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1​ Introduction 
 
Problem Statement 
 
Digital cameras are making a comeback, valued for their image quality and nostalgic 
charm, but they still face significant limitations that hinder their usability in today’s 
fast-paced, interconnected world. One of the main challenges is the lack of accessibility 
of the images once they are captured. Unlike modern smartphones, which seamlessly 
integrate with cloud services for instant photo backup and sharing, digital cameras often 
require manual intervention to transfer images. It can be a burden to upload all of your 
photos after an event or trip and add them to a massive shared album, individually 
inviting each person you have taken a picture of. Additionally, the reliance on proprietary 
or outdated connectors and cables adds to the inconvenience of downloading and 
sharing images from a digital camera. Many users lose the original cords needed to 
connect their cameras to laptops or find that these cords are incompatible with newer 
devices. This forces users to either buy new accessories or rely on external card 
readers, which adds cost and complexity. For casual users, this technical barrier can 
lead to frustration, while for professionals, it can slow down workflows and delay the 
delivery of images to clients. Similarly, digital cameras often have a very limited 
memory, so only a fixed number of images can be stored on the device. This limitation 
means that to take new pictures, old ones must be deleted, or pictures must be 
downloaded off the device and stored on external memory every time it is used. These 
difficulties of uploading and saving images create a significant usability gap that limits 
the potential of digital cameras in a world in which immediate, cloud-based solutions 
exist.  
 
It is also difficult to set up a self-timer photo with just a digital camera and also know 
that everyone is in frame, especially given that no one is actually holding the camera. 
When you set up a camera on a bookshelf or ledge so that everyone can be in the 
photo, you often have to go through several iterations of starting the timer, getting into 
position, waiting, and then checking to see if the photo turned out well. The taker of the 
photo also has to rush to push down the timer button and then get into frame, which can 
be chaotic, resulting in a lower quality photo. Even if the correct framing is obtained, the 
images are often still low quality because of too bright or dull lighting. 
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Solution 

To address the limitations of traditional digital cameras, we propose developing a smart, 
WiFi-enabled digital camera that not only takes high-quality images but also integrates 
seamlessly with cloud services and provides enhanced usability features. Our solution 
is designed to eliminate the need for extensive manual intervention in photo transfers, 
simplify group photography, and solve lighting challenges.  

Instant Image Upload and Sharing - This solution employs the ESP32 camera module 
and WiFi to take images and automatically upload them to a cloud integration platform, 
such as Google Drive or a custom website. As part of this uploading process, an AI 
facial recognition algorithm developed using OpenCV will be used to recognize who is in 
each picture and create individual pages of the website or albums for each person. 
Then, everyone will not have to sort through all the pictures in the entire collection and 
can easily find the ones relevant to their use. In the event that the camera is not 
connected to WiFi, there will also be a microSD card onto which the images can be 
saved so that the internal ESP32 memory is not instantly filled and the images are not 
lost forever if a connection is not available. This solution eliminates the need for 
individually downloading and sharing each image, external cords or accessories, and 
the limited memories of current digital cameras.   

Self-Timer and Framing - The proposed solution for the difficulties of taking a self-timer 
photo and correctly framing the group in a shot will be addressed with a separate button 
clicker and laser levels. A small, handheld, wireless device that is separate from the 
camera will have a button that is connected to the camera ESP32 over bluetooth that 
someone can click and the photo will be taken. They will be able to be in the camera 
shot without having to directly press the button on the camera and then run to be in the 
picture. Additionally, four laser line levels will be used to project a rectangular outline 
from the camera. This box will represent the frame that is actually being captured by the 
camera. This way, even though there is not someone holding the camera and looking 
through the viewfinder, the group can ensure that they are properly positioned in the 
shot.  

Adjustable Flash Brightness - To address the fact that many digital camera images 
are overexposed due to the flash being too bright or too dark due to the lack of a flash, 
an adjustable flash system is proposed. A potentiometer will be used to adjust the 
brightness for a camera flash LED driver. The user can turn the dial on the 
potentiometer based on if they want the full flash brightness, no flash, or variable levels 
in between. This solution will allow bright images or objects to not become washed out 
and dark images and spaces to clearly, effectively be photographed.  
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Evaluation Against Expectations 
 
The final implementation of the camera system met the initial design expectations in 
terms of core functionality and usability. The system is capable of capturing images and 
uploading photos to a web server when WiFi is available. Regardless of whether WiFi is 
available, the photo will be automatically saved onto an SD card. It is capable of 
triggering the shutter remotely via a Bluetooth-connected device and then switching 
back to WiFi mode. In Bluetooth mode, the user has the option to turn on a laser 
framing feature, successfully implemented to tackle the difficulties of taking a self-timer 
photo and correctly framing the group in a shot. The real-time image preview and 
laser-based framing features work as intended, significantly improving the user’s ability 
to compose group photos without needing to be behind the camera. This validated one 
of the goals of the project: making self-timer photography more intuitive and accurate 
with less hassle.  
 
The adjustable flash brightness using a potentiometer also proved to be a successful 
enhancement, allowing the user to take well-lit photos across a range of ambient 
lighting conditions without over or underexposing the subjects in frame.  
 
The camera captures images with a resolution and clarity that align with what was 
anticipated given the limitations of the ESP32 (storage-wise) and the camera module 
selected.  
 
Some areas evolved during the design process. For example, the original plan was to 
include GPS tagging. However, this was abandoned due to poor performance indoors 
and added unnecessary hardware. The time-stamp on photos is successfully added 
within the Python script pulling photos from the web server. Additionally, minor trade-offs 
were made in terms of size and component layout to accommodate batteries, circuitry 
and user-buttons. 
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Figure 1. Picture of final product. 

 
Overall, this project is successful in translating the initial concept to the final 
implementation, demonstrating and validating the proposed technical solutions that 
could solve the real limitations of traditional digital cameras. That is, the prototype aligns 
closely with the initial vision.  
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2​ Detailed System Requirements 
 
Satisfied Requirements: 
 
Camera and Imaging Requirements 

1.​ The camera must be able to take a picture when a certain button on the camera 
is pressed. 

2.​ The camera must be able to display the correct image after capture on the 
screen.  

3.​ The pictures taken on the camera must be an accurate representation of the field 
of view and color that the user sees through the viewfinder. 

4.​ The camera must be able to correctly outline the field of view of the camera with 
lasers for remote image taking.  

5.​ The camera must be able to take a picture with reasonable clarity (5 MP, 2560 x 
1920 pixels) while still being within the processing capabilities of an ESP32 [1].  

Connectivity and Data Management  

6.​ The camera must be able to connect to WiFi. 
7.​ The camera must be able to connect to Bluetooth when a user tries to search for 

Bluetooth devices. 
8.​ The camera must be able to send a captured image over WiFi to a cloud-based 

platform (website or app). 
9.​ The pictures must accurately be received over the WiFi (correct color, field of 

view, image type). 
10.​Users must be able to access the website or app. 
11.​If a website is used, it should be easily accessible. If an app is used, the user 

should be able to download it to their own personal device, such as an iPhone. 
Either interface should be user friendly.  

12.​The website must be able to use an AI facial recognition algorithm to group 
together images of the same person. 

13.​The website must display separate albums for the people who appear in multiple 
photos. 

14.​The AI facial recognition algorithm must be adequately trained so that it avoids 
as much bias in identification as possible. 

15.​The website should also have an option that allows the specified users to view all 
of the images shared with them, even if they are not in that exact photo or the 
photo is not of people. 
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Power and Indicator Requirements 

16.​A battery should be able to power the microcontroller, lasers, LEDs, and flash. 
3.7 volt lithium ion batteries in series should be utilized.  

17.​The camera battery must be able to be safely recharged. 
18.​There must be an LED to indicate when the camera battery is low. 
19.​The camera electronics must not overheat or discharge too much heat that it is 

uncomfortable to the user. 
20.​The charging LED should turn off when the device is removed from the charger 

(the indicator on the battery charger turns off when the battery is removed). 
21.​The battery life of the camera must be on par with other cameras, lasting at least 

3 hours. 

Safety and Accessibility 

22.​The laser outline must be visible to the people in the self-taken image. 
23.​The lasers must be Class IIIA (between 1 mw and 5 mw) for eye safety [2]. 
24.​Lithium ion batteries should be used for charging and user safety.  
25.​The buttons on the camera should be labeled so that the user knows which one 

corresponds to which functionality.  

Practicality of Device  

26.​The buttons must be easily pressed by the user. 
27.​The camera and cloud client communications must not interfere with other WiFi 

transmissions. 
28.​The camera must be able to stand up on its own so that the user can walk away 

and take the image with the remote control. 
29.​The batteries can be recharged with a pre-existing charging cord or device. 
30.​The camera should be comfortable to hold and use. The buttons must be in 

convenient locations so the user can press them while also looking at the screen 
or viewfinder. 

31.​The camera must have an adjustable flash that can be controlled with a 
potentiometer by the user. 

32.​The flash must go off right after the user presses the button to take the image. 
33.​The flash must be able to be turned completely off. 
34.​The flash brightness must correctly correspond to the dial turn on the 

potentiometer. 
35.​The camera must be able to save captured images to an SD card if the user 

chooses to do so. 
36.​The camera must be able to take images and save them to an SD card even 

when it is not connected to WiFi. 
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37.​The user must be able to press buttons to decide to upload an image to the 
website or to delete it, and the camera should either begin sending the image 
data or delete the image. 

38.​The remote control must be able to interface with the camera from up to 25 feet 
away [7]. 

Additional Camera Features 

39.​The camera must be durable enough to withstand small water droplets and be 
placed in a bag.  

40.​The camera must be able to correctly outline the field of view of the camera with 
lasers.  

Satisfied Requirements with Edits: 

Camera and Imaging Requirements 

41.​An OLED LCD screen should preview the image before it is taken. 
42.​The user must be able to press a button use a switch to enable the laser frame.  
43.​The camera must be able to take a picture when the button on a remote control 

an app is pressed. 
44.​The remote control app must be able to send a signal over Bluetooth in real-time 

when its button is pressed. 

Power and Indicator Requirements 

45.​There must be an LED to indicate when the camera is fully charged. There is not 
an LED to indicate that the camera is fully charged. There is an LED that 
indicates that the camera has low power, and there are indicators on the actual 
charger for the batteries that show when the batteries are fully charged. Because 
of these indicators, an LED on the actual camera showing that it is charged was 
not necessary (the actual batteries are recharged, not the whole camera itself).  

Additional Camera Features 

46.​There must be an LED that indicates when an image is taken. There is not an 
LED, but the flash goes off and the screen stops the live view, making it clear that 
the image has been taken. 
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Connectivity and Data Management 

47.​A GPS device must be able to record the location when an image is taken. A 
GPS device is no longer being used because it would not record the location 
indoors, which is where the camera will often be used.  

48.​The location, time and date of each image must be able to be sent over WiFi and 
received by the client website. 

49.​The GPS, time and date information must correspond to the correct image. 

