```
<u>Google Drive</u>
<u>DesignReview2_doc</u>
<u>MeetingMinutes</u>
```

Overview for this meeting

- 1. Review subsystem demonstration plan
- 2. Subsystem Demonstrations
 - a. <u>Sensor Subsystem</u> Jeff M.
 - i. Show measurements on serial monitor from the sensors on breakout boards, connected to the microcontroller.
 - 1. Humidity boundary
 - 2. Microphone >> if an alarm goes off (noise thresholding)
 - 3. Temperature boundary
 - 4. Light boundary
 - b. Optical Communications Subsystem Kyle C., Jeffrey Y.
 - i. Show match between input and output data for optical communication between two microcontrollers.
 - 1. Range and aim on IR
 - c. <u>Data Processing and Integration Subsystem</u> AnnahMarie B., Kyle C.
 - i. Show match between input and output data for communication between microcontroller and laptop via Ethernet (W5500 module).
 - a. Link to Link setup for Ethernet Ports
 - i. ESP32 >> Has MAC address not, IP address (must be assigned, get a static IP address from OIT)

 Put in private address space
 - ii. The desktop in 205 might be a temporary IP address (dynamic)
 - iii. Lookup in the DNS about TCP communication
 - 2. Find ESP32-S3 IP Address
 - 3. Send data over Ethernet to Desktop IP Address
 - 4. Desktop Python server script to listen on port 12345.
 - ii. Is it possible to have an ethernet interface directly on the device
 - 1. What hardware between the ESP32 and Ethernet
 - a. Does ESP32 assume running over SPI? Probably not.
 - b. External modifying device
 - iii. Show GUI for data display and storage on the central console.
 - iv. Show implementation of error correcting codes, with robustness to simulated random noise
 - d. <u>Power Subsystem</u> Katherine D.
 - i. Detailed explanation of power calculation and design choices.

- 1. Could be longer than 10 minutes for humidity//
- 2. <u>DC converter</u> page 28 for PCB layout
 - a. ENSURE the pinout/footprint is correct to the spec sheet (are GND pins on the side?)

TEXAS INSTRUMENTS					
www.ti.com					

TPS63802 SLVSEU9D – NOVEMBER 2018 – REVISED JANUARY 2021

Table 10-2. List of Recommended Inductors						
INDUCTOR VALUE [µH]	SATURATION CURRENT [A]	DCR [mΩ]	PART NUMBER	MANUFACTURER ⁽¹⁾	SIZE (LxWxH mm)	
0.47	5.4	7.6	XFL4015-471ME	Coilcraft	4 x 4 x 2	
0.47	5.5	26	DFE201612E	Toko	2.0 x 1.6 x 1.2	

(1) See Third-party Products Disclaimer.

Figure 12-1. TPS63802 Layout

Progress Updates

• MEM microphone still has not arrived.

Areas of concern

- Board redesigns possible?
- Frequency of data collection/power optimization
 - Either: 6 pin header, or USB-C
 - Reset, GND, Power, TX, RX, Serial
 - Female connector or holes//Male header pins w jumpers