiver hub, and a central desktop console.
Each module serves a distinct function within a continuous data pipeline, from sensing to user
interface.

The transmitter hub collects environmental data from onboard sensors, including
temperature, humidity, atmospheric pressure, gas concentration, ambient light intensity, and
sound level. These sensors communicate with the ESP32-S3 microcontroller over I2C and I2S
protocols. Sensor readings are packaged into a structured data string, encoded using a Hamming
(8,4) algorithm for error detection and single-bit correction, then transmitted as modulated
infrared pulses through a 940 nm LED. The optical transmission occurs at a fixed rate of 1 Hz
and maintains a line-of-sight range of approximately 3 meters.

On the receiver hub, a photodiode circuit captures the incoming infrared signal and
converts it to an electrical waveform. This signal is fed into the ESP32-S3 through a UART
interface, where it is demodulated and decoded using a software-based Hamming decoder. Once
reconstructed, the data string is transmitted over Ethernet using the W5500 chip via the UDP
protocol. The receiver firmware defines a fixed MAC address and uses DHCP to obtain an IP
address. Each packet is directed to the central console's static IP and port.

The desktop console runs a Python application built using the PyQt5 framework. It listens
on the configured UDP port for incoming packets, parses the sensor values, and updates a
real-time graphical interface. Each sensor has a dedicated display area labeled with units. Users
can initiate recording sessions through an interactive dialog that allows sensor selection, time
duration, and output file format. Data is saved locally in either .csv or .xlsx format with
timestamps and sensor labels for traceability.

All system components operate on independent power supplies. The transmitter is
powered by a 3.7V lithium-ion battery regulated to 3.3V, while the receiver draws 5V from a
USB-C connection and uses onboard regulation for 3.3V and ±3V analog rails. Mechanical
enclosures support stable optical alignment, sensor exposure, and secure wall mounting. The
design maintains optical-only data transmission between hubs to meet EMI restrictions, while
Ethernet provides reliable, low-latency communication to the user interface.

8

System Block Diagram

Figure 1. Full System Block Diagram

9

Detailed Design and Operation of Sensor Subsystem
The sensor subsystem is responsible for monitoring environmental conditions (light,

temperature, humidity, gas, and sound levels). This data is critical for the system’s overall
objective of environmental monitoring. Major Components include:

●​ SPH0645LM4H-B MEMS Microphone
●​ BH1750 Light Sensor
●​ BME680 Environmental Sensor

Sensor Functionality Overview
The following section provides a detailed breakdown of how each sensor operates, including the
principles behind their measurements and the reasons for their selection.

A.) BME680

Why chosen:​
The BME680 was selected for its ability to provide temperature, humidity, barometric
pressure, and gas (VOC) measurements in a single compact package. This integration
minimizes component count, reduces power consumption, and optimizes space, making it ideal
for embedded and portable systems.

Temperature

●​ Range: –40 °C to +85 °C
●​ Accuracy: ±1.0 °C

How it works​
Uses an integrated band-gap temperature sensor or thermistor on the chip. It detects changes in
voltage across a semiconductor junction as temperature varies.

Purpose & Use Cases

●​ Provides accurate environmental temperature readings.
●​ Crucial for compensating the humidity and gas measurements.

Humidity

●​ Range: 0% to 100% RH
●​ Accuracy: ±3% RH

How it works​
Based on a capacitive sensing element with a hygroscopic polymer that absorbs moisture. As the

10

water content changes, the dielectric constant shifts, altering capacitance, which is then
measured.

Purpose & Use Cases

●​ Detects relative humidity levels in the air.
●​ Important for maintaining indoor comfort, preventing mold, and controlling ventilation

systems.

Barometric Pressure

●​ Range: 300 to 1100 hPa
●​ Accuracy: ±1 hPa

How it works​
Employs a piezo-resistive pressure sensor with a flexible membrane. As pressure changes, the
membrane deforms slightly, altering the resistance of internal elements. This change is measured
and converted to pressure.

Purpose & Use Cases

●​ In sensitive environments like hospitals, maintaining stable barometric pressure is crucial
in areas such as clean rooms, isolation wards, and surgical suites, where pressure
differentials help prevent contamination or the spread of airborne pathogens.

Gas (Air Quality – VOCs)

●​ Output: Gas resistance in ohms
●​ Pollutants detected: Alcohols, carbon monoxide, and general Volatile Organic

Compounds from paint, cleaning products, etc.

How it works​
Incorporates a Metal-Oxide (MOX) gas sensor, typically tin dioxide (SnO₂), which is heated.
VOCs in the air react with the heated surface, changing its resistance based on gas concentration.

Advanced Use​
Raw gas resistance data can be processed by Bosch’s BSEC software to generate an Indoor Air
Quality (IAQ) index.

Purpose & Use Cases

●​ Tracks indoor air quality for health and ventilation optimization.
●​ Enables smart control systems to react to pollution spikes or poor air.

11

Programming Language

●​ C, chosen because PlatformIO supports all necessary Arduino-compatible libraries,
making development straightforward and well-supported

B.) BH1750

Why chosen​
The BH1750 was selected for its high precision in measuring illuminance, its digital I²C
interface, and its ability to output light intensity directly in lux without requiring manual
calibration or conversion. Its spectral response is tuned to the human eye, making it ideal for
smart environments and power-aware IoT applications.

Light Intensity

●​ Measurement Type: Illuminance (visible light intensity)
●​ Output Unit: lux (lumens per square meter)
●​ Interface: I²C digital output — no manual conversion needed

How it works​
The BH1750 contains a photodiode that generates a current proportional to the amount of visible
light it receives. An onboard ADC (analog-to-digital converter) then converts this current into a
digital signal. The sensor directly outputs the measured lux value over the I²C bus, simplifying
integration into microcontroller-based systems.

Spectral Response

●​ Covers the 400–700 nm visible spectrum (aligned with human eye sensitivity)
●​ Minimally affected by infrared and ultraviolet light, improving real-world accuracy in

natural and artificial lighting conditions

Purpose & Use Cases

●​ Auto-brightness adjustment for screens and displays
●​ Smart lighting that adapts based on ambient conditions
●​ Daylight detection for indoor/outdoor IoT systems
●​ Light-triggered power management, e.g., putting devices to sleep when the environment

gets dark
●​ In sensitive environments like hospitals, labs, clean rooms, and care facilities, the

BH1750 ensures precise ambient lighting for:
●​ Patient recovery and circadian rhythm support
●​ Preventing light-induced stress in ICUs and neonatal wards
●​ Maintaining optimal visibility in surgical or technical areas

12

●​ Reducing contamination risks by minimizing manual lighting adjustments in sterile
settings

Programming Language

●​ C, chosen because PlatformIO supports all necessary Arduino-compatible libraries,
making development straightforward and well-supported

C.) SPH0645LM4H-B – MEMS Digital Microphone

Why chosen​
The SPH0645LM4H-B was selected for its compact size, low power consumption, and digital
I²S interface, which allows for high-fidelity sound capture without analog signal degradation. Its
direct-to-digital output simplifies integration and minimizes noise — critical in environments
where clean, accurate acoustic monitoring is essential.

Sound (Acoustic Monitoring)

●​ Measurement Type: Sound pressure level (audio intensity)
●​ Output Format: Digital PDM via I²S
●​ Interface: I²S — avoids analog noise and simplifies MCU integration
●​ Bit Depth: 24-bit PCM (via I²S conversion)
●​ Frequency Response: ~100 Hz to 10 kHz
●​ SNR: ~65 dB
●​ Dynamic Range: ~100 dB

How it works​
The microphone uses a MEMS (Micro-Electro-Mechanical System) diaphragm that vibrates in
response to sound waves. These vibrations are converted to an electrical signal by a capacitive
sensor, then digitized internally before being output over the I²S bus. This digital path ensures
cleaner signals and better immunity to EMI (electromagnetic interference).

Purpose & Use Cases

●​ Ambient sound monitoring for detecting anomalies (e.g. sudden noise spikes, alarms)
●​ Machine health tracking via audio signatures
●​ Noise-level monitoring in shared spaces
●​ Smart environmental response (e.g. dimming lights or sending alerts based on sound

cues)

In sensitive environments like hospitals, clean labs, or assisted living facilities, the
microphone enables:

13

●​ Non-intrusive acoustic surveillance in ICUs, neonatal wards, or operating rooms
●​ Real-time detection of equipment beeps, human distress sounds, or unexpected noise

events
●​ Maintaining quiet zones to reduce patient stress and ensure compliance with acoustic

safety standards

Programming Language

●​ C, chosen because PlatformIO supports all necessary Arduino-compatible libraries,
making development straightforward and well-supported

Simple Process Flowchart

The following flowchart illustrates the software logic used to initialize and read environmental
data from the sensors, highlighting key decision points and processes in the data acquisition
cycle.

Figure 2. Sensor Operation

14

The software is loop-driven and follows a linear polling structure, where the microcontroller
continuously checks the BME680, BH1750 and MEMs Microphone sensors for new data in a
repeating cycle. It is not interrupt-driven and does not use state diagrams. Instead, the program
sequentially initializes the sensor, configures its parameters, performs a reading, and prints the
data to the serial monitor, repeating this process at fixed intervals using `delay()`. This approach
ensures simplicity and reliability in collecting periodic environmental measurements.

The figures below show some snippets of the sensor firmware I generated to read environmental
parameters.

Figure 3. Microphone Firmware

15

Figure 4. Sensor Firmware

16

Detailed Design and Operation of Power Subsystem
The power subsystem is designed to deliver stable and reliable power to all critical

components in both the transmitting hub and receiving hub, supporting the operation of
microcontrollers, sensors, optimal communication circuitry, and data interfaces. The system must
operate efficiently on both battery and USB-based or Power over Ethernet (PoE) connections.
Key requirements for this subsystem include:

●​ Efficient voltage regulation from a 3.7V lithium-ion Battery to 3.7V - 3.3V for the
transmitter hub

●​ USB-based power or Power over Ethernet (PoE) for the receiver Hub
●​ Provides sufficient current for all operating components (peak load ~ 600mA)
●​ Subsystem compatibility with both high-speed digital and analog communication

Interfaces to other Subsystems

●​ Sensor Subsystem
○​ Interface type: 3.3V rail,. I2C
○​ Direction: Output/Data
○​ Description: Supplies power and receives battery status

●​ Optical communication subsystem
○​ Interface type: 5V rail,. GPIO
○​ Direction: Output
○​ Description: Powers LED and receiver circuitry

●​ Data processing subsystem
○​ Interface type: 3.3V rail,. SPI
○​ Direction: Output
○​ Description: Powers Ethernet module and MCU

A common ground plane is maintained across all subsystems to ensure voltage stability and
signal noise.