Practicality of Device 

50.​The camera should be the same or smaller in size and weight than typical digital 
cameras (height - 2.4 inches, width - 4.16 inches, depth - 1.6 inches, weight - 2 
lbs) [3] [4]. The dimensions were originally based on the small cameras found at 
[3] and [4].  While going through the design process and incorporating all of the 
desired features, it made more sense to have a bigger frame, which is still on par 
with some existing digital cameras. 
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3​ Detailed Project Description 

3.1​ System theory of operation  

The PIXEL camera system integrates four distinct and also interdependent subsystems 
to function as a smart digital camera capable of capturing, storing, displaying, and 
uploading images. The ESP32-S3 is at the heart of the system and manages 
communication between the various hardware and software components as well as 
wireless connectivity.  

When the user powers on the system using the main toggle switch, the ESP32 
initializes all key peripherals including the camera, LCD display, SD card, flash, and 
user input buttons. The LCD immediately begins displaying a live preview from the 
camera, acting as a viewfinder so the user can frame their shot in real time.  

The user can choose to take a picture by pressing a physical shutter button or by 
sending a Bluetooth Low Energy signal using the LightBlue iOS app. If the shutter is 
triggered, the ESP32 captures an image from the ArduCam Mega 5MP module, 
activates the flash if enabled at a user-specified intensity, and displays the captured 
photo on the LCD screen. The user then has 5 seconds as a review period to delete the 
image using a button. If the delete button is not pressed, the image is saved to a 
microSD card. In WiFi mode, which the user controls with a switch, the system creates 
and serves the image to a web server. The server allows images to be accessed by 
typing in the ESP32’s IP address. A python script running on an external laptop 
continuously polls the web server for new images and uploads the new image to a 
Google Drive. Then a script uses OpenCV-based facial recognition to sort the images 
into user-specific albums.  

There is a laser outline framing feature controlled separately from the ESP32 toggled 
via a switch, enabling users to visualize the camera’s field of view when in Bluetooth 
mode, taking a picture remotely.  

Together, the system’s hardware and software ensure stable power distribution to all 
peripherals, fast image capture, clear display, and innovative integration with 
cloud-based storage and sorting tools.  
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3.2​ System block diagram 

 

Figure 2. Block diagram of overall system. 

 

3.3​ Detailed Design/Operation of Subsystem 1: Camera Control 

 
Figure 3. Subsystem 1 block diagram.  
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Engineering Decisions 

The ESP32-S3-WROOM1-N16R8 microcontroller was used as the center of the 
subsystem design. This particular microcontroller was chosen for its ability to 
communicate with SPI devices, its PCB antenna that allows for use of either Bluetooth 
Low Energy (BLE) or WiFi, and the accessible programming options. The ESP32 was 
able to be programmed in C++, which allowed for flexible programming and access to 
many free libraries to facilitate the use of each added component. Another reason this 
microcontroller was chosen was because of the developer boards readily available in 
the lab for use in prototyping. Other than having a higher PSRAM (8 MB versus 2 MB), 
the chosen microcontroller is the same as what is in the lab. This allowed for early 
testing of the chosen peripherals and quick adaptation from the prototype board to the 
final PCB. Note: not included in the below screenshots of the individual parts of the 
schematic is a 10uF and a 0.1uF capacitor wired in parallel, acting as the decoupling 
capacitors for the 3.3V pin on the ESP32; also, there is a boot and an enable button that 
are inaccessible to the user as they are for use in programming the board. 

Reliable image capture was pivotal to the project. This led to the choice of the Mega 
5MP SPI Camera Module with Autofocus Lens as the camera module. A SPI 
communication protocol was desired for its speed, and the chosen module provided the 
best image quality at that price range for a component that was compatible with the 
ESP32. The camera was connected to the ESP32 as seen in Figure 4. The camera 
module was programmed using the ArduCam_Mega library.  

 
Figure 4. Schematic of 5MP ArduCam camera module SPI connections to the ESP32. 
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The flash LED used was the JH-3535WW12L48-T8B. It was chosen for its brightness, 
price, its white color temperature, and its forward voltage range including 3.3V. The 3W 
LED has a brightness not much different from the average smartphone flash brightness, 
and it was fairly priced at $10 for 5. This flash LED was to be dimmable, so a 10k ohm 
potentiometer was wired in series. A n-channel MOSFET was used to control when the 
current would flow through the LED, with the gate of the transistor connected to a GPIO 
pin of the ESP32. The schematic is seen in Figure 5. 

 
Figure 5. Flash LED schematic. 

The FLASHPWR pin was programmed to be 0V by default and is set to 3.3V when 
turning the flash on. The flash is programmed to be on for 0.2 seconds while the image 
is being taken. Because the “on” duration is short, the 0.7A current draw does not 
greatly impact battery life. 

There were four lasers used to create the image framing for taking a photo. The laser 
chosen was the 520-L12 laser line: a 3V-3.7V green 520nm laser that operates at 5mW. 
This intensity of laser falls within the Class IIIa rating and is safe for general use. In 
addition, since the laser uses a beam divergence lens to create a line, the light is not 
focused on a single point and is thus safer than a single point laser. The lasers are 
switched on and off through a physical switch in order to reduce the current draw from 
the ESP32. The schematic is seen in Figure 6. The lasers are located external to the 
board, and since they are wired in parallel, they are represented in the schematic as a 
single laser diode. 
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Figure 6. Laser line schematic. 

The mounting of the lasers in the camera case was vital to their accuracy as a 
representative image frame. The case was made of 3D printed ABS-M30 material, and 
was designed in SolidWorks to position the lasers into a box pattern. Because the 
ArduCam camera module had a field of view that was 68.75˚ from the center of the 
camera, the lasers were positioned at the same angle but 3.25cm away from the center. 
This was so that the laser lines would always match the camera view but still fall just 
outside of the frame. The camera case design for the lasers is shown in Figure 7. 

 
Figure 7. (A) Camera case front with holes for lasers and camera module. (B) Side view 
of camera case with lasers angled 68.75˚ from camera center. 

The original design and set of requirements included a GPS module to be used to send 
location, time, and date information with each picture. However, the other necessary 
peripherals (namely the display and camera module) occupied many of the ESP32’s 
pins, leaving few for the GPS. The camera module itself records the time and date of 
each photo, and location information can be obtained from just WiFi. That being said, it 
was decided to remove the GPS module from the final design. 

A micro SD card was used to store images in case there is no WiFi connection 
available. The specific holder used was the DM3D-SF Hirose Connector. It was chosen 
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because it is a push-pull SD card connector instead of a spring-loading option. The 
spring-loading mechanism could serve as an unnecessary point of failure and so the 
push-pull option was preferred. The micro SD card is inserted/removed by the user by 
opening the door on the case. The schematic detailing the connector’s wiring to the 
ESP32 is seen in Figure 8. 

 

Figure 8. Schematic of the micro SD card connector, detailing its ground connections, 
pull-up resistors, decoupling capacitors, and its wiring to the ESP32. 

The subsystem programming involved initialization of the SD card, ArduCam camera 
module, the LCD screen, and setting up the button interrupts. The flow chart describing 
the main logic is seen in Figure 9. 
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Figure 9. Flow chart of main code logic. 

 

Testing Subsystem 1: Camera Control 

Image Capture  

We began testing with a commercial ESP32 development board and breadboard to 
make connections. According to the documentation for the ArduCam Mega 5MP SPI 
module, communication would be established over SPI, so we wired the camera module 
to the ESP32 using the SPI interface (MOSI, MISO, SCK, and CS pins), along with 
power and ground. To verify camera functionality, we used the ArduCam_Mega library 
and example sketches to capture still images and display debugging information via 
serial output. However, while we received confirmation through the serial monitor, 
without an LCD screen displaying the image, we did not yet have a way to view the 
image and verify its quality.  
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Image to Cloud Over WiFi 

We shifted focus to transmitting that image to an external web server. Since the 
ESP32-S3 supports HTTP and WiFi natively, we configured the board to connect to a 
local WiFi network (NDguest) and initiated a POST request containing binary image 
data to a Flask-based server hosted on a laptop. This web server was set up to receive 
the image, save it locally, and associate it with metadata such as timestamp.  

Image to SD Card 

Once an image could be reliably captured and received on the web server, the saving of 
the photo to external storage was tested. First, a microSD card and SD card module for 
an ESP32 were purchased. Once these components arrived, they were initially plugged 
directly into the ESP32 based on the different pins of the SD card module and the SPI 
pins of the ESP32. However, various initialization errors were detected, so the SD card 
was configured to the FAT32 format by plugging it into a MacBook laptop and using the 
Disk Utility feature in the iOS software. Then, the SD card was placed back into the SD 
card module and wired again, which can be seen in Figure 10, according to a sample 
project with the specific SD card module being used. At this point, when an image was 
captured and uploaded, it was also able to be saved to the SD card using the SD library 
and a Jpeg buffer. The SD card was then removed from the module and placed back 
into the laptop so that the image files could be inspected. Because the files on the SD 
card matched the expected size, field of view, name, and coloring as the camera 
images uploaded to the web server, the SD card was successfully tested for image 
uploading directly from the camera module.  

 
Figure 10. MicroSD Card Module to ESP32 Connections for Testing 
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Environment Interaction – Flash and Laser Outline 

The flash was tested by setting the brightness potentiometer to a fully “ON” position, a 
middle brightness position, and a fully “OFF” position. Multiple photos taken at each 
setting had the flash at constant brightness according to the position of the dial. 

The lasers were tested by turning them on while the camera view was being displayed 
live to the LCD screen. During testing, some glow could be seen along the edge of the 
frame (see Figure 11). The laser angles were altered by using plastic shims inserted into 
the holes where the lasers sat. The final result of the laser frame resolves this issue and 
the laser lines successfully sit just outside the image borders. This was confirmed by 
pointing the camera at different angles and walls and taking various photos. 

 
Figure 11. Laser outline during testing and adjustment phase 
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3.4​ Detailed Design/Operation of Subsystem 2: Power 

 
Figure 12. Subsystem diagram for power 

Engineering Decisions 

The batteries chosen were BENKIA 3.7V lithium-ion rechargeable 18650 batteries, 
rated at 9900mAh. The voltage and charge capacity were sufficient to run the system 
for more than a few hours and they had built in overcharge, over-discharge, and short 
circuit protection. They were purchased along with a compatible 18650 battery charger 
by Skywolfeye, which also incorporated overcharge, overdischarge, and over-current 
protection. The subsystem includes wiring two of these batteries in series (which is 
stepped down to 3.3V using a voltage regulator). Each battery sits in its own holder, 
attached to the board with wires. The batteries are accessed through the side door of 
the camera case. The current charge capacity of each battery is checked using voltage 
dividers and the analog pins of the ESP32. The schematic is found in Figure 13. 
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Figure 13. Schematic of battery input and voltage dividers. 

To tell if the board was receiving power, a green LED would light up as long as there 
was power being supplied through either the batteries or the USB-C connection. Then, if 
the battery voltage fell below a certain threshold, a red LED would turn on to signify this. 
The schematic for the indicator LEDs is seen in Figure 14. 

 
Figure 14. Schematic of the battery power LEDs. 

In the above figure, LOWPWRLED is a pin connected to the ESP32 which goes high 
when the combined battery voltages fall below 4.2V. The code for this is seen in Figure 
15. This code runs in the main loop of the ESP32 logic. 
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Figure 15. Screenshot of the code used to check battery voltages. 

The system uses the AZ1117I low dropout voltage regulator to step down the voltage 
level to 3.3V for the board. This regulator was chosen for its current limit of 1.35A and 
maximum input voltage of 18V. In addition, this component was readily available as part 
of the stock parts that could be used in the board design. The main power supply of the 
system was designed to use the batteries detailed above; however, the board is capable 
of being powered via USB-C connection. The inclusion of the USB-C connector was 
mainly for ease of programming the system, but it is still accessible to the user if the 
need arises. The schematic for the power input and the voltage step down is seen in 
Figure 16. 

 
Figure 16. Schematic of power supply and voltage regulator. 
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The LDO voltage regulator uses decoupling capacitors (with values chosen according to 
the datasheet recommendations) at the input and output terminals. The USB-C 
connector was a stock component that was readily available for use for building the 
board, and the pulldown resistors were chosen according to the recommendation for the 
part. The power line has a physical switch that creates an open circuit to turn the ESP32 
on or off. The battery power input and USB power input are configured to prioritize using 
USB power over battery power. If both the USB and battery inputs are plugged in, then 
the Schottky diode (SM5817PL-TP in the above figure) is forward biased, and the gate 
of the p-channel MOSFET (DMG2305UX-7) sees the 5V from the USB. This causes the 
MOSFET to not allow current flow from the batteries. If the USB power is disconnected, 
however, then the body diode of the MOSFET allows current to flow and the drain to 
source is forward biased. This allows the batteries to feed the input of the voltage 
regulator. 

Testing Subsystem 2: Power 

Batteries 

Testing was done on the batteries themselves using a multimeter. A fully charged 
battery measured about 4.2V. Once the batteries were depleted past a certain range, 
their over-discharge protection would activate and the voltage would read around 2.3V 
or less. 

Voltage Regulator 

The output of the voltage regulator was tested using a multimeter. When powering the 
board with either the USB-C connection or the batteries, the voltage at the output 
terminal of the regulator read a constant value of 3.23V.  

Power LEDs 

The LED power indicators were also tested. First, the green LED turned on with either 
USB or battery power (it always turns on when the board has its nominal 3.3V). The red 
LED was also tested by removing the batteries and running the board with only USB 
power. Because the analog pins are connected to the battery input and not the USB 
input, the red LED would power on. To continue this test, the threshold voltage was 
raised from 4.2V to just over 7V. Even though the battery voltage was sufficient to power 
the board, the red LED was now powered on. The threshold voltage was reset to 4.2V 
after this test.  
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3.5​ Detailed Design/Operation of Subsystem 3: User Interface 

 
Figure 17. User Interface Subsystem diagram.  

Engineering Decisions 

A potentiometer was chosen to act as the dimmer for the flash LED (see Figure 5 
above). This was a 10K ohm potentiometer chosen for the ease of use by the 
consumer. Turning the potentiometer counterclockwise increases its resistance; turning 
the dial changes the amount of voltage that is dropped across the LED. The greater the 
potentiometer resistance, the dimmer the LED. Once the voltage across the LED drops 
a little below 3.2 V, the flash no longer powers on, acting as a way for the user to turn off 
the flash for a photo. The programming logic is explained in the section on subsystem 1. 

The viewfinder for this project was the Waveshare 2 inch LCD 240 x 320 resolution 
Display Module. This display was chosen for its SPI communication protocol, its 
accessible library, and its ability to display color images. The schematic of its connection 
to the ESP32 is seen in Figure 18. 
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Figure 18. Schematic of LCD screen connections to ESP32. 

The LCD screen was programmed to display both a live feedback of what the camera 
sees and the most recent image captured. See Figure 9 above for the flowchart of the 
programming logic. 

One key feature of our user interface was the ability to remotely trigger the camera 
using a Bluetooth-enabled shutter button. Initially we tested a commercial Bluetooth 
shutter remote that advertised compatibility with mobile devices. However, we 
discovered that this device operated over classical Bluetooth, while our ESP32-S3 
microcontroller only supports Bluetooth Low Energy (BLE). As a result, the ESP32 could 
not detect or pair with the shutter.  

We then acquired a second Bluetooth remote that supported BLE. This remote 
successfully established a connection with the ESP32 and advertised characteristics 
that we could interact with through the NimBLE and BLEServer libraries. We were 
successfully able to connect the remote to the ESP32 Server, but found that pressing 
the button on the BLE remote did not trigger the onWrite() callback. We attempted 
different UUID configurations and monitored serial output, but the ESP32 never 
acknowledged an incoming write request from the device.  

Instead of relying on BLE shutter hardware, we transitioned to using the LightBlue 
iPhone app, which provides a manual BLE interface for sending values to specific 
characteristics. We programmed the ESP32 to advertise a custom UART-style BLE 
service with a write characteristic. In LightBlue, we were able to manually send the 
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hexadecimal value 0x01 to this write characteristic, which successfully triggered the 
onWrite() callback and set a flag in the firmware to act as a shutter press.  

WiFi/Bluetooth Switch 

Key to Pixel’s usability is allowing the system to toggle between WiFi mode (for 
uploading images to the web server) and Bluetooth mode (for remote shutter triggering 
via BLE). See Figure 19 for the schematic of the switch. To support this functionality, we 
initially used a button and interrupt function to carry out the switching. However, for 
better user experience and less integration issues with the interrupt and debounce, we 
implemented a physical toggle switch, wired to GPIO pin 35 of the ESP32-S3. We wrote 
a script for the microcontroller to continuously monitor the state of this pin and transition 
between modes accordingly.  

 
Figure 19. Schematic of BT/WiFi switch. 

Two tactile push buttons were used as part of the user interface. The first was the 
shutter button used to capture an image; the second was the delete button used to tell 
the system to not save an image that was just captured. The schematic of these buttons 
is seen in Figure 20. 
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Figure 20. Schematic of UI buttons. 

The buttons were programmed using interrupts. See Figure 9 for the flowchart detailing 
main programming logic. 

The buttons, switches, and dial were connected to the board using external wires. This 
was done so that they could be positioned in an ergonomic manner. The camera case 
was designed in SolidWorks and 3D printed using ABS-M30 filament. The dimensions 
of the case are 14.1 cm long, 7.3 cm wide, and 10 cm high. The UI layout of the case is 
seen in Figure 21. The shutter button was placed on the back of the camera near the 
screen because placing it on the top was too difficult for the user to press. With the 
button on the back, it is near the thumb and feels natural to use. 

 

Figure 21. SolidWorks assembly with UI element locations labeled. 
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Subsystem 3 Testing 

Camera to Display 

To test the live view and the captured image streams from the camera to a display, a 
variety of different screen options and libraries were tested first. An image that was 
previously downloaded to a laptop was uploaded initially as a test image. An OLED, 
which was initially thought to provide better resolution and speed than an LCD, was 
seen to be relatively easy to program but difficult to find online in color in a usable size 
for the application. Then, the LCD screen that was used in the first semester of the 
Senior Design course was tested by wirin the display to a correct set of SPI pins on the 
ESP32. This display had more pixels, was able to depict images in color, and was an 
adequate size for the camera case. Figure 22, below, shows this initial testing of the 
OLED and LCD screens with a previously downloaded image of the dome at the 
University of Notre Dame. Additional displays, such as the Adafruit Qualia Display for 
RBG-666, that had increased resolution and processing speeds through parallel 
interfacing were also tested. However, these displays were found to require significantly 
more pins on the ESP32; this increase in pins would have meant that a second board 
for just the display would have been necessary. Adding a second board would increase 
the risk for mistakes and interference, so it was decided that these parallel interfacing 
displays were not the best fit for this project. Because the LCD offered better resolution 
and more realistic options online than the OLED, the Adafruit ST7789 display was 
chosen for the final prototype.  

 
Figure 22. Picture of OLED (top) versus LCD (bottom) image depiction. 
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Once a display had been chosen based on a static image, the camera could be 
interfaced with the display. The ArduCam_Mega library was still utilized for image 
capture, and the Adafruit_ST7789 library was used for the display. Initially, the 
tft.drawPixel function was used to stream a live camera feed to the display. However, 
this function only added one pixel at a time, so it was slow to refill the screen each time 
the camera field of view updated. Also, this function was dependent on the size of the 
display, which did not match the dimensions of the camera image. Therefore, some of 
the camera’s field of view was being cropped and thin black bars of empty pixels were 
filling the sides of the screen, which can be observed in Figure 23 below. To address 
these issues, a different function, the tft.drawRGBBitmap function, was utilized so that 
multiple pixels could be drawn at one time with one SPI call through the use of an 
optimized buffer. This function also allowed for the livestreamed and captured images to 
be drawn in the exact pixel dimensions of the LCD, which was 240x320 pixels, so the 
entire display was filled. Various other display libraries, such as the LovyanGFX library, 
were experimented with, but they were found to interfere with the Bluetooth libraries or 
the other SPI devices. 

 
Figure 23. LCD Screen Image Depiction with the drawPixel Function 

Buttons to Camera 

While the camera could be told to capture an image by refreshing the local web server 
page for the microcontroller, this method of image capture was not feasible for the 
functional prototype in which the user could press buttons to take images. The buttons 
were initially implemented by connecting them directly to the ESP32 with the 
breadboard. Then, when these specific pins were set to high, an image would be taken. 
However, we realized that this system was not robust for the specific application. 
Because of this, software debugging was added to the code to ensure that it had been 
at least a defined amount of time since the last button press. Additionally, resistors were 
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added between the buttons and the microcontroller to ensure that the buttons were not 
floating or fluctuating when a press was not occurring. While this system was sufficient 
in minimal testing, falling interrupts based on the button presses were later implemented 
to ensure that when a button was pressed, the camera instantly captured or deleted an 
image based on the button. The attachInterrupt function was utilized to set the interrupts 
to the specific capture and delete button pins, which were configured as 
INPUT_PULLUP pins. Because these were set as pullup pins, when the button was 
pressed, the signal went low, and the falling edge triggered an interrupt. Later, during 
the system integration testing portion, different button flags and their orderings were 
utilized and tested.  

Potentiometer for Flash Brightness 

Originally the LED flash was to be powered with a flash driver. The MP3412 flash driver 
was ordered along with an inductor and input/output capacitors as recommended by the 
datasheet. The feedback pin of the driver used 0.3 ohms according to the equation 
given by the datasheet. Changing the duty cycle of a square wave sent from the ESP32 
to the input voltage pin of the driver was to change the LED brightness; however, testing 
found that the dimness hardly changed—in addition to the current through the LED 
being too low to emit the desired brightness. See Figure 24 for the testing setup. 

 
Figure 24. Testing setup for the MP3412 flash driver. 

After this, we realized that a simple potentiometer and MOSFET would achieve the 
desired effect while being simpler to implement. A 10k ohm potentiometer was selected 
for the flash. The testing for the potentiometer was done by wiring the LED and 
potentiometer as described under subsystem 1. First, a photo was taken with the 
potentiometer set to the “ON” position with the flash at full brightness. Another photo 
was then taken with the dial turned to a point that achieved half brightness. Lastly, the 
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potentiometer was turned to the “OFF” position and a photo was captured. Each test 
produced a consistent brightness according to the dial setting, and so the functionality 
of this feature was able to be verified. 