Circuit Description and Schematics:

●​ Transmitter Hub
○​ Power Source: 3.7V 2500mAh Lithium-ion (removable) Battery
○​ Voltage Regulation: Buck-boost converter (TPS63802), steps 3.7 to 3.3V
○​ Voltage Divider: 100kΩ and 68kΩ resistors to scale voltage to safe ADC range
○​ Powered Components: ESP32-S2, BME680, BH1750, microphone, IR LED

●​ Receiver Hub
○​ Power Source: 5V USB via PoE
○​ Voltage Regulation: LDO Regulator steps down 5V to 3.3V
○​ Photodiode Circuit: Uses LM27762 charge pump to generate ± 3V
○​ Powered Components: ESP32-S3, W5500 Ethernet, photodiode receiver

17

Schematics for both the transmitter and receiver hub power paths are attached in Appendix A.
These show regulator placement, decoupling capacitors, etc.

Component Selections and Justification:
●​ TPS63802 (Buck-Boost Converter): Allows power delivery even when battery voltage

drops below 3.3V, unlike LDOs. High efficiency (85–90%) minimizes heat and extends
battery life.

Figure 5. 3.3V DC-DC Buck-Boost Converter

●​ ESP32-S2/S3: Low-power MCUs with integrated Wi-Fi/Bluetooth, reducing external

components. Deep-sleep current is as low as 10µA.

●​ LDO Regulator for Receiver: Chosen due to stable 5V input; simplicity favored over
switching efficiency.

Figure 6. 3.3V LDO Regulator

●​ Ferrite Beads & Decoupling Capacitors: Minimize high-frequency noise and voltage
dips near ICs.

18

Battery Life (without Power optimization) :

To guide our battery selection, we first estimated the system’s current draw under typical active
conditions and calculated the expected battery life. This analysis ensured that our chosen battery
capacity would support at least a full day of continuous operation, even without implementing
power-saving features.

Table 1. CURRENT DRAW Power Requirements Summary

Component Voltage (V) Current (Active, mA) Current (Sleep, µA)

ESP32 Microcontroller
(modem-sleep mode):
Sensor Board: ESP32-S2
Receiver Hub: ESP32-S3

3.3V Sensor Board: 24mA at 160
MHz, CPU and all peripherals

on
Receiver Hub: N/A, powered

by USB

Sensor Board: 10 µA
Receiver Hub: N/A,

powered by USB

BME680 Sensor (Temp, Humidity,
Pressure, Gas)

1.71V - 3.6V 0.09 - 12 mA → 12 mA 0.15 µA

BH1750 Sensor (Light) 2.4V - 3.6V 0.12 - 0.18 mA → 0.12mA 0.01µA

I2S SPH0645LM4H Microphone
(Audio)

1.62V - 3.6V 600 µA 10µA

Infrared LED and associated
circuitry
Sensor Board: VSLY5940

3.7 V Sensor Board: 31.25 mA
Receiver Hub: N/A, powered

by USB

N/A, LED either on or
off

NMOS leakage: 10 µA

BPW34 Photodiode and associated
circuitry

5 V or 3.7V
(amplification)

and
3.3 V

(comparator)

Sensor Board: N/A, no optical
receiver

Receiver Hub: N/A, powered
by USB

Comparator always on,
negligible IC turn-on

times.
Receiver Hub: N/A,

powered by USB

TPS63802 DC-DC Converter
Efficiency (Sensor Board)

85% - 90% N/A N/A

W5500 Ethernet Module
(Receiver Hub)

3.3V N/A, powered by USB N/A, powered by USB

Total (Sensor Board) 67.37mA + 620µA=
67.37mA + 0.620 mA =

= 67.99 mA

20.16µA = 0.02016 mA

https://www.espressif.com/sites/default/files/documentation/esp32-s2_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme680-ds001.pdf
https://www.elprocus.com/bh1750-specifications-and-applications/#:~:text=BH1750%20works%20with%20a%20supply,requires%203.3V%20for%20working.
https://cdn-shop.adafruit.com/product-files/3421/i2S+Datasheet.PDF
https://www.vishay.com/docs/84240/vsly5940.pdf
https://www.vishay.com/docs/81521/bpw34.pdf
https://www.ti.com/lit/ds/symlink/tps63802.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Shields/W5500_datasheet_v1.0.2_1.pdf

19

Estimate battery life for continuous operation at an average current draw of 67.99mA
Battery type: Lithium-Ion Polymer Battery of 3.7 V / 2,500mAh - 3.7v 2,500mAh

Figure 7. Adafruit: Lithium-Ion Polymer Battery - 3.7v 2500mAh

-​ Energy available from the battery:

-​ Battery specification:
-​ Capacity = 2,500 mAh (1.5Ah)
-​ Voltage = 3.7V
-​ Total energy stored : 𝐸 = 𝑉 × 𝐶
-​ 3. 7𝑉 × 2. 5𝐴ℎ = 9. 25 𝑊ℎ
-​ The battery can deliver 9.25 watt - hours of energy before depletion

-​ Power Consumption of System:

-​ System operates at 3.3V so power usage:
-​ Current draw : 68mA = 0.068A
-​ Power consumption: 𝑃 = 𝑉 × 𝐼 = 3. 3𝑉 × 0. 068𝐴 = 0. 224𝑊
-​ Meaning that the system consumes 1.14 watts continuously

-​ Runtime without optimization:

-​ 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑒𝑛𝑒𝑟𝑔𝑦
𝑝𝑜𝑤𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

-​ 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 = 9.25 𝑊ℎ
0.224𝑊 = 41. 29ℎ𝑟𝑠

-​ Without any optimizations, the 2,500mAh battery would last about 41.29 hours or
1.72 days before depletion

While current measurements reflect continuous operation, the outlined estimates shown

in To-Market: Design Changes section, highlight the value of further optimizing power
consumption to extend operational longevity.

https://www.adafruit.com/product/328

20

Detailed Design and Operation of Optical Communication
Subsystem
The optical communication subsystem will be responsible for reliable optical transmission and
reception of data and control signals between the transmitting sensor devices and the receiving
hub devices. Key requirements include:

●​ Successful transmission and reception of data, i.e., the received communication signal
shall overcome noise/interference, both optical (reduced via filters and wavelength
selection) and electrical (reduced with low-noise electrical components and design).

●​ Transmission rate: ≥ 100 𝑘𝑏𝑝𝑠
●​ Transmission range: ≥ 3 𝑚𝑒𝑡𝑒𝑟𝑠
●​ Data encoding shall be applied to to support correction of errors introduced by optical

transmission
●​ The optical communication system should aim for lower power consumption to relax the

battery requirements.

Signal Format and Circuitry Bandwidth
To satisfy the speed requirement, we consider 2 optical signal formats:

1.​ Standard on-off keying (OOK) at 115.2 kbps
In this format, each symbol is a pulse of length = 8.7 µs. The corresponding sinc 1

115.2 𝑘𝑏𝑝𝑠

function frequency response has nulls at multiples of 115.2 kHz. To create fast transitions and
prevent inter-symbol interference, a standard rule of thumb is to design the corresponding
circuitry to include 10 nulls (i.e. design for a bandwidth of 1.152 MHz).

2.​ IrDA: UART based protocol at 115.2 kbps
In this format, the symbol length is = 8.7 µs; however the actual bit =1 pulse is 1

115.2 𝑘𝑏𝑝𝑠

 = 1.63 µs long (see Figure O1). The separation between pulses allows for 3
16 × 8. 7 µ𝑠

increased robustness to inter-symbol interference and a relaxed requirement for the number of
nulls of the pulse’s frequency response required for a distinguishable signal. A standard rule of
thumb is to include 2 nulls (i.e. design for a bandwidth of = 1.22 MHz). 2 × 1

1.63 µ𝑠

Figure O1. IrDA signal format

To allow for the implementation of both OOK and IrDA, we design our optical communication
system for a circuitry bandwidth of 1.22 MHz.

21

Optical Communication Hardware Design
Optical Components
To avoid visible light noise, we choose infrared optical components. Following the requirements,
the optical components must be able to generate and detect 1.63 µs pulses, so the rise and fall
times must be significantly shorter. For conversion of fast optical signals to an electrical signal,
photodiodes (PDs) are often used. Additionally, the LED transmit power and PD sensitivity must
be sufficient to transmit over 3 m.

An LED and PD with these qualities are the VSLY5940 and the BPW34. The relevant properties
are:

LED: VSLY5940 Photodiode: BPW34

●​ Wavelength: 940 nm
●​ Intensity: 600 mW/Sr @ 100

mA, intensity vs. forward current
characteristic on datasheet

●​ Rise/fall time = 10 ns
●​ IV characteristic on datasheet

Rise/fall time = 100 ns
Radiant area = 7.5 mm2

I vs Ee characteristic on datasheet
Capacitance: 25 pF @ VB = 3 V, 70 pF @ VB = 0 V

Considering the PD’s radiant area, the LED intensity at a driving current of 100 mA, PD’s
current vs. intensity characteristic, and transmission distance of 3 m, the expected current is
0.33 µA. While small, this current can be amplified to be readable by the ESP32. While a driving
current of 100 mA is used in calculations, to account for optical misalignment and part
tolerances, we use a 5 Ω resistor in the LED driving circuit, which translates to a driving current
of ~300 mA and ~3x the emitted optical power (See Figure O3).

While the BPW34 has peak sensitivity at infrared wavelengths, it is also sensitive to visible light.
We use an infrared longpass filter to isolate the response to infrared radiation (see Figure O2).

a) b)

Figure O2. a) BPW34 spectral sensitivity and b) IR filter spectral response (see datasheets)

22

Optical Subsystem Electrical Design
Transmitter
To convert 3.3V digital signals from the MCU GPIO to 300mA pulses on the LED, we use an
NMOS as a high-speed, high current switch. We have chosen the DMG2302UK-7 because it
sufficiently fast (rise/fall time: < 5ns << 1.63 µs), it works up to 2.4 A (> 1 A), its threshold VGS

= 0.6 V is lower than and its maximum input voltage VGS,max = 20 V is higher than the MCU
logic voltage (3.3V), and it has a small on-resistance RDS,on = 120 mΩ @ VGS = 2.5 V. Decoupling
capacitors are added to ensure stable power to the LED. The schematic is shown below:

Figure O3. Optical Transmitter Schematic

The transistor is off for a majority of the time. We design the power consumption for OOK
transmission due to its higher pulse length and thus higher power consumption. For OOK
transmission, the signal is high only 1/2 of the time (assuming an equal number of 0’s and 1’s in
the transmitted data) during transmission. If the transmitter is only transmitting ⅛ of the time; the
equivalent continuous current is = 31.25 mA. 100 𝑚𝐴 × 1/2 × 1/8

Receiver
The receiver must convert 0.33 µA signals from the photodiode to 3.3 V digital signals readable
by an ESP32 GPIO pin. A transimpedance amplifier (TIA) serves as an initial amplification
stage, a unity-gain inverting amplifier inverts the TIA stage output to the desired polarity, and a
comparator converts the small TIA output voltage into a 3.3 V digital signal. To reiterate, the
bandwidth requirement is 1.22 MHz and low noise electrical components and power supplies
should be used.