Bluetooth Shutter 

To validate the functionality, we powered the device and manually toggled the switch 
between its two positions. In each mode, we wrote tests for the following modes: 

WiFi Mode: 

-​ The ESP32 disconnects from BLE and initializes WiFi connection using the 
stored SSID and password 

-​ Upon successful connection, the web server initializes and becomes accessible 
from a browser through the ESP32’s IP address 

-​ The captured images are streamed live and saved directly to the SD card 

Bluetooth Mode: 

-​ The ESP32 turns off WiFi and initializes a BLE server advertising a custom 
UART-style service 

-​ BLE clients can discover and connect to the ESP32 
-​ A 0x01 writes to the designated BLE characteristic and triggers the image 

capture flag 
-​ Upon receiving the BLE “shutter signal”, the ESP32 automatically disconnects 

BLE, reconnects to WiFi, and goes on to capture the image, save it to the SD 
card, and serve it over WiFi 

We also implemented a 500ms debounce delay to mitigate false positives from 
mechanical bounce. We were successfully able to implement the above logic and 
procedure. The switch reliably triggered mode transitions, and the ESP32 correctly shut 
down the corresponding radio stack before initializing the other, which we discovered 
was vital to the reliability of the system. In BLE mode, sending the correct 0x01 signal 
caused the ESP32 to reconnect to WiFi, take a picture and resume normal server 
operation without requiring a manual restart or reset. This seamless switch was 
essential to our self-timer framing and remote shutter workflow.  
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3.6 Detailed Design/Operation of Subsystem 4: Cloud 

 
Figure 25. Cloud Subsystem diagram. 

 
Engineering Decisions 
 
Google Drive was chosen to be the central hub for storing and sending images because 
of the ease of access and how the same folder can be shared with many people. Once 
taken, the microcontroller sends the images to a web server, a Python script fetches 
new images on the server and uploads them to the drive folder, and then another 
Python script downloads the images and displays and sorts them through a Flask web 
app. The Flask framework was selected for its simplicity and usability. The routing 
structure made it easy to add new pages and the built-in development server was 
helpful when testing. Flask apps can be run locally, which removed concerns 
surrounding hosting and online storage requirements. On the next page, Figure 26 
outlines the flow of the web app, with the rectangles representing separate pages and 
the diamonds representing functions. 
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Figure 26. Flask web app workflow 

 
The AI script was inspired by the examples on Python Package Index (here). Python 
was used because of the existing facial recognition libraries, including DeepFace and 
OpenCV. The code uses a dictionary to keep track of faces and works by iterating over 
all images and trying to extract a face. If there are no faces, it saves the image under 
the no_faces dictionary entry. If there is a face, it compares the face to the faces 
existing already in the dictionary. If it finds a match, it appends the image to the 
corresponding person, and if not, it creates a new entry. The two main parameters that 
needed to be set in the AI algorithm were the detector backend and the confidence 
level. The detector backend was set to “retinaface” which is said to prioritize accuracy 
over speed, and the confidence level of face matching was set to be at least 90 percent. 
After testing, below 90 resulted in incorrect matchings while above 90 seemed to afford 
no additional accuracy. 
 
Subsystem 4 Testing 
 
The primary testing that took place when creating this subsystem was programmatically 
finding ways to move images from one place to another in the cloud. For instance, a 
script was written just to download an image from a Google Drive folder using the folder 
ID. Another script was written to move an image from a web server to a drive folder. 
Once these individual pieces were deemed working, they were strung together to form 
the complete workflow outlined in Figure 25. 
 
The AI sorting code was tested by running it with a set of test images featuring two 
distinct people and landscapes. The confidence level and detector backend were 
adjusted until these images were correctly sorted. On the next page, Figure 27 shows 
the sorted images output by the script. It’s worth noting here that the images used to 

https://pypi.org/project/deepface/
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test the algorithm were very high quality and clearly featured faces, which was not the 
case with the photos taken on the group’s final digital camera. 
 

  
Figure 27. Output of sorting algorithm with test images 
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4​ Interfaces 

Most of the details of the interfaces between each subsystem are covered in the 
sections above. Each subsystem interacts with the ESP32 as the main hub (or perhaps 
just the source in the case of Subsystem 4) for the image capture and handling. 
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5​ System Integration Testing 

5.1​ Description of Testing for Integrated Set of Subsystems 

To validate the full functionality of the PIXEL camera system, we performed integration 
testing after all major subsystems had been tested and verified independently (as 
described in section 5). We first tested on a breadboard with the development board, 
then transitioned to the printed PCB. The goal of this phase was to ensure 
interoperability between the camera module, LCD screen, SD card, power system, 
wireless communications, user interface and cloud platform.  

Shared SPI Bus Integration 

In our system, there are three SPI devices: camera module, LCD screen, and microSD 
card. We tested them on the kitboard, attaching each device to SPI-designated pins on 
the microcontroller. Independently, they all functioned properly, but when they were put 
on the same SPI bus, we ran into issues having them all function seamlessly. One key 
focus of the integration was implementing a dual SPI bus architecture.  The VSPI was 
assigned to the ArduCam Mega 5MP camera and the ST7789 LCD display. The HSPI 
was assigned to the SD card. Since SPI does not support concurrent communication by 
default, only one device must be active on the VSPI bus at a given time. This was 
achieved by managing the Chip Select (CS) lines in software. For example, when 
capturing an image from the camera, the LCD’s CS pin is pulled high. When drawing to 
the LCD, the camera’s CS is deactivated. This SPI integration testing ensures reliable 
data transfer. During testing, debug prints in the serial monitor confirmed that each 
device’s data transmission began only when it was the sole active SPI peripheral on 
that particular bus. We validated that the image data streamed from the camera to RAM 
did not interfere with LCD preview functionality. We tested back-to-back operations: 
capturing an image from the camera, displaying it on the LCD, and saving it to the SD 
card. We visually confirmed the live view feed on the LCD continued to operate 
smoothly even after repeated photo captures and SD card writes. This integration is 
shown below in Figure 28. 
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Figure 28. Camera Module, SD card, and LCD integration 

Image to SD card, live LCD screen, and Web Server with Cloud Integration 

A critical part of integration testing involved the end-to-end image pipeline: from photo 
capture to local storage, on-device display, and wireless transmission. We tested the 
camera module on the kitboard to capture an image using SPI and store the JPEG data 
in RAM, then write the image to the SD card via another SPI bus, ensuring proper CS 
line control. Tests confirmed that images are saved with consistent file sizes and no 
corruption, even with repeated use. We printed file sizes directly to the serial monitor to 
confirm. The LCD screen also was tested by observing the screen to make sure it 
provides both a real-time preview and post-capture feedback at the same time. Using 
the same SPI bus, the LCD was able to render frames from the camera during preview 
mode. Integration testing resulted in smooth transitions between preview and capture 
modes. Upon image capture, we tested that the system was able to initialize an HTTP 
web server accessible over WiFi. Captured images can be accessed from a client 
browser though a REST endpoint (/image). So to test this functionality, we could simply 
type in the ESP32’s IP address into a browser and see if we see a captured image. The 
external python script and cloud management were also integrated, running them on a 
laptop to ensure that after a successful image capture, a script can upload the picture 
from the web server to the Google Drive and then perform facial recognition tagging and 
album sorting. This ensures that the full data pipeline–from hardware to cloud–functions 



PIXEL 38 

seamlessly. During testing, image access and uploads succeeded consistently, even 
across network restarts.  

Integrating Camera Flash and User Buttons into Data Pipeline  

The flash LED is controlled by a GPIO pin through an N-channel MOSFET and powered 
through the main battery line. During image capture, the flash is enabled for a brief, 
predefined duration (200 ms) to coincide precisely with the camera shutter. Different  
duration times were tested to try to get to an optimal time frame for the flash to be off. 
Integration tests verified that the flash fires reliably only during capture. We integrated a 
potentiometer, wiring it directly to the appropriate pin, so that the brightness is 
adjustable, which was also tested to confirm that flash intensity responds correctly to 
user input.   

Two physical buttons were integrated into the system and tested with the data pipeline 
on the kitboard. The shutter button on GPIO5 triggers photo capture which was 
successfully tested to initiate photo-to-cloud path. The delete button on GPIO4 was 
confirmed to cancel a captured image during the review period before saving. Both 
buttons were attached via interrupts to ensure low-latency response. Testing confirmed 
that the shutter button correctly initiates full capture-display-save sequence previously 
tested, the delete button interrupts the post-capture wait period and returns to live view 
without writing to the SD card, and the button debounce and race condition handling 
were robust under repeated presses. Printing to the serial monitor allowed us to confirm 
whether an image was deleted or saved. System-level testing confirmed the integrity of 
this pipeline whenever the shutter button is pressed: 

1.​ The camera module captures the image over SPI 
2.​ The flash is turned on and off in sync with the shutter 
3.​ The image is decoded and displayed on the LCD screen 
4.​ If not deleted, the image is written to SD card and sent to the web server 
5.​ Python script detects new image and moves it to Google Drive 
6.​ Image is sorted from Google Drive 

Integration of BLE WiFi Switch into Data Pipeline 

In Bluetooth mode, a BLE GATT server advertises a custom UART-style service. When 
the user sends a 0x01 signal via the LightBlue app, the ESP32: 

1.​ Triggered the onWrite() callback 
2.​ Set a flag to exit BLE 
3.​ Switched to WiFi mode 
4.​ Captured and saved an image 
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5.​ Sent image to Web Server 

During integration testing, we had to make sure that the active wireless stack is cleanly 
shut down, the new mode is initialized with proper event handling, and the server or 
BLE advertising resumes automatically, with full functionality. A physical toggle switch 
on GPIO35 allowed manual switching between WiFi and BLE modes, and the system 
monitors this pin state continuously. Printing to the serial monitor allowed us to confirm 
which protocol was active and verify when WiFi had been safely connected and 
disconnected. Whether using physical buttons or BLE commands, the camera should 
behave identically: flash goes off, image is displayed, saved, and served. Switching 
modes should not interrupt or corrupt ongoing tasks. We tested that power consumption 
and memory usage remained within the ESP32-S3 operational limits. Even though we 
got it working with the development board, when switching to the printed PCB, we ran 
into issues having the switch on GPIO35. Analyzing the ESP32-S3 datasheet, we 
hypothesized that GPIO35 could not properly function as an input pin, as there was 
some SPI protocol interference. Therefore, we tried moving the switch to GPIO38 by 
first setting that pin HIGH with an external power supply and then pulling the pin LOW to 
ground and seeing if the ESP32 could detect and print the state of the pin to the serial 
monitor. When this was confirmed, we cut the line on GPIO35 and re-soldered the 
switch to GPIO38. The system then functioned properly and we were able to switch 
back and forth between bluetooth and WiFi modes.   

Laser Outline Integration Test 

When using the breadboard, we were able to test the laser outline feature by using an 
external power supply. However, when switching to the printed PCB, the lasers, which 
were on the power supply line, when turned on, caused a system reset. We realized 
that they were drawing too much power on the board, so to mitigate this problem, we 
cut the laser line and added a third battery to our camera that was just used to power on 
the lasers. This made their integration to the rest of the subsystems seamless, because 
they were a part of a separate circuit.  

To ensure the lasers accurately outlined the camera’s field of view, we physically 
aligned them with the ArduCam module’s capture angle. We estimated their positioning 
in the 3D-printed camera housing and iteratively adjusted their mounts through 
hand-filing until the laser box matched the camera’s frame without being able to see the 
outline in the captured picture. We observed the field of view of the camera through the 
web server.  
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PCB Total System Integration Testing 

After the PCB had been printed and assembled, we began full system testing by 
verifying that all components powered up correctly. In the first iteration of our PCB, the 
green indicator LED illuminated when connected to USBC, but we were not able to 
communicate with the microcontroller. Using a multimeter, we measured the output of 
the voltage regulator and found that it had not successfully stepped down the 5V USB-C 
power to the 3.3V input that the microcontroller (and other components on our board) 
required. This indicated that something was wrong with our voltage regulator. Upon 
further inspection, we realized we had ordered a step-up converter instead of a 
step-down converter. Recognizing the importance of stable power delivery across all 
components, we redesigned and ordered a second version of the PCB with a corrected 
power section using the appropriate regulator.  We also flipped the footprint of the 
microSD card slot to make it easier for users to insert and remove the card from the 
edge of the camera casing.  

The second iteration of the board was delivered and assembled. We again began full 
system testing by verifying that all components powered up correctly and saw the green 
indicator LED illuminated when connected to USBC. This time, we were able to 
successfully communicate with the microcontroller, starting our testing with a simple 
“Hello World” program. To test the buttons and switches, we externally mounted the 
physical components on the printed 3D case and then soldered wires to the appropriate 
header pins on the PCB to be able to test their functionality. Then we methodically 
carried out the subsystem integration testing procedure as outlined above.  

5.2​ How Testing Shows Design Requirements are Met 

System integration testing successfully demonstrated that the PIXEL camera system 
meets the functional, performance, and usability requirements established in the design 
specification: 

Camera and Imaging Requirements 

During integration testing, photos were successfully captured after shutter press using 
the ArduCam Mega module, stored on the SD card, and displayed on the LCD screen. 
The LCD shows continuous live feedback until an image is captured, satisfying the core 
purpose of a live preview system for framing. Image clarity and resolution were verified 
by comparing the file size and quality to datasheet expectations.  

A physical switch enables the user to turn on the laser feature. Laser framing was 
tested in both dark and well-lit environments. Physical placement and angular alignment 
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of lasers were confirmed to match the camera field of view using calibration images and 
web streaming.  

Connectivity and Data Management  

BLE and WiFi were successfully initialized using a toggle switch. Captured photos were 
served through an onboard web server and uploaded to Google Drive using a Python 
script. The script carried out facial recognition and robustly sorted images into user 
folders easily accessible through the website.  

Captured images were saved to the SD card with or without WiFi connection.  

Power and Indicator Requirements 

Power testing with a multimeter showed a stable 3.3V at the output of the voltage 
regulator. When the battery voltage dropped below our indicated threshold voltage of 
4.8V, the onboard red LED lit up, confirming correct threshold detection. The system 
continued operating until the cutoff was met. All components received the correct power 
requirements. The camera battery was able to be charged via an external circuit.  

MOSFETs and regulators were tested over long run sessions without overheating or 
discharging dangerously, meeting our power system requirements.  

Safety and Accessibility 

Our chosen lasers were rated below 5 mW (Class IIIA). Laser brightness was sufficient 
to see the framing without bringing along safety risks.  

Each button was tested. Interrupts triggered correctly on press, with debounce timing 
validated through repeated presses. The remote button in BLE mode functionality was 
also validated through testing.  

Practicality of Device  

The original requirement was for compact dimensions of camera. However, to 
accommodate the ESP32-S3, battery pack, laser mounts, LCD, and other circuitry, the 
case was scaled up. However even with the size increase, the camera remains easy to 
hold, stands stably, fits into the standard bag, and maintains usability as a compact 
camera with easy-to-press buttons.  The batteries are able to be easily charged. The 
camera’s adjustable flash was tested and demonstrated to go off at the appropriate 
time—when a picture is taken. The camera also was able to successfully save images 
to an SD card and upload over WiFi when available. BLE remote functionality was 
tested up to 25 feet away from the physical camera.  
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6​ User Manual / Installation Manual 

6.1​ How to Install the Product 

Because our camera can function as its own device, there is not much installation 
necessary for the user. If the user were to be handed the camera or take it out of a box, 
all they would need to do is turn the on/off switch to the one mode and begin taking 
pictures. These images would automatically be saved to the SD card, which could then 
later be seen by viewing the SD card from a laptop. Also, the switch for the lasers can 
instantly be used when the device is powered on. However, to use the Bluetooth button 
mode, the user must install the LightBlue app so that they can send the correct BLE 
signal to the camera. This app can easily be installed for free from the iOS or Android 
application stores. Additionally, to use the automatic uploading and AI facial recognition 
features, the user must be able to run Python scripts. If the user has a Google Drive 
account, then they can use the Google Colaboratory service to run these scripts and 
view the images through Google Drive. However, if the user does not have a Google 
Drive account, they must make one, which is free to create and utilize for purposes such 
as Google Colaboratory.  

6.2​ How to Set Up the Product 

Once the user has the camera, they must first enter their specific Wi-Fi credentials. This 
task can be done by editing the ESP32 code so that the ssid, or first term in the 
WiFi.begin function call, is the network name being utilized and the password, or 
second term in the WiFi.begin function call, is the password for that network. Then, the 
code can be uploaded to the camera, and the IP address of the microcontroller will be 
printed to the serial monitor. Next, the user must verify that the printed IP address 
matches the IP address in the Python script for connecting the server to the Google 
Drive folder. If the IP address does not match, the user should edit the IP address field 
in that Python script to match the newly printed address. Now that the code has been 
updated, the user can turn on the camera and upload this modified code. All of the 
functions local to the camera itself, such as the lasers, flash, SD card, buttons, and 
Bluetooth switch, will work automatically once the camera is turned on.  

6.3​ How to Tell if the Product is Working 

When the user turns the power switch to “ON”, they should see the display backlight 
turn on. Likewise, they should see the green power LED shine through its 
corresponding hole in the case. Within seconds of the power being turned on, the user 
should see the display begin to depict the live view from the camera. If the user flips the 
laser switch to on, the laser frame should light up with four green lasers creating a 
rectangular frame. If the shutter button is pressed, the user should see the screen 
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freeze on the image that was just captured. If the delete button is pressed within five 
seconds of the image being captured, then the screen should return to the live view 
mode. However, if the delete button is not pressed within five seconds of the image 
capture, then the user should see the display return to the live view mode for the 
camera, and the images should be uploaded to the SD card and the server. If the 
Bluetooth/WiFi switch is in Bluetooth mode, then the user should be able to send the 
hexadecimal value of 01 to the camera, which will trigger the capture of an image. If the 
potentiometer is turned fully on, whenever an image is captured, whether through the 
physical button or the bluetooth shutter, the flash should go off. The user should be able 
to remove the SD card and verify the captured images, as well as they should be able to 
remove the batteries to recharge them whenever the battery monitoring LED lights up 
red. If the user turns the power switch to “OFF”, the screen should turn off and the 
buttons and switches should not trigger any sort of response.  

6.4​ How to Troubleshoot the Product 

If the power switch is turned to “ON” and the power LED does not light up, the user 
should try different batteries or verify that the batteries are properly connected. If the 
power switch is turned on, but the LCD screen does not light up or display a live camera 
view, the user should wait a few seconds to give the full setup time to run. If the screen 
is still not turned on within a few minutes, the power switch should be turned off and the 
camera should be left alone for a few minutes. Then, the power switch can be turned 
back on, and if the display still does not respond, new batteries should be tried in the 
device. If the WiFi connection cannot be established or the images are not uploading to 
the server, the user should try a different network, take the device outside, or try using 
the camera in a less crowded room or building. If images are not able to be accessed 
on the SD card, the user should try to format their SD card to be the FAT32 type by 
directly connecting it to their laptop and editing the SD card’s settings. If the images are 
not able to be viewed on the server and pulled to the Google Drive folder, the user 
should try re-running the Python script and verify that their laptop’s WiFi connection 
matches the WiFi network to which the ESP32 is connected.  
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7​ To-Market Design Changes 

While this device works as a functional prototype for addressing the image access and 
remote photo capture limitations of handheld digital cameras, it is not yet a fully usable 
commercial product. The first design change to bring this product to a market would be 
to implement the WiFi provisioning feature. At the moment, the user must enter WiFi 
credentials into a C++ coding file each time that they change WiFi networks. However, 
connecting the camera to a laptop and rerunning code is not practical for a commercial 
product that is meant to be portable and easy to use. A provisioning app, such as the 
ESP BLE Prov App, allows the user to connect to the camera from their phone and 
enter the WiFi credentials of their specific location over Bluetooth. However, the use of a 
provisioning app was interfering with the Bluetooth/WiFi switch on the camera. More 
robust code that efficiently turns Bluetooth off as soon as it is not being used so that the 
WiFi can connect must be developed to bring this camera to a market.  

Additionally, the camera is limited as a commercial device because it is larger and less 
convenient than many digital cameras on the market today. Many people already carry 
their phones around with them wherever they go for general communication purposes, 
so the fact that these phones already have a camera makes customers less likely to buy 
and bring along a second camera device. We left extra space on our PCB so that the 
USB and SD card could both align with the edges of the camera case. However, we 
ended up adding extra room on the side of the case to improve battery and SD card 
access, so our overall device ended up larger than most handheld digital camera 
devices. To make this product more ideal for a market, we could shrink the case size so 
that it aligns with the edges of the PCB and the batteries, USB, and SD card are all 
easily accessible to the user without requiring extra space. We could also reduce the 
vertical height of the PCB by rearranging components, allowing for more space for 
internal wiring. 