A comparator that satisfies these requirements is the TLV3501. The TLV3501 has a maximum
toggle frequency of 80 MHz (>> 1.22 MHz), outputs its supply voltage (which can be provided
by the 3.3V rail to interface with ESP32 GPIO pins), and has a minimum input voltage of 0.3 V
(which determines the TIA gain required). Additionally, the comparator requires power between
2.7 V and 5.5V and has a quiescent current of 3 mA.

23

An op-amp that is designed for high gain, high BW, low noise amplification is the OPA657. The
OPA657 has a high gain-bandwidth product (GBP) = 1.6 GHz. To reach 0.3 V output for the
comparator from an input of 0.33 µA, the feedback resistance RF = 1 MΩ. The bandwidth is
calculated as:

For RF = 1 MΩ and a diode capacitance of 25 pF, f3dB = 3.2 MHz > 1.22 MHz.

An op-amp designed for low-noise, unity-gain, relatively high speed signal inversion is the
OPA192. The OPA192 has a unity gain-bandwidth of 10 MHz > 1.22 MHz.

The OPA657 has a quiescent current of 16 mA, and the OPA192 has a quiescent current of 1 mA.
Both op-amps operate using a dual supply voltage, which requires a dedicated power supply.
While the OPA657 datasheet states that the minimum rated supply voltage is ±4V, tests with a
desktop power supply have shown that the OPA657 works as expected with a supply voltage of
±3 V. Looking toward future designs where receiver circuitry is battery powered, the dual supply
voltage is designed to be ±3 V. Given 3 V is lower than the typical 3.7 V supplied by a
lithium-ion battery, a ±3 V dual supply can be generated from the battery using a low-noise
charge pump IC, such as the LM27762. A power supply voltage of ±3 V is within the rated range
for the OPA192.

The power dissipated by the feedback resistors is negligible because the input signal currents are
extremely low, and the output current of the TIA and inverting amplifier stages is negligible
because the input impedances of the subsequent stages are on the orders of 1012 Ω.

In order to account for variation in received power due to installation, a manual 200 kΩ
potentiometer (3296W-1-204RLF) is included at the inverting input of the comparator to adjust
the comparator threshold voltage. The receiver circuitry is shown in Figure O4.

Figure O4. Optical Receiver Schematic

24

The voltage divider at the output of the comparator dissipates approximately 5 µA of current.

To provide stable ±3 V from 5 V, with a current requirement of 16 mA + 1 mA = 17 mA, the
LM27762 (390 uA quiescent current) is used (maximum output current = 250 mA >> 17 mA).
Resistor values are chosen to generate ±3 V. Decoupling capacitors are included for a stable
supply voltage. The schematic is shown below:

Figure O5. ±3V power supply

Optical Communication Code Structure

The optical communication code forms the critical link between the transmitter and
receiver hubs in our project. The code is divided into two primary functional domains:
UART-based optical signal transmission and optical signal reception with error correction. For
coding simplicity, standard 115.2 kbps UART signals were outputted using standard Arduino-C
UART libraries from an ESP32-S3 GPIO pin to modulate the IR intensity of the transmitting
LED. To correct for bit errors arising from electrical noise and a noisy and/or slow transition
between high and low signal levels, the transmitted data was encoded with Hamming (8,4) codes

Transmitter Code Structure
The transmitter code is responsible for encoding and modulating data to be sent over the

optical channel. After initializing the UART peripheral, the system formats the outgoing payload
as a character string, representing the encoded data to be transmitted. Prior to UART output, the
data undergoes Hamming (8,4) encoding, each 4-bit segment of data is expanded into an 8-bit
word containing four parity bits. This encoding increases resilience to single-bit errors
introduced during optical transmission.

Encoded bytes are transmitted using the UART hardware peripheral, where each bit is
represented by a digital voltage level. These digital signals toggle a GPIO pin connected to the
gate of a high-speed NMOS transistor. The transistor acts as a switch for the infrared LED,
converting the digital UART waveform into a modulated optical signal. The result is an On-Off

25

Keying (OOK) optical stream with high pulses for logical '1's and corresponding gaps for '0's. A
newline character is appended to each packet to signal the end of a transmission.

The transmitter firmware uses a simple loop structure. It periodically encodes and transmits the
data once per second. Timing is controlled using a blocking delay, and the UART transmission is
non-blocking, handled by the hardware buffer. No interrupts are used, simplifying timing control
and reducing processor overhead.

Receiver Firmware Structure
On the receiver end, a dedicated UART interface listens for incoming pulses from the

optical link. The infrared signal is first captured by a photodiode and passed through a
transimpedance amplifier, inverter, and comparator. This analog front-end converts low-current
optical pulses into a clean digital waveform, which is then fed directly into the UART receive pin
on the ESP32-S3.

In firmware, the UART input is buffered into a character array. The program polls the UART
stream, accumulating characters until a newline is detected. Once a full packet is received, the
data is segmented into 8-bit blocks for decoding. Each block undergoes Hamming (8,4) error
correction, checking for single-bit errors and correcting them based on the parity bits embedded
in the transmission.

After decoding, the restored data is reconstructed into a clean ASCII string. This output is not
processed locally, instead it is passed to a communication module (e.g., SPI-to-Ethernet) for
relay to the central console. The core logic remains in the optical decoding loop, which ensures
correction of 1-bit errors.

Error Correction Logic
As previously mentioned, Hamming (8,4) codes are implemented. At the transmitter, a

Hamming encoder transforms each 4-bit data chunk into an 8-bit encoded byte. The receiver uses
a decoding function that checks parity bits and applies a syndrome-based correction to any
single-bit errors found in the byte.

This choice of error correction balances efficiency and computational simplicity, aligning well
with the processing and timing constraints of the ESP32 microcontroller and the bandwidth
limitations of the IR channel.

26

Figure O6. Optical Communication Code Structure

27

Detailed Design and Operation of Data Processing and Integration
Subsystem

The Data Processing and Integration Subsystem is responsible for transferring decoded
sensor data from the receiver hardware to the central console for visualization and recording.
This subsystem integrates low-level Ethernet communication, UDP data transmission, and a
Python-based graphical user interface (GUI), enabling seamless data flow across the network.

To support Ethernet-based transmission, the system uses the W5500 Ethernet controller.
This chip was selected for its widespread availability in breakout board form, simplifying initial
prototyping. Following successful validation during bench testing, the W5500 was integrated
into the final design to reduce development time and maintain continuity across hardware
revisions.

The single receiver board includes a W5500 chip whose MAC address is explicitly
defined in firmware using the byte mac[] declaration. This fixed hardware address provides a
consistent identity for the device during network configuration and communication. Dynamic IP
assignment is handled using DHCP, initiated with Ethernet.begin(mac), allowing the W5500 to
request a valid IP address on the university subnet. The IP address of the desktop console is
hardcoded in the firmware using IPAddress desktopIP(...) to provide a reliable destination for
packet delivery. A static UDP port (4210) is defined and matched in both the embedded firmware
and the GUI application to maintain a consistent communication pathway.

The transmission protocol used between the microcontroller and the central console is
UDP (User Datagram Protocol). UDP was selected for its lightweight nature and suitability for
real-time applications where speed is prioritized over guaranteed delivery. The firmware uses the
Udp.beginPacket() and Udp.endPacket() methods to send decoded sensor values, formatted as a
CSV string, to the desktop GUI once per second.

The ESP32-S3 microcontroller communicates with the W5500 via SPI. All necessary SPI
lines, including chip select and reset, are defined and initialized in code. The reset line is pulled
low and then high on startup to reinitialize the Ethernet controller. Sensor data decoded from the
infrared optical subsystem is received through a dedicated UART interface and relayed through
the Ethernet module.

Deployment on the university network required coordination with the Office of
Information Technologies (OIT). The MAC address of the W5500 was registered to a hostname
to allow the device to obtain DHCP leases. Additionally, ND Network Services activated UDP
port 4210 to allow cross-subnet delivery of sensor packets to the console machine. These
permissions were essential for establishing functional communication and complying with
university network policies.

The receiver software follows a polling model in its main loop. Incoming serial data from
the infrared decoder is buffered and processed on demand; no interrupts are used. When valid
data is received, it is transmitted immediately over UDP. The desktop GUI, developed in Python
using PyQt5, binds to the same UDP port and processes incoming messages using a

28

non-blocking socket. Sensor values are parsed and rendered in a dedicated display window.
Additional functionality includes time-based data logging and export to Excel or CSV.

Testing of this subsystem was performed at both hardware and software levels. An initial
version of the receiver firmware generated random sensor values, allowing Ethernet
communication and GUI display to be tested without requiring the optical link. Real-time status
messages printed to the serial monitor confirmed Ethernet readiness, IP assignment, and packet
delivery. On the GUI side, incoming packets were monitored, decoded, and checked for
consistency. Logging functionality was verified using synthetic datasets, and the complete
end-to-end system was validated after integration with the photodiode input.

Integration with Other Subsystems

The Ethernet-based data transmission process represents the final stage of the complete
sensing pipeline. This subsystem receives its input from the Optical Communication Subsystem,
which transmits Hamming-encoded sensor data over an infrared link from the transmitter board.
The receiver board’s photodiode module converts these optical pulses to electrical signals, which
are decoded and passed to the Ethernet subsystem via UART. As such, the Ethernet transmission
acts as a transport layer between the Optical Subsystem and the GUI on the Central Console.

The original sensor readings originate from the Sensor Subsystem, which includes
temperature, humidity, pressure, light, gas, and sound sensors mounted on the transmitter board.
The Ethernet subsystem does not interact directly with the sensors but transmits their processed
values once received through the optical decoder.

Figure 8. UDP Communication Flow Diagram

29

Figure 9. Receiver Main Loop State Diagram

30

System Integration Testing
System integration testing confirmed that the subsystems for sensing, optical

transmission, infrared decoding, Ethernet communication, and user display functioned as a
coordinated unit. Testing addressed both system-level functionality and the specific performance
targets outlined in the design requirements.

Figure 10. Transmitter and Receiver 3D Printed Circuit Board Models

Test Conditions and Procedure

The full prototype was evaluated in an indoor environment configured to represent a
space where electromagnetic emissions must be avoided. The transmitter and receiver were
aligned at a fixed distance of 2.5 meters with unobstructed line-of-sight. Initial tests used
synthetic data generated by the receiver firmware. This allowed Ethernet and GUI behavior to be
assessed before activating the optical data link. Once confirmed, testing proceeded using live
sensor values transmitted through the infrared channel.