Finally, to fully utilize our camera for automatic image upload and facial recognition, 
Python scripts must be run while the camera is being used. These scripts have only 
been tested from laptops, but it is not practical for a user to carry around a laptop just so 
that they can use a camera. However, Python scripts can be run in Google 
Colaboratory, which can be run from a phone. Further testing of the server interactions 
and facial recognition software can be performed on a phone with the current Python 
scripts so that a user does not need a laptop to use all of the camera features. Then, 
these scripts can be incorporated into an app using a development software, such as 
Xcode, so that the user only needs the camera and an app on their phone. While a 
second device is still necessary for the full uploading potential of this camera, the 
majority of users have their phone with them at all times anyway or are not bothered by 
waiting to upload the images from the SD card to a Google Drive folder for facial 
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recognition processing. Clearly, the camera is not in its most ideal form. However, each 
of its limitations—which are due to time limitations for further programming development 
and case redesign—have a solution that can very reasonably be carried out.  
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8​ Conclusions 

P.I.X.E.L. successfully delivers an innovative digital camera experience by addressing 
limitations and inadequacies of traditional cameras, including inconvenient image 
access, poor remote capture functionality, and lack of framing. Through integration of 
WiFi-enabled image uploading, AI-based facial recognition, laser-assisted framing, 
adjustable flash, and remote shutter functionality, this prototype not only fulfills its initial 
requirements but also shows potential for both practical and commercial use. Simply 
put: PIXEL is fun. This camera brings people together and inspires a new love of 
capturing the moment. Through the development process, careful engineering decisions 
were made for hardware selection, subsystem design, and user experience. Moving 
forward, we could make improvements on the size of the camera, app-based WiFi 
provisioning, and tighter integration with mobile platforms to carry out the cloud server 
portion of the product. Overall, this project demonstrates the successful application of 
an embedded system to create a user-friendly camera that combines the nostalgia of 
vintage digital photography with modern smart features. With PIXEL, every shot is in 
frame. Just point, shoot, and smile.  

 



PIXEL 47 

9​ Appendices 

Complete Schematic
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Complete PCB Layout 
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Relevant Hardware Datasheets/Documentation: 
 

●​ ArduCam Mega 5MP Camera Module with Autofocus Lens:  
Waveshare 2-inch LCD Module 

●​ LED Flash:  

 
 

●​ Green Laser Line: 

 
●​ ESP32-S3-WROOM-1-N16R8 

 
 

https://www.arducam.com/presale-mega-5mp-color-rolling-shutter-camera-module-with-autofocus-lens-for-any-microcontroller.html
https://www.waveshare.com/wiki/2inch_LCD_Module
https://www.amazon.com/dp/B0CL4JPFSP/ref=sspa_dk_detail_0?pf_rd_p=f2f1cf8f-cab4-44dc-82ba-0ca811fb90cc&pf_rd_r=EDVT9G3QM6V5ZSP09HJF&pd_rd_wg=HGyI9&pd_rd_w=xR5zB&content-id=amzn1.sym.f2f1cf8f-cab4-44dc-82ba-0ca811fb90cc&pd_rd_r=0ee7dc9f-0f87-441b-a63d-3240feea968b&s=hi&sp_csd=d2lkZ2V0TmFtZT1zcF9kZXRhaWxfdGhlbWF0aWM&th=1
https://www.amazon.com/520nm-Laser-Module-Industrial-adjustable/dp/B0CSYSVPS9/ref=asc_df_B0CSYSVPS9?mcid=8f55ac59f2a9376d8c4a875def22f0a0&tag=hyprod-20&linkCode=df0&hvadid=693675076785&hvpos=&hvnetw=g&hvrand=3988769251831670716&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9016261&hvtargid=pla-2297024163581&psc=1#productDetails
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-1u_datasheet_en.pdf
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Complete ESP32 Code: 
(Camera, LCD, SD Card, WiFi and Server, Buttons, Bluetooth/WiFi Switch, Battery 
Monitoring) 
 
// P.I.X.E.L. Senior Design team 

// ESP32 Code 

// Camera Control, Display, SD card, Bluetooth Switching 

 

// BLE Libraries 

#include <BLEDevice.h> 

#include <BLEUtils.h> 

#include <BLEServer.h> 

#include <BLE2902.h> 

 

// Libraries for WiFi and Peripherals 

#include "ArduCam_Mega.h" 

#include <SPI.h> 

#include <WiFi.h> 

#include <WebServer.h> 

#include <Adafruit_GFX.h> 

#include <Adafruit_ST7789.h> 

#include <JPEGDecoder.h> 

#include <FS.h> 

#include <SD.h> 

#include "WiFiProv.h"   // if provisioning is not used, then do not need this 

 

//Potentiometer Flash Pin 

#define POT_PIN 2 

 

//WiFi BLE Button 

#define SWITCH_PIN 38  // GPIO pin for the physical button 

 

//Camera control buttons 

#define BUTTON_PIN 5  

#define DELETE_BUTTON 4  

 

// VSPI Pins (LCD & Camera) 

#define TFT_CS    10  

#define TFT_DC    9   

#define TFT_RST   8   

#define TFT_MOSI  11  

#define TFT_CLK   12  

#define TFT_BL    7   
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#define CAM_CS    6   

 

// HSPI Pins (SD Card) 

#define SD_CS 45 

#define SD_SCK 21 

#define SD_MISO 48 

#define SD_MOSI 47 

 

// LCD & Camera Configuration Sizes 

#define LCD_WIDTH  240 

#define LCD_HEIGHT 320 

#define CAM_WIDTH  320 

#define CAM_HEIGHT 320 

 

// Center 320x320 image on 240x320 display 

#define X_OFFSET  -40  

#define Y_OFFSET  0  

 

//Battery monitoring 

const int analogPin1 = 17; // ESP32 ADC pin 

const int analogPin2 = 18; 

const float R1 = 10000.0; // 10k 

const float R2_3 = 20000.0;  // Two 10k in series = 20k 

const float ADC_MAX = 4095.0; // ESP32 12-bit ADC max value 

const float VREF = 3.3; // Reference voltage 

const float threshold = 4.8; // Combined battery threshold voltage 

#define LED 40 // battery monitoring LED on pin 40 

 

// BLE UUIDs for UART-style service (used by AB Shutter-style buttons) 

// matches app 

#define SERVICE_UUID        "6E400001-B5A3-F393-E0A9-E50E24DCCA9E" 

#define CHARACTERISTIC_UUID "6E400002-B5A3-F393-E0A9-E50E24DCCA9E" 

 

// Global Variables 

// State Variables 

volatile bool buttonPressed = false; 

volatile bool deletePressed = false; 

bool captureMode = false; 

bool isWifiOn = false; 

bool isBluetoothOn = false; 

volatile bool shouldSwitchToWiFi = false; 

int lastSwitchState = -1; 
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volatile bool captureRequested = false; 

 

//Timing Variables 

unsigned long captureTimestamp = 0; 

const int captureDisplayTime = 5000; 

unsigned long lastDebounceTime = 0; 

unsigned long debounceDelay = 500; 

 

// Interrupt function for capture button 

void IRAM_ATTR handleButtonPress() { buttonPressed = true; } 

 

// Interrupt function for delete button 

void IRAM_ATTR handleDeletePress() { deletePressed = true; } 

 

// For streaming the most recent image saved to SD card to the web 

String lastSavedFilename = ""; 

bool sdInitialized = false; 

void handleImageRequest();    // declared here for web handler registration 

 

// BLE characteristic pointer (BLE write handler) 

BLECharacteristic* pCharacteristic; 

 

// Object Declarations 

Adafruit_ST7789 tft = Adafruit_ST7789(TFT_CS, TFT_DC, TFT_RST); 

ArduCam_Mega myCamera(CAM_CS); 

SPIClass sdSPI(HSPI); 

WebServer server(80);   //HTTP server on port 80 

 

// BLE write callback for AB shutter 

class MyCallbacks : public BLECharacteristicCallbacks { 

 void onWrite(BLECharacteristic* pChar) { 

     std::string value = std::string(pChar->getValue().c_str()); 

     if (value.length() > 0 && value[0] == 0x01) { 

         Serial.println("AB Shutter BLE button pressed!"); 

         shouldSwitchToWiFi = true;  // start wifi capture mode 

     } 

 } 

}; 

 

void setupBLE() { 

 Serial.println("Starting BLE peripheral..."); 

 WiFi.mode(WIFI_OFF);    //Need to disable WiFi to avoid conflicts 
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 BLEDevice::init("ESP32_Shutter");   //BLE device name 

 BLEServer* pServer = BLEDevice::createServer(); 

 BLEService* pService = pServer->createService(SERVICE_UUID); 

 

 pCharacteristic = pService->createCharacteristic( 

     CHARACTERISTIC_UUID, 

     BLECharacteristic::PROPERTY_WRITE 

 ); 

 pCharacteristic->setCallbacks(new MyCallbacks());   //Button handler 

 

 pService->start(); 

 BLEAdvertising* pAdvertising = BLEDevice::getAdvertising(); 

 pAdvertising->start();    //Begin advertising 

 

 Serial.println("BLE ready. Connect with iPhone and send 0x01."); 

 isBluetoothOn = true; 

 isWifiOn = false; 

} 

 

// Initialize SD card 

void initSDCard() { 

 sdSPI.begin(SD_SCK, SD_MISO, SD_MOSI, SD_CS); 

 if (!SD.begin(SD_CS, sdSPI, 1000000)) {     //can adjust SPI speed here 

   Serial.println("[ERROR] SD Card init failed"); 

 } else { 

   Serial.println("[OK] SD Card initialized"); 

 } 

} 

 

// Save captured image to SD card 

void saveImageToSD(uint8_t *jpegBuffer, uint32_t totalLength) { 

 String filename = "/IMG_" + String(millis()) + ".jpg";  //Assign unique filename 

 File file = SD.open(filename, FILE_WRITE); 

 

 if (!file) { 

   Serial.println("Failed to open file for writing!"); 

     return; 

 } 

   file.write(jpegBuffer, totalLength);  //Write image data to file 

   file.close(); 
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   Serial.println("Image saved: " + filename); 

 

   //Store the name for later streaming 

   lastSavedFilename = filename; 

   Serial.println("lastSavedFilename updated to: " + lastSavedFilename); 

 

   server.begin();   // start web server 

   Serial.println("Web server started! Visit http://ESP32_IP/image"); 

   server.on("/image", handleImageRequest);    // set image route 

} 

 

// Stream live camera view to display 

void streamLiveView() { 

 if (captureMode) return;   // skip if image is being captured 

 

 digitalWrite(TFT_CS, HIGH);   //disable LCD 

 digitalWrite(CAM_CS, LOW);    //enable camera 

 

 if (myCamera.takePicture(CAM_IMAGE_MODE_QVGA, CAM_IMAGE_PIX_FMT_RGB565) != 

CAM_ERR_SUCCESS){    //QVGA is resolution 320x240 

     Serial.println("Failed to capture live view!"); 

     return; 

 } 

 

 const int imgWidth = 320; 

 const int imgHeight = 240; 

 

 uint32_t totalLength = myCamera.getTotalLength(); 

 uint16_t* frameBuffer = (uint16_t*)malloc(imgWidth * imgHeight * sizeof(uint16_t)); 

 if (!frameBuffer) { 

     Serial.println("[ERROR] Failed to allocate frame buffer!"); 

     return; 

 } 

 

 uint32_t receivedLength = 0; 

 uint8_t imageData[128]; 

 int pixelIndex = 0; 

 

 // Read raw image data and convert to RGB565 pixels 

 while (receivedLength < totalLength && pixelIndex < imgWidth * imgHeight) { 

     uint8_t readLen = myCamera.readBuff(imageData, sizeof(imageData)); 

     receivedLength += readLen; 
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     for (int i = 0; i < readLen; i += 2) { 

         uint16_t color565 = (imageData[i] << 8) | imageData[i + 1]; 

         frameBuffer[pixelIndex++] = color565; 

     } 

 } 

 

 digitalWrite(CAM_CS, HIGH);   //disable camera 

 digitalWrite(TFT_CS, LOW);     //enable LCD 

 

 // Clear screen and draw full 320x240 image at (0,0) — assuming landscape mode 

 tft.drawRGBBitmap(0, 0, frameBuffer, imgWidth, imgHeight); 

 

 free(frameBuffer);    //release memory 

} 

 

// Capture and Display Image, Show on Display, Delete, Save to SD 

void captureAndDisplay() { 

 captureMode = true; 

 Serial.println("Capturing Image..."); 

 

 digitalWrite(POT_PIN, HIGH); 

 delay(200); 

 

 digitalWrite(TFT_CS, HIGH); 

 digitalWrite(CAM_CS, LOW); 

 

 if (myCamera.takePicture(CAM_IMAGE_MODE_QVGA, CAM_IMAGE_PIX_FMT_JPG) != 

CAM_ERR_SUCCESS) { 

     Serial.println("Failed to take picture!"); 

     return; 

 } 

 

 //pinMode(POT_PIN, OUTPUT); 

 digitalWrite(POT_PIN, LOW); 

 

 uint32_t totalLength = myCamera.getTotalLength(); 

 Serial.print("Image Size: "); 

 Serial.println(totalLength); 

 

 uint8_t *jpegBuffer = (uint8_t *)malloc(totalLength); 

 if (!jpegBuffer) { 
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     Serial.println("Memory allocation failed!"); 

     return; 

 } 

 

 Serial.println("Memory allocated"); 

 

 uint32_t receivedLength = 0; 

 while (receivedLength < totalLength) { 

     uint8_t readLen = myCamera.readBuff(jpegBuffer + receivedLength, 128); 

     receivedLength += readLen; 

     Serial.println(receivedLength); 

 } 

 

 Serial.println("JPEG Image Captured."); 

 

 // Display the captured image 

 if (JpegDec.decodeArray(jpegBuffer, totalLength)) { 

     Serial.println("JPEG Decoding Successful."); 

     

     digitalWrite(CAM_CS, HIGH); 

     digitalWrite(TFT_CS, LOW); 

     tft.fillScreen(ST77XX_BLACK); 

 

     while (JpegDec.read()) { 

       uint16_t *pImg = JpegDec.pImage; 

       tft.drawRGBBitmap(JpegDec.MCUx * JpegDec.MCUWidth, JpegDec.MCUy * 

JpegDec.MCUHeight, 

                 pImg, JpegDec.MCUWidth, JpegDec.MCUHeight); 

       yield(); 

     } 

 } else { 

     Serial.println("JPEG Decoding Failed."); 

 } 

 

 unsigned long startTime = millis(); 

 while (millis() - startTime < captureDisplayTime) { 

   if (deletePressed) { 

     deletePressed = false; 

     buttonPressed = false;  //Prevent second capture 

     shouldSwitchToWiFi = false;  //Just in case still having double presses 

     Serial.println("Delete button pressed, returning to live view."); 

     free(jpegBuffer); 
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     captureMode = false; 

     tft.fillScreen(ST77XX_BLACK);  // Clear screen before resuming live view 

     return; 

   } 

 } 

 

 // If the delete button wasn't pressed, save the image 

 saveImageToSD(jpegBuffer, totalLength); 

 free(jpegBuffer); 

 Serial.println("Captured Image Saved. Returning to live view."); 

 captureMode = false; 

 tft.fillScreen(ST77XX_BLACK); 

 buttonPressed = false; 

 deletePressed = false; 

 shouldSwitchToWiFi = false; 

} 

 

 

// Serve Last Image over WiFi to the Server 

void handleImageRequest() { 

 Serial.println("Serving last saved image over WiFi..."); 

 

 if (lastSavedFilename == "") { 

     server.send(404, "text/plain", "No image captured yet."); 

     return; 

 } 

 

 File imageFile = SD.open(lastSavedFilename, FILE_READ); 

 if (!imageFile) { 

     server.send(500, "text/plain", "Failed to open saved image."); 

     return; 

 } 

 

 Serial.print("Streaming file: "); 

 Serial.println(lastSavedFilename); 

 

 WiFiClient client = server.client(); 

 if (!client.connected()) { 

     imageFile.close(); 

     return; 

 } 
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 client.println("HTTP/1.1 200 OK"); 

 client.println("Content-Type: image/jpeg"); 

 client.println("Connection: close"); 

 client.println(); 

 

 uint8_t buffer[128]; 

 while (imageFile.available()) { 

     size_t len = imageFile.read(buffer, sizeof(buffer)); 

     client.write(buffer, len); 

 } 

 

 imageFile.close(); 

 Serial.println("Finished streaming image."); 

} 

 

void setup() { 

 Serial.begin(115200); 

 delay(1000); 

 pinMode(LED, OUTPUT); 

 pinMode(POT_PIN, OUTPUT); 

 digitalWrite(POT_PIN, LOW); 

 

 Serial.println("[BOOT] Initializing camera..."); 

 if (myCamera.begin() != CAM_ERR_SUCCESS) { 

   Serial.println("[ERROR] Camera init failed"); 

   return; 

 } 

 myCamera.setAutoFocus(true);    // autofocus on 

  initSDCard(); 

 

 SPI.begin(TFT_CLK, -1, TFT_MOSI, TFT_CS); 

 

 Serial.println("Initializing LCD..."); 

 tft.init(LCD_WIDTH, LCD_HEIGHT); 

 tft.setRotation(1);               //landscape mode 

 tft.fillScreen(ST77XX_BLACK); 

 pinMode(TFT_BL, OUTPUT); 

 digitalWrite(TFT_BL, HIGH); 

 

 pinMode(BUTTON_PIN, INPUT_PULLUP); 

 attachInterrupt(digitalPinToInterrupt(BUTTON_PIN), handleButtonPress, FALLING); 
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 pinMode(DELETE_BUTTON, INPUT_PULLUP); 

 attachInterrupt(digitalPinToInterrupt(DELETE_BUTTON), handleDeletePress, FALLING); 

 

 pinMode(SWITCH_PIN, INPUT); 

 int initialState = digitalRead(SWITCH_PIN); 

 Serial.print(initialState); 

 lastSwitchState = initialState; 

 if (initialState == HIGH) { 

   if (!isWifiOn && WiFi.status() != WL_CONNECTED) { 

   

     WiFi.begin("SDNet", "CapstoneProject"); 

     Serial.print("[WIFI] Connecting"); 

     while (WiFi.status() != WL_CONNECTED) { 

       delay(500); 

       Serial.print("."); 

     } 

     Serial.println("\n[WIFI] Connected!"); 

     Serial.println(WiFi.localIP()); 

     isWifiOn = true; 

     isBluetoothOn = false; 

     } 

   } else { 

       setupBLE(); 

       isWifiOn = false; 

       isBluetoothOn = true; 

   } 

} 

 

void loop() { 

 int currentSwitchState = digitalRead(SWITCH_PIN); 

 

 if (currentSwitchState != lastSwitchState) { 

   delay(100);  // debounce 

   currentSwitchState = digitalRead(SWITCH_PIN); 

   if (currentSwitchState != lastSwitchState) { 

     lastSwitchState = currentSwitchState; 

 

     // TOGGLE between WiFi and BLE, no matter high or low 

     if (isWifiOn) { 

       Serial.println("Switch flipped: WiFi -> BLE"); 

 

       WiFi.disconnect(true, true); // Disconnect from WiFi 
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       WiFi.mode(WIFI_OFF); 

       delay(300); 

 

       setupBLE(); 

       isBluetoothOn = true; 

       isWifiOn = false; 

     } else { 

       Serial.println("Switch flipped: BLE -> WiFi"); 

 

       if (isBluetoothOn) { 

         BLEDevice::deinit(); 

         delay(300); 

       } 

 

       WiFi.begin("SDNet", "CapstoneProject"); 

       Serial.print("[WIFI] Connecting"); 

       while (WiFi.status() != WL_CONNECTED) { 

         delay(500); 

         Serial.print("."); 

       } 

       Serial.println("\n[WIFI] Connected!"); 

       Serial.println(WiFi.localIP()); 

 

       server.on("/image", handleImageRequest); 

       server.begin(); 

       Serial.println("[SERVER] Web server started!"); 

 

       isWifiOn = true; 

       isBluetoothOn = false; 

     } 

   } 

 } 

 

 // Handle BLE shutter press asking for Wi-Fi 

 if (shouldSwitchToWiFi) { 

   shouldSwitchToWiFi = false; 

 

   Serial.println("Switching from BLE to WiFi because shutter button was pressed..."); 

 

   if (isBluetoothOn) { 

       BLEDevice::deinit(); 

       delay(300); 
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   } 

 

   WiFi.begin("SDNet", "CapstoneProject"); 

   Serial.print("[WIFI] Connecting"); 

   while (WiFi.status() != WL_CONNECTED) { 

     delay(500); 

     Serial.print("."); 

   } 

   Serial.println("\n[WIFI] Connected!"); 

   Serial.println(WiFi.localIP()); 

 

   server.on("/image", handleImageRequest); 

   server.begin(); 

   Serial.println("[SERVER] Web server started!"); 

 

   isWifiOn = true; 

   isBluetoothOn = false; 

 

   captureAndDisplay(); 

 } 

 

 if (WiFi.status() == WL_CONNECTED) { 

   server.handleClient(); 

   if (buttonPressed) { 

     buttonPressed = false; 

     deletePressed = false; 

     captureAndDisplay(); 

   } 

 } 

 

 if (!captureMode) { 

   streamLiveView(); 

 } 

 

 float voltage1 = analogReadMilliVolts(analogPin1) / 1000.0; // Get voltage directly 

 float batteryVoltage1 = voltage1 * (1 + (R1 / (R1+R2_3))); // Adjust for voltage 

divider 

 

 float voltage2 = analogReadMilliVolts(analogPin2) / 1000.0; // Get voltage directly 

 float batteryVoltage2 = voltage2 * (1 + (R1 / (R1+R2_3))); // Adjust for voltage 

divider 
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 if (batteryVoltage1 + batteryVoltage2 < threshold) { 

     digitalWrite(LED, HIGH); 

 } else { // blink if low battery 

      digitalWrite(LED, LOW); 

 } 

 

 Serial.print("Battery Voltage1: "); 

 Serial.println(batteryVoltage1); 

 Serial.print("Battery Voltage2: "); 

 Serial.println(batteryVoltage2); 

 

 delay(100); 

} 

 

 
 

 



PIXEL 63 

Python Script for Server to Google Drive: 
 
import requests 

import os 

import datetime 

import time 

import random 

import hashlib 

from pydrive.auth import GoogleAuth 

from pydrive.drive import GoogleDrive 

 

# need to authenticate google drive access 

ESP32_IP = "192.168.10.114" 

IMAGE_URL = f"http://{ESP32_IP}/image" 

SAVE_DIR = "images" 

GOOGLE_DRIVE_FOLDER_ID = "1j-JN4hXzCYdJ7iE1mYVw--ezV-WDLH6k" 

 

gauth = GoogleAuth() 

gauth.LocalWebserverAuth() 

drive = GoogleDrive(gauth) 

 

if not os.path.exists(SAVE_DIR): 

   os.makedirs(SAVE_DIR) 

# Store the hash of the last uploaded image to check for duplicates 

last_image_hash = None  

 

# function for retry attempts to connect to web server 

def retry(operation, retries=3, base_delay=2, on_exception=Exception): 

   for attempt in range(1, retries + 1): 

       try: 

           return operation() 

       except on_exception as e: 

           print(f"[Retry {attempt}] Error: {e}") 

           time.sleep(base_delay * attempt + random.uniform(0, 1)) 

   print(f"[FAIL] Operation failed after {retries} attempts.") 

   return None 

 

# function to compute hash of an image to check for duplicates 

def compute_hash(filepath): 

   sha = hashlib.sha256() 

   with open(filepath, "rb") as f: 

       for chunk in iter(lambda: f.read(4096), b""): 
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           sha.update(chunk) 

   return sha.hexdigest() 

 

# function to grab image from web server 

def fetch_image(): 

   #add time stamp metadata 

   timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S") 

   image_path = os.path.join(SAVE_DIR, f"esp32_image_{timestamp}.jpg") 

   

   def do_fetch(): 

       print("Fetching image from ESP32...") 