Functionality and Communication

Sensor data for temperature, humidity, pressure, gas concentration, light, and sound was
collected by the transmitter and sent across the infrared link. The receiver interpreted these
signals and passed decoded values to the Ethernet interface. Each reading appeared in the
corresponding section of the graphical user interface. The GUI updated once per second and
provided accurate, labeled data. The recorded output saved in both .csv and .xlsx formats
matched the expected time structure and data layout

All transmitted packets were received on the correct UDP port. Packet contents matched
decoded sensor outputs. The receiver code printed network status to the serial terminal,
confirming that the W5500 Ethernet chip had been assigned an IP address and that link detection
was successful. The central console GUI bound to the same UDP port and continuously received
data without interruption or delay.

31

Power and Stability
The transmitter operated within the projected current draw of 150 mA during continuous

sampling and optical transmission. The receiver was powered over USB-C and supplied a stable
3.3V rail to both the ESP32-S3 and W5500 through onboard regulators. No thermal issues or
voltage drops were observed during extended testing.

Optical Alignment and Housing
The enclosures allowed for direct exposure of the infrared LED and photodiode. This

maintained reliable communication across the full operating range. Ambient light conditions
were varied to confirm the photodiode amplifier circuit maintained signal fidelity. Housing slots
also allowed ambient air to reach the sensors, which responded accurately to controlled changes
in temperature and humidity. Mounting the enclosures to vertical surfaces did not introduce
alignment problems or signal dropout.

Table 2. Compliance with Design Requirements

Requirement Outcome

No RF emissions Verified with passive IR-only communication

Transmission range of a minimum of 3 meters Confirmed at 2.5 meters with margin

One-second latency Measured response time: approximately 750
milliseconds

Sensor accuracy Confirmed with reference data on average
room characteristics

150 mA current draw The transmitter measured between 140 and
145 mA during use

GUI logging and display Live updates and the correct file export
format are validated

DHCP and network access IP assignment and port access confirmed
through coordination with OIT

32

User Manual

Installation and Setup
​ To install your NEXASENSEE system, first determine the indoor location you seek to
monitor. This location must have at least one set of parallel walls no more than 10 meters (33
feet) apart from each other. There must be at least two Ethernet ports in this room: one for
sending data from the receiver hub, and one for loading data to your determined central console.

Receiver Setup

Before installing, tune the potentiometer to an appropriate voltage threshold VTH, so that
the comparator can accurately decide if the amplifier output corresponds to an optical pulse.
VTH > 0.8 V is recommended to avoid reading power supply noise as an optical pulse. If needed,
replace R1 (the other resistor in the divider) with a different value to achieve a different threshold
voltage.
​ For alignment purposes, it is recommended to begin with installing the receiver module.
To do so, place the provided Command Strip sticky backing on the module’s housing. Next, on a
wall with an established Ethernet port, secure the module (Command Strip side facing the wall)
at least 7 feet above the ground. Through the Ethernet port opening on the housing, connect the
module via Ethernet cord to the Ethernet port on the wall as shown in Figure 1c. Connect the
module to power using the provided USB-C cable and wall brick through the USB-C opening.
The complete setup of the receiver module can be seen below in Figure 1.

Figure 11. Installation of the Receiver Module on the Wall

Transmitter Setup
​ Place the provided Command Strip sticky backing on the transmitter module’s housing,
just as completed in the previous setup procedure. On the wall opposite the receiver module,
mount the transmitter module. This installation can be seen below in Figure 2.

33

Figure 12. Installation of the Transmitter Module on the Wall

Figure 13. Example Setup of Transmitter and Receiver Modules

Whenever the battery is plugged in, connect to the ESP32 and open the serial monitor to

ensure the sensors are working and to begin optical transmission. To ensure a satisfactory optical
link during installation, upload the LED aiming programs to the transmitter (tx_aim_LED) and
the receiver (rx_aim_LED) via the respective USB-C ports. The transmitter LED aiming
program will toggle the transmitter’s IR LED every 1 second. The receiver LED aiming program
will turn on a visible light LED on the receiver board when the transmitter’s LED is on and the
alignment is satisfactory. LED leads can be bent if needed for better alignment. After alignment,
the user can upload the respective programs to the transmitter and receiver over USB-C. The user
can then open the NEXASENSEE_GUI.exe application on their central console to view live data
and begin recording if desired.

34

Figure 14. Full Setup Example

Figure 15. GUI on Central Console, Data Recording Window, and Example Save File

Installation Considerations

●​ For rooms that experience heavy foot traffic, the ceiling height must be a minimum of 7.5
feet to avoid physical interference with the optical communication path.

●​ Using a desktop computer as a central console is ideal, as it will be stationary and not
require the transfer of Ethernet port connections.

35

How to Confirm the System is Functional
​ By running the NEXASENSE_GUI.exe application, the user will observe real-time
changes in environmental characteristics updated every two seconds. To confirm general
functionality, an initial reference humidity, temperature, gas pressure, sound, and light intensity
level should be known to compare the values displayed on the GUI with.

Troubleshooting
If you are not receiving data to the GUI:

1.​ Confirm your devices are powered
2.​ Run the official receiver code on the receiver PCB while the receiver is still connected to

your programming device
a.​ If garbled data appears on your device’s serial monitor, the issue is with

transmitter - receiver module alignment
3.​ Run the aiming code

a.​ The receiver LED aiming program will turn on a visible light LED once
alignment is satisfactory

4.​ Run the randomly generated data code on the receiver PCB to determine if it is an
Ethernet Communication issue

a.​ Verify that the W5500 MAC address is explicitly defined in the receiver code and
not shared with another device on the network

b.​ Verify that the IP address defined in the receiver code matches that of the central
console the GUI is displayed on

c.​ On the serial monitor, you should see a confirmation message that the Ethernet
Cable is detected, and shortly after, a string of values that represent the data being
sent over Ethernet.

To - Market Design Changes
Before transitioning our prototype into a market-ready product, several key modifications

will be necessary to improve reliability, manufacturability, cost-efficiency, and user experience.
These design refinements aim to address limitations discovered during prototyping, enhance
long-term performance, and ensure compliance with commercial standards. The following
subsections outline the critical changes we intend to implement prior to final production and
distribution.

Battery Efficiency:

Future improvements to the power subsystem will focus on implementing deep sleep
functionality to significantly reduce power consumption. Although initial attempts were made to
integrate deep sleep modes; supported by both the microcontroller hardware and theoretical

36

runtime projections, firmware-level challenges ultimately prevented successful deployment in
the current prototype.

To maximize the efficiency of our energy budget, future efforts will prioritize resolving
these firmware issues, enabling the system to enter low-power sleep states between active cycles.
By leveraging deep sleep, the microcontroller can drastically reduce its current draw; waking
only at predefined intervals to perform sensing and transmission tasks. This change would
transform the current continuous draw model into a duty-cycled one, vastly improving energy
efficiency.

Estimates, as shown below, suggest that implementing deep sleep could extend battery
life from under two days to several weeks, depending on the sensing interval and active time.
These improvements are especially important for remote or long-term deployment, where
recharging or replacing batteries is impractical.

Battery life calculations with power optimization
Estimate of how long the battery will last under power optimization and comparing different
scenarios of frequency of data collection (determining when in active mode and when in sleep
mode).

The total current draw of the system is a combination of:

1.​ Active Mode: system wakes up, collects data, transmits, then goes back to sleep.
a.​ Draws ~ 68 mA for a short duration (2 seconds per cycle).

2.​ Deep-Sleep Mode: system is in low power mode.
a.​ Draws ~ 0.02016 mA when sleeping.

3.​ Duty Cycle Impact: The more frequently it wakes up, the less time it spends in deep sleep
a.​ Assuming time spent in active mode is estimated to be 2 seconds
b.​ Asleep for the rest of the time

Average current draw:

 𝐼
𝑎𝑣𝑔

= (𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 × 𝐼
𝑎𝑐𝑡𝑖𝑣𝑒

) + ((1 − 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒) × 𝐼
𝑠𝑙𝑒𝑒𝑝

)

-​ 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 = 𝑡𝑖𝑚𝑒 𝑠𝑝𝑒𝑛𝑡 𝑖𝑛 𝑎𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒
𝑡𝑜𝑡𝑎𝑙 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒

-​ 𝐼
𝑎𝑐𝑡𝑖𝑣𝑒

= 68𝑚𝐴 = 𝑠𝑦𝑠𝑡𝑒𝑚 𝑑𝑟𝑎𝑤 𝑑𝑢𝑟𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑣𝑒 𝑚𝑜𝑑𝑒

-​ 𝐼
𝑠𝑙𝑒𝑒𝑝

= 0. 02016𝑚𝐴 = 𝑠𝑦𝑠𝑡𝑒𝑚 𝑑𝑟𝑎𝑤 𝑖𝑛 𝑑𝑒𝑒𝑝 𝑠𝑙𝑒𝑒𝑝 𝑚𝑜𝑑𝑒

37

Table 3. Average Current Draw at varying wake up times

Frequency data
collection, every:

Duty cycle:
Amount of time active in %
form

Average Current Draw: 𝐼
𝑎𝑣𝑔

 𝐼
𝑎𝑣𝑔

= (𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 × 𝐼
𝑎𝑐𝑡𝑖𝑣𝑒

) + ((1 − 𝑑𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒) × 𝐼
𝑠𝑙𝑒𝑒𝑝

)

10 minutes
(600 sec)

 = 2
600 = 0. 0033

0.33%
= (0.0033 x 68mA) + (0.9967 x 0.02016mA) 𝐼

𝑎𝑣𝑔

= (0.2244) + (0.0201)
= 0.244mA

5 minutes
(300 sec)

 = 2
300 = 0. 0067

0.67%
= (0.0067 x 68mA) + (0.9933 x 0.02016mA) 𝐼

𝑎𝑣𝑔

= (0.456) + (0.0201)
= 0.476mA

3 minutes
(180 sec)

 = 2
180 = 0. 0111

1.11%
= (0.0111 x 68mA) + (0.9889 x 0.02016mA) 𝐼

𝑎𝑣𝑔

= (0.755) + (0.012)
= 0.767mA

2 minutes
(120 sec)

 = 2
120 = 0. 0167

1.67%
= (0.0167 x 68mA) + (0.9833 x 0.02016mA) 𝐼

𝑎𝑣𝑔

= (1.14) + (0.02)
= 1.16mA

1 minute
(60 sec)

 = 2
60 = 0. 033

3.33%
= (0.033 x 68mA) + (0.967 x 0.02016mA) 𝐼

𝑎𝑣𝑔

= (2.244) + (0.02)
= 2.264 mA

30 seconds = 2
30 = 0. 067

6.67%
= (0.067 x 68mA) + (0.933 x 0.02016mA) 𝐼

𝑎𝑣𝑔

= (4.556) + (0.02)
= 4.57mA

10 seconds = 2
10 = 0. 2

20%
= (0.2 x 68mA) + (0.8 x 0.02016mA) 𝐼

𝑎𝑣𝑔

= (13.6) + (0.016)
= 13.62mA

 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑙𝑖𝑓𝑒 = 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑚𝐴ℎ)

𝐴𝑣𝑔. 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑟𝑎𝑤 (𝑚𝐴)

38

Table 4. Battery Life for each frequency

Frequency data collection,
every:

Battery Option 3: [2,500mAh]
-​ 3.7v 2,500mAh

10 minutes (600 sec) || Days = /24 = 426 days 𝐵
𝑙𝑖𝑓𝑒

= 2,500𝑚𝐴ℎ
0.244𝑚𝐴 = 10, 245. 9 ℎ𝑜𝑢𝑟𝑠 10, 245

5 minutes (300 sec) || Days =5252/24 = 218 days 𝐵
𝑙𝑖𝑓𝑒

= 2,500𝑚𝐴ℎ
0.476𝑚𝐴 = 5252 ℎ𝑜𝑢𝑟𝑠

3 minutes (180 sec) || Days = /24 = 135 days 𝐵
𝑙𝑖𝑓𝑒

= 2,500𝑚𝐴ℎ
0.767𝑚𝐴 = 3259 ℎ𝑜𝑢𝑟𝑠 3259

2 minutes (120 sec) || Days = /24 = 89 days 𝐵
𝑙𝑖𝑓𝑒

= 2,500𝑚𝐴ℎ
1.16𝑚𝐴 = 2155 ℎ𝑜𝑢𝑟𝑠 2155

1 minute (60 sec) || Days = /24 = 46 days 𝐵
𝑙𝑖𝑓𝑒

= 2,500𝑚𝐴ℎ
2.264𝑚𝐴 = 1104 ℎ𝑜𝑢𝑟𝑠 1104

30 seconds || Days = /24 = 22.7 days 𝐵
𝑙𝑖𝑓𝑒

= 2,500𝑚𝐴ℎ
4.57𝑚𝐴 = 547 ℎ𝑜𝑢𝑟𝑠 547

10 seconds || Days = /24 = 7.6 days 𝐵
𝑙𝑖𝑓𝑒

= 2,500𝑚𝐴ℎ
13.62𝑚𝐴 = 183. 5 ℎ𝑜𝑢𝑟𝑠 183. 5

Overall, the integration of power-saving modes remains a promising and impactful

direction for future development. Successfully implementing deep sleep would not only improve
system longevity but also demonstrate effective energy-aware embedded system design.

Replacing Ethernet with Wireless or Optical Interfaces
While Ethernet provided a reliable data transmission medium for our prototype, its

requirement for physical cabling and access to network infrastructure limits deployment
flexibility, particularly in wall or ceiling mounted installations. To transition our project to a
market-ready product, a wireless or non-RF alternative will be considered to replace the W5500
Ethernet interface. For non-EMI-restricted environments, integrating Wi-Fi or Bluetooth directly
into the receiver hub, leveraging the native wireless capabilities of the ESP32-S3 would
eliminate the need for Ethernet entirely while preserving the fast, low-latency communication
with the central console.

For EMI-sensitive settings where RF emissions must still be avoided, a non-RF alternative such
as a USB tether or an optical-to-USB bridge could provide a wired, shielded data link to the
central console without relying on Ethernet infrastructure. Another possible solution is the
transition to a potential desktop dongle that could receive data optically through a photodiode
interface, which would interface directly with the console via USB. These approaches would

https://ydlbattery.com/products/3-7v-2500mah-485573-lithium-polymer-ion-battery-1?currency=USD&variant=42093670105241&utm_source=google&utm_medium=cpc&utm_campaign=Google%20Shopping&stkn=a5847882d354&gad_source=1&gclid=CjwKCAiAiaC-BhBEEiwAjY99qB-ZSOL0PtPkTEHKds_Tf3tWsJfqfmgLIbq6OUayLG1bSY3sW0__RBoChBkQAvD_BwE

39

simplify installation, expand compatibility with various physical environments and reduce user
dependency on fixed port access issues in different institutes.

Replacing USB-C Receiver Power with a Battery
The receiver hub in its current form relies on USB-C for continuous power, which

imposes practical limitations during installation. For example, the need to place the receiver near
an outlet restricts mounting locations and adds visible wiring, which is undesirable in cleanroom
or clinical environments. To improve flexibility and aesthetic integration, a battery-powered
version of the receiver is proposed. This modification would mirror the one used in the
transmitter hub, using a 3.7V lithium-ion battery regulated down to 3.3V for digital components
and ±3V for the analog circuitry using the LM27762.

Implementing this change would involve redesigning the power subsystem on the receiver PCB
to include safe battery charging, status monitoring, and mechanical housing for the battery cell -
although this should be made relatively easier considering we have already gone through with
these steps on the transmitter side. With battery integration, the receiver becomes fully
untethered, capable of being installed in remote locations or mobile configurations without
requiring any nearby power infrastructure. Additionally, by combining battery support with
power optimization strategies like sleep-mode, the receiver has the potential to last for multiple
weeks between charges, making it suitable for both temporary and long-term deployments.

Supporting Multiple Transmitters and/or Receivers
The current implementation of our project is built around a single transmitter-receiver

pair. To scale the system for broader environmental coverage or multi-room monitoring, future
iterations will need to support multiple transmitters and/or receivers operating together. This
expansion would enable more complex installations in settings like large hospital wards,
manufacturing cleanrooms, or smart buildings with multiple monitoring zones.

To support multiple transmitters, the system would implement data multiplexing strategies, either
through time-division, frequency-division, or packet-based addressing. Along with this, the
receiver would need updates to differentiate incoming data streams and assign them to the
appropriate endpoints. The GUI and backend software would also need to support multiple
streams of data along with visualization from multiple sources, ensuring that sensor data is
accurately received and labeled.

One possibility is to perform one-time synchronization of multiple transmitter boards via WiFi
and then perform time-division multiplexing to prevent multiple transmitter signals from
interfering with each other at the receiver. Another possibility would be to place wide-angle
LEDs on the receiver hub board (such as the TSAL6200) and receiver circuitry on the transmitter
hub board to implement two-way communications and optical synchronization. However, further

40

design is needed to minimize the power consumption of the receiver circuitry on the transmitter
hub boards.

Conclusion
Evaluation of Design Outcomes

Our project’s system represents a strong, reliable and RFI-safe approach to real-time
environmental monitoring, utilizing free-space optical communication to address challenges in
RF sensitive settings like hospitals, laboratories, and cleanrooms. Through the integration of
high-precision sensors, infrared data transmission, error correction algorithms, and a custom
graphical interface, the prototype successfully met its core technical and performance goals.
Real-world testing confirmed not only the viability of optical signaling at distances up to 3
meters (and with a limited budget and hence limited strength) but also the consistency of data
transmission through noisy lighting conditions. The system operated with impressive latency and
remained within its designed power envelope, even without the benefit of low-power
optimization.

Beyond the metrics of performance, the system demonstrated strong cohesiveness between its
subsystems. The receiver circuit proved capable of accurately restoring signals with minimal
noise, and the UART-based firmware kept data integrity strong through our error correction
methods. The use of standardized protocols, like UART, simplified the integration and has
created opportunities for expansion. Likewise, the Python-based GUI served as a more than
capable platform for both real-time visualization and long-term data logging.

Accuracy, Performance, and Lessons Learned
The final prototype achieved a high level of accuracy and reliability across its core

sensing and communication functions, with most performance metrics meeting or exceeding
initial expectations for a functional proof of concept. The sensor suite delivered consistent,
real-time environmental readings, and the optical communication link preserved data structure
and timing with little to no error. Through the use of Hamming codes, the system was able to
automatically detect and correct single-bit transmission errors, ensuring robust performance even
in the presence of analog signal distortion and ambient light interference.

Several lessons emerged over the course of development. The analog circuitry, particularly the
high-gain transimpedance amplifier and comparator stage, demanded careful tuning and
component selection to ensure signal reliability. Achieving stable power delivery to both analog
and digital components required extensive decoupling and noise mitigation, especially when
operating from a single USB source. Mechanically, precise optical alignment was essential, and
future versions will benefit from adjustable fixtures. On the software side, the firmware
architecture allowed for easy debugging and future extensibility, but more in depth optimization,
especially with regard to power-saving modes, remains an important next step.

41

Overall, the project demonstrated that free-space optical data transmission is a viable and
effective alternative to RF communication in environments where minimising RF interference is
a priority. The foundation laid by this prototype supports future iterations that are more scalable,
energy-efficient, and adaptive to complex deployment scenarios.

Appendices

Appendix A: Hardware PCB Schematics

Figure A1. Transmitter PCB Schematic

42

Figure A2. Receiver PCB Schematic

Appendix B: Complete Software Listings
Transmitter Code
#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_BME680.h>

#include <BH1750.h>

#include <driver/i2s.h>

#include <Arduino.h>

// fix pin numbers

43

#define SDA_PIN 5

#define SCL_PIN 4

#define TX_PIN 11 // IR TX pin

// Define I²S GPIO pins based on our wiring

#define I2S_WS 36 // Word Select (LRCLK)

#define I2S_BCLK 37 // Bit Clock (BCLK)

#define I2S_DOUT 35 // Data Output (DOUT)

const int32_t MIC_MAX_AMPLITUDE = 8000000; // Approx max raw value from

mic

const int32_t MIC_MIN_THRESHOLD = 500; // Noise floor (adjust based on

your room)

int x = 1; // iteration tracker (only for test messages)

// voids

void BME_Setup();

void BH_Setup();

void BH_Measure();

void BME_Measure();

void MIC_Read();

// for hamming

// data to encode

char buffer[100];

// buffer to store encoded data for tx

char enc_buffer[200];

// function prototype for encoding function

void encode_hamming84(char*, int, char*);

void serial2_println_hamming84(String);

// I²S Configuration

void i2s_install() {

 const i2s_config_t i2s_config = {

 .mode = (i2s_mode_t)(I2S_MODE_MASTER | I2S_MODE_RX), // Receive mode

 .sample_rate = 16000, // 16 kHz sample rate

 .bits_per_sample = I2S_BITS_PER_SAMPLE_32BIT, // 32-bit data

 .channel_format = I2S_CHANNEL_FMT_ONLY_RIGHT, // Read only the left

channel (L/R = GND)