       # apply appropriate headers 

       response = requests.get(IMAGE_URL, headers={"Accept": "image/jpeg"}, 

stream=True, timeout=10) 

       if response.status_code != 200: 

           raise RuntimeError(f"Failed to fetch image, status {response.status_code}") 

 

       content_type = response.headers.get("Content-Type", "") 

       # make sure the image is a JPEG 

       if "image/jpeg" not in content_type: 

           raise RuntimeError(f"Invalid content type: {content_type}") 

       # open the image in chunks 

       with open(image_path, "wb") as file: 

           for chunk in response.iter_content(chunk_size=4096): 

               if chunk: 

                   file.write(chunk) 

 

       print(f"Image saved to {image_path}") 

       return image_path 

 

   return retry(do_fetch) 

 

# function to upload the image to google drive folder 

def upload_image(image_path): 

   def do_upload(): 

       print("Uploading to Google Drive...") 

       # create new blank file in folder 

       file_drive = drive.CreateFile({'title': os.path.basename(image_path), 

'parents': [{'id': GOOGLE_DRIVE_FOLDER_ID}]}) 

       file_drive.SetContentFile(image_path) 

       # upload fetched image and print path 

       file_drive.Upload() 
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       print(f"Uploaded: {image_path}") 

       return True 

   

   success = retry(do_upload) 

   # delete local file to free up storage 

   if success and os.path.exists(image_path): 

       os.remove(image_path) 

       print(f"Deleted local file: {image_path}") 

 

# Main loop 

while True: 

   path = fetch_image() 

   if path: 

       # compute hash to search for duplicates 

       img_hash = compute_hash(path) 

       # do not want to upload the same image multiple times to the google drive 

       if img_hash == last_image_hash: 

           print("Image is identical to previous. Skipping upload.") 

           os.remove(path) 

       else: 

           # update hash and upload image to google drive if we can fetch new image 

           last_image_hash = img_hash 

           upload_image(path) 

   else: 

       # print statement for usability 

       print("Skipping upload due to fetch failure.") 

   # set system to sleep to avoid timing errors 

   time.sleep(10) 
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Flask web app main code (app.py): 

from flask import Flask, render_template, url_for, redirect 

import requests 

import os 

from deepface import DeepFace 

from utils import get_filename, update_images, update_sort, extract_datetime 

from pathlib import Path 

 

app = Flask(__name__) 

# global variables 

web_app_url = 
"https://script.google.com/macros/s/AKfycbw2KM-GIc6C7mTgzi7TRHD8AgMC4O5yFYrvp4h5Tzk_Bj
TTYsJdJw036nqDaJjhoCD7/exec" 

# dictionary for detected faces 

face_db = {}  # { "person_X": ["image1.jpg", "image2.jpg"] } 

@app.route("/") 

def home(): 

   folder = Path('static/images') 

   # if images are already saved, display them 

   # otherwise, display generic home page 

   if folder.exists(): 

       image_folder = os.path.join('static', 'images') 

       image_names = os.listdir(image_folder) 

       image_info = [] 

       for name in image_names: 

           if name.endswith((".jpg", ".png")): 

               image_info.append({ 

                   'url': url_for('static', filename=f'images/{name}'), 

                   'filename': name 

               }) 
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       image_info.sort(key=extract_datetime, reverse=True) 

       return render_template('home_with_images.html', images=image_info) 

   return render_template('home.html') 

@app.route('/run-download', methods=['GET']) 

def download(): 

   # get images from google apps script 

   response = requests.get(web_app_url) 

   image_urls = response.json() 

   # create folder to store images 

   os.makedirs("static/images", exist_ok=True) 

   # download images 

   for url in image_urls: 

       response = requests.get(url, allow_redirects=True) 

       cd = response.headers.get('Content-Disposition') 

       filename = get_filename(cd) or 'unknown.jpg' 

       with open(f"static/images/{filename}", "wb") as f: 

           f.write(response.content) 

   return redirect(url_for('home')) 

@app.route('/files') 

def list_files(): 

   files = os.listdir('static/images') 

   return render_template('files.html', files=files) 

@app.route('/run-sort',methods=['GET']) 

def run_sort(): 

   global face_db 

   # path to images 

   image_folder = "static/images" 

 



PIXEL 68 

   # list all images 

   image_files = [f for f in os.listdir(image_folder) if f.endswith(('.jpg', 
'.png','.JPG'))] 

   # if image file is already in the face_db, take it out of the list 

   image_files = [img for img in image_files if img not in face_db] 

   # item for images with no faces 

   face_db["no_faces"] = [] 

   # iterate over all images 

   for image_file in image_files: 

       image_path = os.path.join(image_folder, image_file) 

       # detect faces 

       # use retinaface for better accuracy 

       # only take faces with high confidence 

       try: 

           faces = 
DeepFace.extract_faces(image_path,detector_backend="retinaface",enforce_detection=Fals
e) 

           faces = [face for face in faces if face.get("confidence", 1.0) > 0.9] 

           if not faces:  # no faces found 

               face_db["no_faces"].append(image_file) 

               continue 

           for face in faces: 

               face_img = face["face"] 

               # compare with known faces 

               matched_person = None 

               for person, saved_images in face_db.items(): 

                   if person == "no_faces":  # skip "no_faces" category 

                       continue 

                   reference_image = os.path.join(image_folder, saved_images[0]) 

                   # compare face embeddings 
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                   result = DeepFace.verify(image_path, reference_image, 
enforce_detection=False) 

                   if result["verified"]:  # face matches 

                       matched_person = person 

                       break 

               if matched_person: 

                   face_db[matched_person].append(image_file) 

               else: 

                   new_person = f"person_{len(face_db)}" 

                   face_db[new_person] = [image_file] 

       except Exception as e: 

           print(f"Skipping {image_file}: {e}") 

   # remove duplicates 

   for person in face_db: 

       face_db[person] = list(set(face_db[person])) 

   return render_template('sorted.html', data=face_db) 

@app.route('/run-update', methods=['POST']) 

def run_update(): 

   new = update_images(web_app_url) 

   return redirect(url_for('home')) 

@app.route('/run-update-sort', methods=['POST']) 

def run_update_sort(): 

   global face_db 

   updated_faces = update_sort(face_db,web_app_url) 

   face_db = updated_faces 

   return redirect(url_for('sorted')) 

@app.route('/sorted') 

def sorted(): 

   return render_template('sorted.html', data=face_db) 
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if __name__ == "__main__": 

   port = int(os.environ.get("PORT", 5000)) 

   app.run(host="0.0.0.0", port=port) 

 
Flask web app functions (utils.py): 

import re 

from pathlib import Path 

import requests 

from deepface import DeepFace 

import os 

from datetime import datetime 

def extract_datetime(image): 

   name = image['filename'] 

   base = os.path.splitext(name)[0]  # removes .jpg or .png 

   ts = base.replace('esp32_image_', '')  # '20250501_140409' 

   dt_str = ts[:8] + ts[9:]  # '20250501140409' 

   return datetime.strptime(dt_str, '%Y%m%d%H%M%S') 

# function to get actual file name 

def get_filename(cd): 

   if not cd: 

       return None 

   fname = re.findall('filename="(.+)"', cd) 

   if len(fname) == 0: 

       return None 

   return fname[0] 

# update photos 

def update_images(url): 

   # get images from google apps script 

   response = requests.get(url) 
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   image_urls = response.json() 

   new_images = [] 

   folder = Path('static/images') 

   # download images 

   for url in image_urls: 

       response = requests.get(url, allow_redirects=True) 

       cd = response.headers.get('Content-Disposition') 

       filename = get_filename(cd) or 'unknown.jpg' 

       file_path = folder / filename 

       if not file_path.exists(): 

           new_images.append(filename) 

           with open(f"static/images/{filename}", "wb") as f: 

               f.write(response.content) 

   return(new_images) 

def update_sort(face_db,url): 

   # sort only new images 

   response = requests.get(url) 

   image_urls = response.json() 

   folder = Path('static/images') 

   # download images 

   for url in image_urls: 

       response = requests.get(url, allow_redirects=True) 

       cd = response.headers.get('Content-Disposition') 

       filename = get_filename(cd) or 'unknown.jpg' 

       file_path = folder / filename 

       if not file_path.exists(): 

           with open(f"static/images/{filename}", "wb") as f: 

               f.write(response.content) 
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   image_folder = "static/images" 

   all_files = os.listdir('static/images') 

   # check for images not yet sorted 

   used_files = set() 

   for images in face_db.values(): 

       used_files.update(images) 

   new_images = [] 

   for f in all_files: 

       if f not in used_files: 

           new_images.append(f) 

   # iterate over new images 

   for image_file in new_images: 

       image_path = os.path.join(image_folder, image_file) 

       # detect faces 

       # use retinaface for better accuracy 

       # only take faces with high confidence 

       try: 

           faces = 
DeepFace.extract_faces(image_path,detector_backend="retinaface",enforce_detection=Fals
e) 

           faces = [face for face in faces if face.get("confidence", 1.0) > 0.9] 

           if not faces:  # no faces found 

               face_db["no_faces"].append(image_file) 

               continue 

           for face in faces: 

               face_img = face["face"] 

               # compare with known faces 

               matched_person = None 

               for person, saved_images in face_db.items(): 
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                   if person == "no_faces":  # skip "no_faces" category 

                       continue 

                   reference_image = os.path.join(image_folder, saved_images[0]) 

                   # compare face embeddings 

                   result = DeepFace.verify(image_path, reference_image, 
enforce_detection=False) 

                   if result["verified"]:  # face matches 

                       matched_person = person 

                       break 

               if matched_person: 

                   face_db[matched_person].append(image_file) 

               else: 

                   new_person = f"person_{len(face_db)}" 

                   face_db[new_person] = [image_file] 

       except Exception as e: 

           print(f"Skipping {image_file}: {e}") 

   # remove duplicates 

   for person in face_db: 

       face_db[person] = list(set(face_db[person])) 

   return(face_db) 
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