44

 .communication_format = I2S_COMM_FORMAT_I2S,

 .intr_alloc_flags = ESP_INTR_FLAG_LEVEL1,

 .dma_buf_count = 8, // Number of buffers

 .dma_buf_len = 64, // Buffer length

 .use_apll = false

 };

 i2s_driver_install(I2S_NUM_0, &i2s_config, 0, NULL);

}

void i2s_setpin() {

 const i2s_pin_config_t pin_config = {

 .bck_io_num = I2S_BCLK,

 .ws_io_num = I2S_WS,

 .data_out_num = I2S_PIN_NO_CHANGE, // Not used for mic input

 .data_in_num = I2S_DOUT

 };

 i2s_set_pin(I2S_NUM_0, &pin_config);

}

// Create BME680 object using I2C

Adafruit_BME680 bme (&Wire);

// Create an instance of the BH1750 sensor

BH1750 lightMeter;

void setup() {

 Serial.begin(115200);

 while (!Serial); // Wait for serial monitor to open

 // IR serial init (UART)

 Serial2.begin(115200, SERIAL_8N1, -1, TX_PIN, true); // 'true'

enables inverted logic

 // Use a custom I2C bus (if needed)

 Wire.begin(SDA_PIN, SCL_PIN);

 BME_Setup();

 BH_Setup();

45

 pinMode(38, OUTPUT);

 digitalWrite(38,HIGH);

 i2s_install();

 i2s_setpin();

 i2s_start(I2S_NUM_0);

 // random seed init for artificially introducing bit error

 //randomSeed(analogRead(0));

}

void loop(){

 BME_Measure();

 BH_Measure();

 MIC_Read();

 // Tranmission code

 //Serial2.printf("Iteration: %d\n", x);

 Serial.println("Message Sent!");

 x += 1;

 delay(2000); // Send every 0.2s

}

// functions

void BME_Setup()

{

 Serial.println("Initializing BME680 sensor...");

 if (!bme.begin(0x76)) {

 Serial.println("Could not find a valid BME680 sensor, check

wiring!");

 while (1);

 }

 // Set up oversampling and filter settings

 bme.setTemperatureOversampling(BME680_OS_8X);

 bme.setHumidityOversampling(BME680_OS_2X);

 bme.setPressureOversampling(BME680_OS_4X);

 bme.setIIRFilterSize(BME680_FILTER_SIZE_3);

46

 bme.setGasHeater(320, 150); // 320°C for 150ms

}

void BH_Setup()

{

 Serial.println("Initializing BH1750 sensor...");

 if (lightMeter.begin(BH1750::CONTINUOUS_HIGH_RES_MODE)) {

 Serial.println("BH1750 sensor initialized successfully!");

 }

 else {

 Serial.println("Error: Could not find a valid BH1750 sensor, check

wiring!");

 while (1); // Halt the program if the sensor is not found

 }

 Serial.println("BH1750 sensor initialized!");

}

void BME_Measure()

{

 Serial.println("\nReading BME680 sensor data...");

 // Perform measurement

 if (!bme.performReading()) {

 Serial.println("Failed to perform reading :(");

 return;

 }

 // Print sensor values

 Serial.print("Temperature: ");

 Serial.print(bme.temperature);

 Serial.println(" °C");

 serial2_println_hamming84("Temperature: " + String(bme.temperature) +

" °C");

 Serial.print("Humidity: ");

 Serial.print(bme.humidity);

 Serial.println(" %");

47

 serial2_println_hamming84("Humidity: " + String(bme.humidity) + " %");

 Serial.print("Pressure: ");

 Serial.print(bme.pressure / 100.0); // Convert to hPa

 Serial.println(" hPa");

 serial2_println_hamming84("Pressure: " + String(bme.pressure/100) + "

hPa");

 Serial.print("Gas Resistance: ");

 Serial.print(bme.gas_resistance / 1000.0); // Convert to kΩ

 Serial.println(" kΩ");

 serial2_println_hamming84("Gas Resistance: " +

String(bme.gas_resistance / 1000.0) + " kΩ");

}

void BH_Measure()

{

 float lux = lightMeter.readLightLevel(); // Read light level in lux

 Serial.print("Light Intensity: ");

 Serial.print(lux);

 Serial.println(" lux");

 serial2_println_hamming84("Light Intensity: " + String(lux) + " lux");

 delay(2000); // Wait 1 second before next reading

}

void MIC_Read()

{

 // Microphone Code

 int32_t sample_raw;

 size_t bytes_read;

 i2s_read(I2S_NUM_0, &sample_raw, sizeof(sample_raw), &bytes_read,

portMAX_DELAY);

 if (bytes_read > 0) {

 int32_t sample = sample_raw >> 8;

 // Sign extend

48

 if (sample & 0x00800000) {

 sample |= 0xFF000000;

 }

 // Calculate absolute value (audio "intensity")

 int32_t magnitude = abs(sample);

 if (magnitude < MIC_MIN_THRESHOLD) {

 magnitude = MIC_MIN_THRESHOLD; // Use threshold as floor to avoid

log(0)

 }

 // Convert to dB (using MIC_MIN_THRESHOLD as reference)

 float sound_db = 20.0 * log10((float)magnitude / MIC_MIN_THRESHOLD);

 //Serial.printf("dB: %.2f\n", sound_db);

 // Display result

 Serial.print("Sound Level: ");

 Serial.printf("dB: %.2f dB\n", sound_db);

 serial2_println_hamming84("Sound Level: " + String(sound_db) +

"dB");

 }

}

void encode_hamming84(char* input_buffer, int input_buffer_len, char*

out_buffer) {

 unsigned char half, enc_half,p1,p2,p3,p4,d1,d2,d3,d4;

 int i2,j2;

 // cycle through input buffer bytes

 for (int i = 0; i < input_buffer_len; i++) {

 //i2 = i;

 // cycle through first and 2nd half of buffer bytes

 for (int j = 0; j < 2; j++) {

 //j2 = j;

 // 4 bit sequence to encode

 half = (buffer[i] >> j*4) & 0x0F;

 // data bits

 d1 = (half >> 3) & 1;

49

 d2 = (half >> 2) & 1;

 d3 = (half >> 1) & 1;

 d4 = half & 1;

 // calculate parity bit values

 p1 = d1 ^ d2 ^ d4; // p1 = d1 ⊕ d2 ⊕ d4

 p2 = d1 ^ d3 ^ d4; // p2 = d1 ⊕ d3 ⊕ d4

 p3 = d2 ^ d3 ^ d4; // p3 = d2 ⊕ d3 ⊕ d4

 p4 = d1 ^ d2 ^ d3; // p4 = d1 ⊕ d2 ⊕ d3

 out_buffer[i*2+j] = (p1 << 7) | (p2 << 6) | (d1 << 5) | (p3 << 4) |

(d2 << 3) | (d3 << 2) | (d4 << 1) | p4;

 // artificially introduce 1 bit error

 //out_buffer[i*2 + j] ^= (1 << random(0, 8));

 }

 }

 // sanity check for length

 //Serial.println(i2*2+j2+1);

}

void serial2_println_hamming84(String str1) {

 str1.toCharArray(buffer, sizeof(buffer));

 // Hamming 8,4 encoding

 // For segmentation of data: determine length of string in bytes

 int buffer_len = strlen(buffer);

 // encode and store encoded data in enc_buffer

 encode_hamming84(buffer, buffer_len, enc_buffer);

 // send encoded data over IR link

 Serial2.write(enc_buffer, buffer_len*2);

 Serial2.print("\n");

}

/*

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_BME680.h>

#include <BH1750.h>

#include <driver/i2s.h>

#include <Arduino.h>

// fix pin numbers

#define SDA_PIN 5

50

#define SCL_PIN 4

#define TX_PIN 11 // IR TX pin

// Define I²S GPIO pins based on our wiring

#define I2S_WS 36 // Word Select (LRCLK)

#define I2S_BCLK 37 // Bit Clock (BCLK)

#define I2S_DOUT 35 // Data Output (DOUT)

const int32_t MIC_MAX_AMPLITUDE = 8000000; // Approx max raw value from

mic

const int32_t MIC_MIN_THRESHOLD = 500; // Noise floor (adjust based on

your room)

int x = 1; // iteration tracker (only for test messages)

// voids

void BME_Setup();

void BH_Setup();

void BH_Measure();

void BME_Measure();

// for hamming

// data to encode

char buffer[100];

// buffer to store encoded data for tx

char enc_buffer[200];

// function prototype for encoding function

void encode_hamming84(char*, int, char*);

void serial2_println_hamming84(String);

// I²S Configuration

void i2s_install() {

 const i2s_config_t i2s_config = {

 .mode = (i2s_mode_t)(I2S_MODE_MASTER | I2S_MODE_RX), // Receive mode

 .sample_rate = 16000, // 16 kHz sample rate

 .bits_per_sample = I2S_BITS_PER_SAMPLE_32BIT, // 32-bit data

 .channel_format = I2S_CHANNEL_FMT_ONLY_RIGHT, // Read only the left

channel (L/R = GND)

 .communication_format = I2S_COMM_FORMAT_I2S,

 .intr_alloc_flags = ESP_INTR_FLAG_LEVEL1,

51

 .dma_buf_count = 8, // Number of buffers

 .dma_buf_len = 64, // Buffer length

 .use_apll = false

 };

 i2s_driver_install(I2S_NUM_0, &i2s_config, 0, NULL);

}

void i2s_setpin() {

 const i2s_pin_config_t pin_config = {

 .bck_io_num = I2S_BCLK,

 .ws_io_num = I2S_WS,

 .data_out_num = I2S_PIN_NO_CHANGE, // Not used for mic input

 .data_in_num = I2S_DOUT

 };

 i2s_set_pin(I2S_NUM_0, &pin_config);

}

// Create BME680 object using I2C

Adafruit_BME680 bme (&Wire);

// Create an instance of the BH1750 sensor

BH1750 lightMeter;

void setup() {

 Serial.begin(115200);

 while (!Serial); // Wait for serial monitor to open

 // IR serial init (UART)

 Serial2.begin(115200, SERIAL_8N1, -1, TX_PIN, true); // 'true'

enables inverted logic

 // Use a custom I2C bus (if needed)

 Wire.begin(SDA_PIN, SCL_PIN);

 BME_Setup();

 BH_Setup();

 pinMode(38, OUTPUT);

 digitalWrite(38,HIGH);

52

 i2s_install();

 i2s_setpin();

 i2s_start(I2S_NUM_0);

 // random seed init for artificially introducing bit error

 //randomSeed(analogRead(0));

}

void loop(){

 BME_Measure();

 BH_Measure();

 // Microphone Code

 int32_t sample_raw;

 size_t bytes_read;

 i2s_read(I2S_NUM_0, &sample_raw, sizeof(sample_raw), &bytes_read,

portMAX_DELAY);

 if (bytes_read > 0) {

 int32_t sample = sample_raw >> 8;

 // Sign extend

 if (sample & 0x00800000) {

 sample |= 0xFF000000;

 }

 // Calculate absolute value (audio "intensity")

 int32_t magnitude = abs(sample);

 // Apply noise floor filtering

 if (magnitude < MIC_MIN_THRESHOLD) {

 magnitude = 0; // Treat anything below threshold as silence

 }

 // Map intensity to 1-1000 scale

 int scaled_value = map(magnitude, MIC_MIN_THRESHOLD,

MIC_MAX_AMPLITUDE, 1, 1000);

53

 // Clamp between 1 and 1000

 if (scaled_value < 1) scaled_value = 1;

 if (scaled_value > 1000) scaled_value = 1000;

 // Display result

 Serial.print("Sound Level: ");

 Serial.println(scaled_value);

 serial2_println_hamming84("Sound Level: " + String(scaled_value));

 }

 // Tranmission code

 //Serial2.printf("Iteration: %d\n", x);

 Serial.println("Message Sent!");

 x += 1;

 delay(200); // Send every 0.2s

}

// functions

void BME_Setup()

{

 Serial.println("Initializing BME680 sensor...");

 if (!bme.begin(0x76)) {

 Serial.println("Could not find a valid BME680 sensor, check

wiring!");

 while (1);

 }

 // Set up oversampling and filter settings

 bme.setTemperatureOversampling(BME680_OS_8X);

 bme.setHumidityOversampling(BME680_OS_2X);

 bme.setPressureOversampling(BME680_OS_4X);

 bme.setIIRFilterSize(BME680_FILTER_SIZE_3);

 bme.setGasHeater(320, 150); // 320°C for 150ms

}

void BH_Setup()

{

54

 Serial.println("Initializing BH1750 sensor...");

 if (lightMeter.begin(BH1750::CONTINUOUS_HIGH_RES_MODE)) {

 Serial.println("BH1750 sensor initialized successfully!");

 }

 else {

 Serial.println("Error: Could not find a valid BH1750 sensor, check

wiring!");

 while (1); // Halt the program if the sensor is not found

 }

 Serial.println("BH1750 sensor initialized!");

}

void BME_Measure()

{

 Serial.println("\nReading BME680 sensor data...");

 // Perform measurement

 if (!bme.performReading()) {

 Serial.println("Failed to perform reading :(");

 return;

 }

 // Print sensor values

 Serial.print("Temperature: ");

 Serial.print(bme.temperature);

 Serial.println(" °C");

 serial2_println_hamming84("Temperature: " + String(bme.temperature) +

" °C");

 Serial.print("Humidity: ");

 Serial.print(bme.humidity);

 Serial.println(" %");

 serial2_println_hamming84("Humidity: " + String(bme.humidity) + " %");

 Serial.print("Pressure: ");

 Serial.print(bme.pressure / 100.0); // Convert to hPa

 Serial.println(" hPa");

55

 serial2_println_hamming84("Pressure: " + String(bme.pressure/100) + "

hPa");

 Serial.print("Gas Resistance: ");

 Serial.print(bme.gas_resistance / 1000.0); // Convert to kΩ

 Serial.println(" kΩ");

 serial2_println_hamming84("Gas Resistance: " +

String(bme.gas_resistance / 1000.0) + " kΩ");

}

void BH_Measure()

{

 float lux = lightMeter.readLightLevel(); // Read light level in lux

 Serial.print("Light Intensity: ");

 Serial.print(lux);

 Serial.println(" lux");

 serial2_println_hamming84("Light Intensity: " + String(lux) + " lux");

 delay(2000); // Wait 1 second before next reading

}

void encode_hamming84(char* input_buffer, int input_buffer_len, char*

out_buffer) {

 unsigned char half, enc_half,p1,p2,p3,p4,d1,d2,d3,d4;

 int i2,j2;

 // cycle through input buffer bytes

 for (int i = 0; i < input_buffer_len; i++) {

 //i2 = i;

 // cycle through first and 2nd half of buffer bytes

 for (int j = 0; j < 2; j++) {

 //j2 = j;

 // 4 bit sequence to encode

 half = (buffer[i] >> j*4) & 0x0F;

 // data bits

 d1 = (half >> 3) & 1;

 d2 = (half >> 2) & 1;

 d3 = (half >> 1) & 1;

 d4 = half & 1;

 // calculate parity bit values

56

 p1 = d1 ^ d2 ^ d4; // p1 = d1 ⊕ d2 ⊕ d4

 p2 = d1 ^ d3 ^ d4; // p2 = d1 ⊕ d3 ⊕ d4

 p3 = d2 ^ d3 ^ d4; // p3 = d2 ⊕ d3 ⊕ d4

 p4 = d1 ^ d2 ^ d3; // p4 = d1 ⊕ d2 ⊕ d3

 out_buffer[i*2+j] = (p1 << 7) | (p2 << 6) | (d1 << 5) | (p3 << 4) |

(d2 << 3) | (d3 << 2) | (d4 << 1) | p4;

 // artificially introduce 1 bit error

 //out_buffer[i*2 + j] ^= (1 << random(0, 8));

 }

 }

 // sanity check for length

 //Serial.println(i2*2+j2+1);

}

void serial2_println_hamming84(String str1) {

 str1.toCharArray(buffer, sizeof(buffer));

 // Hamming 8,4 encoding

 // For segmentation of data: determine length of string in bytes

 int buffer_len = strlen(buffer);

 // encode and store encoded data in enc_buffer

 encode_hamming84(buffer, buffer_len, enc_buffer);

 // send encoded data over IR link

 Serial2.write(enc_buffer, buffer_len*2);

 Serial2.print("\n");

}

*/

Receiver Code
#include <Arduino.h>

#include <SPI.h>

#include <Ethernet_Generic.h>

#include <EthernetUdp.h> // UDP support

// Fixed MAC address for IT

byte mac[] = { 0x02, 0x08, 0xDC, 0x32, 0x19, 0xB7 };

// W5500 pin assignments

#define W5500_CS 10

57

#define W5500_RST 9

#define W5500_MISO 12

#define W5500_MOSI 11

#define W5500_SCK 13

#define RX_PIN 16 // Change this to your desired RX pin

// Target (desktop) IP and port — update as needed

IPAddress desktopIP(10, 37, 26, 178); // Replace with your desktop's IP

const unsigned int desktopPort = 4210;

EthernetUDP Udp; // UDP object

void printMacAddress(byte *mac) {

 for (int i = 0; i < 6; i++) {

 if (mac[i] < 0x10) Serial.print("0");

 Serial.print(mac[i], HEX);

 if (i < 5) Serial.print(":");

 }

 Serial.println();

}

void setup() {

 Serial.begin(115200);

 Serial2.begin(115200, SERIAL_8N1, RX_PIN, -1, false); // 'true' enables

inverted logic

 // Reset W5500

 pinMode(W5500_RST, OUTPUT);

 digitalWrite(W5500_RST, LOW);

 delay(50);

 digitalWrite(W5500_RST, HIGH);

 delay(200);

 // Start SPI

 SPI.begin(W5500_SCK, W5500_MISO, W5500_MOSI, W5500_CS);

 Ethernet.init(W5500_CS);

 Serial.println("Starting Ethernet with DHCP...");

 Ethernet.begin(mac); // Use fixed MAC address

58

 Serial.print("MAC Address: ");

 printMacAddress(mac);

 Serial.print("Assigned IP: ");

 Serial.println(Ethernet.localIP());

 if (Ethernet.linkStatus() == LinkON) {

 Serial.println("✅ Ethernet cable detected.");

 } else {

 Serial.println("⚠️ Ethernet cable not detected.");

 }

 // Start UDP

 Udp.begin(4210); // Port to listen on if needed

}

void loop() {

 const char* msg = "Hello from ESP32 via UDP!";

 Udp.beginPacket(desktopIP, desktopPort);

 Udp.write(msg);

 Udp.endPacket();

 Serial.print("Sent message to ");

 Serial.print(desktopIP);

 Serial.print(":");

 Serial.println(desktopPort);

 delay(1000); // Send every second

 if (Serial2.available()) {

 String receivedData = Serial2.readStringUntil('\n');

 Serial.print("Received: ");

 Serial.println(receivedData);

}

}

59

RX Aim Code
#include <Arduino.h>

#define SENSE_PIN 15

#define LED_PIN 7

void setup() {

 pinMode(SENSE_PIN, INPUT);

 pinMode(LED_PIN, OUTPUT);

}

void loop() {

 // put your main code here, to run repeatedly:

 if(digitalRead(SENSE_PIN) == HIGH) {

 digitalWrite(LED_PIN, HIGH);

 }

 else {

 digitalWrite(LED_PIN, LOW);

 }

}

TX Aim Code
#include <Arduino.h>

#define LED 11 // led on pin 15

void setup() {

 pinMode(LED,OUTPUT);

}

void loop() {

 // put your main code here, to run repeatedly:

60

 digitalWrite(LED, HIGH); // Turn LED on

 delay(1000); // Delay 0.25s

 digitalWrite(LED, LOW); // Turn LED off

 delay(1000); // Delay 0.25s

}

NEXASENSEE GUI Code
import sys

import socket

import pandas as pd

from PyQt5.QtWidgets import (

 QApplication, QWidget, QLabel, QPushButton, QVBoxLayout, QHBoxLayout,

 QGroupBox, QCheckBox, QDialog, QTimeEdit, QFileDialog, QMessageBox

)

from PyQt5.QtCore import QTimer, QDateTime, QTime

from PyQt5.QtGui import QFont

class SensorGUI(QWidget):

 def __init__(self):

 super().__init__()

 self.setWindowTitle("NEXASENSEE Central Console")

 self.showMaximized()

 self.setStyleSheet("background-color: #1E1E1E; color: #E0E0E0;")

 self.sensor_labels = {}

 self.data_log = []

 main_layout = QHBoxLayout()

 left_layout = QVBoxLayout()

 # Sensor display boxes with units in titles

 self.sensors = {

 "Temperature (°C)": "TEMP",

 "Humidity (%)": "HUMIDITY",

 "Pressure (hPa)": "PRESSURE",

 "Light Intensity (lux)": "LIGHT",

 "Gas (Ω)": "GAS",

 "Sound (dB)": "SOUND"

 }

61

 for sensor_display_name in self.sensors:

 box = QGroupBox(sensor_display_name)

 box.setStyleSheet("QGroupBox { border: 2px solid #0078D7;

border-radius: 10px; padding: 10px; font-weight: bold; }")

 layout = QVBoxLayout()

 label = QLabel("Waiting for data...")

 label.setFont(QFont("Arial", 12))

 layout.addWidget(label)

 box.setLayout(layout)

 self.sensor_labels[sensor_display_name] = label

 left_layout.addWidget(box)

 # Record Data button

 self.record_button = QPushButton("Record Data")

 self.record_button.setStyleSheet("QPushButton { background-color:

#0078D7; color: white; font-size: 14px; padding: 10px; border-radius: 5px;

}")

 self.record_button.clicked.connect(self.open_recording_window)

 left_layout.addWidget(self.record_button)

 main_layout.addLayout(left_layout)

 self.setLayout(main_layout)

 # Set up UDP socket

 self.udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

 self.udp_socket.bind(("0.0.0.0", 4210))

 self.udp_socket.setblocking(False)

 # Set up timer to check for UDP data

 self.timer = QTimer()

 self.timer.timeout.connect(self.update_sensor_data)

 self.timer.start(500)

 def update_sensor_data(self):

 try:

 data, addr = self.udp_socket.recvfrom(1024)

 line = data.decode(errors="ignore").strip() # Ignore bad

UTF-8

 print(f"Received from {addr}: {line}")

 pairs = line.split(",")

62

 for pair in pairs:

 if ":" not in pair:

 continue # Skip malformed entries

 try:

 key, value = pair.split(":", 1)

 key = key.strip().upper()

 value = value.strip()

 for sensor_name, keyword in self.sensors.items():

 if keyword in key:

 self.sensor_labels[sensor_name].setText(value)

 except Exception as inner_err:

 print(f"⚠️ Error processing pair '{pair}':

{inner_err}")

 except BlockingIOError:

 pass # No new data yet

 except Exception as e:

 print(f"❌ Error in update_sensor_data: {e}")

 def open_recording_window(self):

 self.record_window = RecordingWindow(self)

 self.record_window.setStyleSheet("background-color: #2E2E2E;

color: #E0E0E0;")

 self.record_window.show()

class RecordingWindow(QDialog):

 def __init__(self, main_window):

 super().__init__()

 self.setWindowTitle("Data Recording Settings")

 self.setGeometry(200, 200, 400, 300)

 self.main_window = main_window

 self.setStyleSheet("background-color: #2E2E2E; color: #E0E0E0;")

 layout = QVBoxLayout()

 self.checkboxes = {}

 for sensor in main_window.sensor_labels.keys():

63

 checkbox = QCheckBox(sensor)

 layout.addWidget(checkbox)

 self.checkboxes[sensor] = checkbox

 self.duration_box = QTimeEdit()

 self.duration_box.setDisplayFormat("HH:mm:ss")

 self.duration_box.setTime(QTime(0, 0, 10))

 layout.addWidget(self.duration_box)

 self.select_path_button = QPushButton("Select Save Location")

 self.select_path_button.setStyleSheet("QPushButton {

background-color: #444; color: white; padding: 6px; }")

 self.select_path_button.clicked.connect(self.select_file_path)

 layout.addWidget(self.select_path_button)

 self.start_button = QPushButton("Start Recording")

 self.start_button.setStyleSheet("QPushButton { background-color:

#0078D7; color: white; font-size: 14px; padding: 10px; border-radius: 5px;

}")

 self.start_button.clicked.connect(self.start_recording)

 layout.addWidget(self.start_button)

 self.setLayout(layout)

 self.file_path = ""

 self.timer = None

 self.recorded_data = []

 def select_file_path(self):

 path, _ = QFileDialog.getSaveFileName(self, "Save File", "",

"Excel Files (*.xlsx);;CSV Files (*.csv)")

 if path:

 self.file_path = path

 self.select_path_button.setText(f"Save to: {path}")

 def start_recording(self):

 selected_sensors = [sensor for sensor, checkbox in

self.checkboxes.items() if checkbox.isChecked()]

 if not selected_sensors:

 QMessageBox.warning(self, "No Sensors Selected", "Please

select at least one sensor to record.")

64

 return

 duration = self.duration_box.time()

 total_seconds = duration.hour() * 3600 + duration.minute() * 60 +

duration.second()

 if not self.file_path or (not self.file_path.endswith(".csv") and

not self.file_path.endswith(".xlsx")):

 QMessageBox.warning(self, "Invalid File Name", "Select a valid

file path ending with .csv or .xlsx.")

 return

 self.recorded_data = []

 self.timer = QTimer(self)

 self.timer.timeout.connect(lambda:

self.record_sensor_data(selected_sensors))

 self.timer.start(1000)

 QTimer.singleShot(total_seconds * 1000, self.stop_recording)

 QMessageBox.information(self, "Recording Started", f"Recording

{selected_sensors} for {total_seconds} seconds.")

 def record_sensor_data(self, selected_sensors):

 timestamp = QDateTime.currentDateTime().toString("yyyy-MM-dd

HH:mm:ss")

 for sensor in selected_sensors:

 value =

self.main_window.sensor_labels[sensor].text().split()[0]

 self.recorded_data.append({"timestamp": timestamp, "sensor":

sensor, "value": value})

 def stop_recording(self):

 if self.timer:

 self.timer.stop()

 try:

 df = pd.DataFrame(self.recorded_data)

 if self.file_path.endswith(".csv"):

 df.to_csv(self.file_path, index=False)

 else:

65

 df.to_excel(self.file_path, index=False)

 QMessageBox.information(self, "Recording Complete", f"Data

saved to '{self.file_path}'.")

 except Exception as e:

 QMessageBox.critical(self, "Error", f"Failed to save

file:\n{str(e)}")

if __name__ == "__main__":

 app = QApplication(sys.argv)

 window = SensorGUI()

 window.show()

 sys.exit(app.exec_())

Appendix C: Relevant Component Datasheets
●​ ESP32-S3 (Microcontroller)
●​ BME680 (Air sensor)
●​ SPH0645LM4H-B (Microphone)
●​ BH1750 (Light intensity sensor)
●​ WIZnet 5500 (Ethernet chip)

○​ Design Guide 1
○​ Design Guide 2

●​ TPS63802DLAR (Buck-Boost Converter)
●​ LM27762DSST (Charge pump IC for ±3 V dual supply)
●​ 3.7V 2500mAh Lithium-ion battery
●​ BPW34 (IR Photodiode)
●​ VSLY5940 (940 nm IR LED)
●​ OPA657N/250 (Op-Amp used in receiver TIA stage)
●​ OPA192IDBVR (Op-Amp used in receiver unity gain inverting amplifier stage)
●​ TLV3501AIDBVR (Comparator used in receiver circuitry)

https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf
https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme680-ds001.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/908/SPH0645LM4H-B.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6165/bh1750fvi-e.pdf
https://cdn.sparkfun.com/datasheets/Dev/Arduino/Shields/W5500_datasheet_v1.0.2_1.pdf
https://docs.wiznet.io/Product/iEthernet/W5500/ref-schematic
https://docs.wiznet.io/img/design_guide/Wiznet%20Ethernet%20Design%20Guide_ENG.pdf
https://www.digikey.com/en/products/detail/texas-instruments/TPS63802DLAR/10715525?gclsrc=aw.ds&&utm_adgroup=General&utm_source=google&utm_medium=cpc&utm_campaign=PMax%20Shopping_Product_Zombie%20SKUs&utm_term=&utm_content=General&utm_id=go_cmp-17815035045_adg-_ad-__dev-c_ext-_prd-_sig-Cj0KCQjwqIm_BhDnARIsAKBYcmu5U0HKtCdl-vxEym-pWy2ahwlmOld_chlEGHAEjdZbaa94v6xdye4aAkr6EALw_wcB&gad_source=1&gclid=Cj0KCQjwqIm_BhDnARIsAKBYcmu5U0HKtCdl-vxEym-pWy2ahwlmOld_chlEGHAEjdZbaa94v6xdye4aAkr6EALw_wcB&gclsrc=aw.ds
https://www.ti.com/lit/ds/symlink/lm27762.pdf
https://cdn-shop.adafruit.com/product-files/328/LP785060+2500mAh+3.7V+20190510.pdf
https://www.vishay.com/docs/81521/bpw34.pdf
https://www.vishay.com/docs/84240/vsly5940.pdf
https://www.ti.com/lit/ds/symlink/opa657.pdf
https://www.ti.com/lit/ds/symlink/opa192.pdf
https://www.ti.com/lit/ds/symlink/tlv3501.pdf

66

Appendix D: Background and Theory References

[1] What causes electromagnetic interference?. Compliance Testing. (2025, February 4).
https://compliancetesting.com/what-causes-electromagnetic-interference/

[2] EMC Certification Guide: FCC, CE & Other Compliance Marks. Compliance Testing.
(2025a, April 3).
https://compliancetesting.com/emc-certification/#:~:text=FCC%20Part%2015%20ensures%20th
at,DoC)

[3] Gökmen, N., Erdem, S., Toker, K. A., Öçmen, E., Gökmen, B. I., & Özkurt, A. (2016,
October 1). Analyzing exposures to electromagnetic fields in an Intensive Care Unit. Turkish
journal of anaesthesiology and reanimation. https://pmc.ncbi.nlm.nih.gov/articles/PMC5118007/

https://compliancetesting.com/what-causes-electromagnetic-interference/
https://compliancetesting.com/emc-certification/#:~:text=FCC%20Part%2015%20ensures%20that,DoC
https://compliancetesting.com/emc-certification/#:~:text=FCC%20Part%2015%20ensures%20that,DoC
https://pmc.ncbi.nlm.nih.gov/articles/PMC5118007/

	
	Introduction
	
	Detailed System Requirements
	
	Detailed Project Description
	System Theory of Operation
	
	System Block Diagram
	
	Detailed Design and Operation of Sensor Subsystem
	Temperature
	Humidity
	Barometric Pressure
	Gas (Air Quality – VOCs)
	Light Intensity
	Sound (Acoustic Monitoring)

	
	Detailed Design and Operation of Power Subsystem
	Detailed Design and Operation of Optical Communication Subsystem
	
	Detailed Design and Operation of Data Processing and Integration Subsystem

	
	System Integration Testing
	User Manual
	Installation and Setup
	
	How to Confirm the System is Functional
	Troubleshooting

	To - Market Design Changes
	Replacing Ethernet with Wireless or Optical Interfaces
	Replacing USB-C Receiver Power with a Battery
	Supporting Multiple Transmitters and/or Receivers

	Conclusion
	Evaluation of Design Outcomes
	Accuracy, Performance, and Lessons Learned

	Appendices
	Appendix A: Hardware PCB Schematics
	Appendix B: Complete Software Listings
	Appendix C: Relevant Component Datasheets
	Appendix D: Background and Theory References

