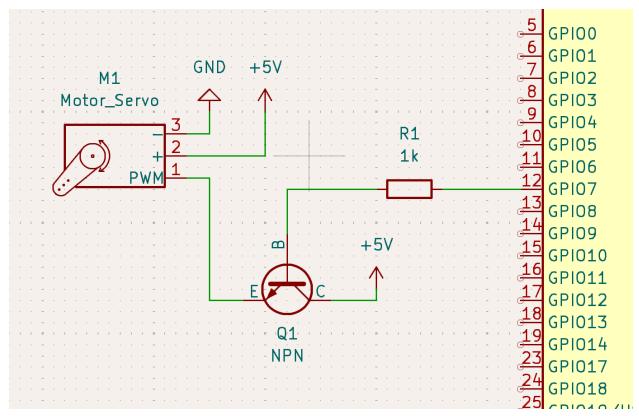
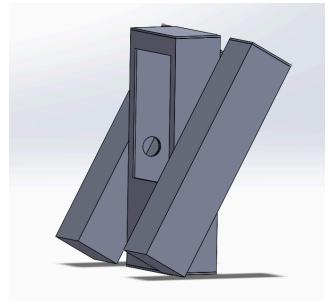
# Design Review 1 Agenda

2/25


- 1. Why we chose the ESP32 S3 for our board
  - a. Benefits of a Dual Core Processor
  - b. PSRAM Compatible
  - c. AI integration
  - d.
- 2. Go over each major subsystem
  - a. Power
    - i. How power is distributed to each other subsystem
  - b. Motion
    - i. Body Design
    - ii. Motors
    - iii. Movement
  - c. UI
    - i. Speaker
    - ii. Mic
    - iii. Display
    - iv. Controller
  - d. AI
    - i. Creating a live feed
- 3. How we are going to demonstrate each subsystem

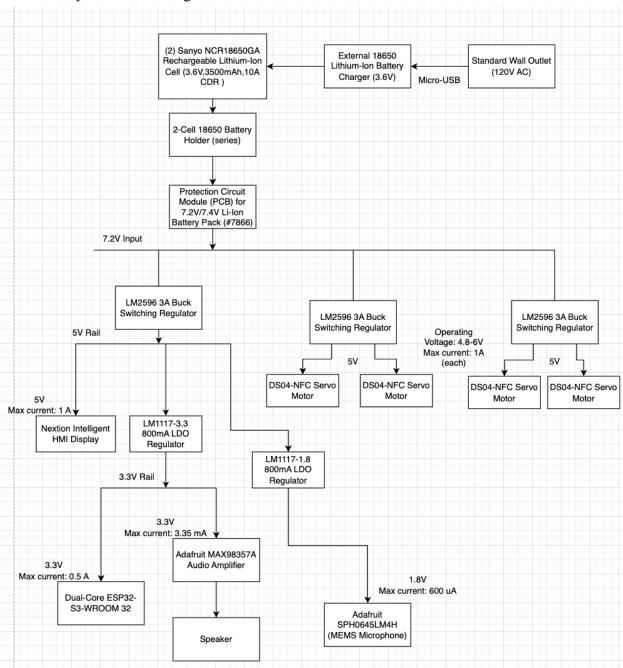
### <u>ESP32 S3</u>


- Wifi and bluetooth connectivity
  - The Remote will require bluetooth
  - To use the AI API, will require the connection to WIFI
- AI Acceleration Support
  - Considering the use of AI in our project, accelerated support is welcome
- I2C and SPI
  - The mic, speaker, and display all require the use of either I2C or SPI
- Dual Core Processor
  - Essential for the many tasks we want to run

# Major Subsystem/Major Components

# Motion: Xander and McGarrity




- Control of Motor through GPIO pin and BJT as pictured above.
- Motors: DS04-NFC
- BJT: TPN2222A
- Power Requirements for Motors: 4.8V-6V, Max 1A



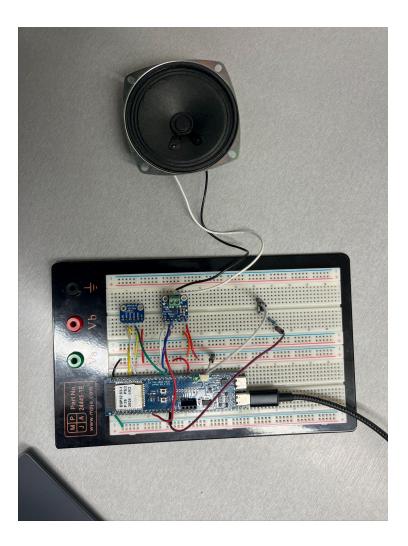
- First Frame Design: Sent to EIH for Printing
- Crafting Frame with Cardboard to test

## **Power: Jack Corrao**

• Subsystem Block Diagram:



- Battery: Sanyo NCR18650GA 3500mAh 10A Battery (Quantity 2)
  - Need at least 5V, CDR (constant discharge rate) of at least 5.5A and relatively large capacity >3000mAh
    - Voltage: 7.2V (2 cell in series)
    - Capacity: 3500mAh
    - Constant Discharge: 10A
  - Relatively cheap (\$5.99)


- Easy to charge with relatively common external Li-Ion 18650 chargers and can plug into 18650 battery holders like the Victagen one in 205
- Small size, shouldn't take up too much space or add a lot of weight
- Con: No over discharging voltage/current protection, need an external PCM PCB to regulate over discharging of the battery or else design one ourselves
- Charger: External 18650 Lithium-Ion Battery Charger (3.6V)
  - Easy to use/safe
  - Has overcharge protection
  - May be able to use one like the Victagen one already in 205
- 2-Cell 18650 Battery Holder
  - Allow us to use two 3.6V Li-Ion cells in series to get 7.4V so we can power our 5V peripherals.
- Battery Protection Circuitry: Protection Circuit Module (PCB) for 7.2V/7.4V Li-Ion Battery Pack
  - Prevents overdischarge of the two series cells in the battery holder because the two cells do not have one built in as many battery packs do
- Buck Converters and LDOs
  - LM2596 3A Buck Switching Regulator (5V version) (Quantity 3)
    - Servo Motors: Need Vout = 5V, Iout = >1A
    - Nextion Display: Need Vout = 5V, Iout = >1A
    - More efficient than an LDO which is especially important for high-current applications such as motors and our display to keep dissipated power low.
  - LM1117-3.3 (Quantity: 1)
    - Microcontroller: Need Vout = 3.3V, Iout = >0.5A;
    - Audio Amplifier: Need 2.5V-5.5V, Iout = >3.35mA
    - Can handle 800mA output current, drops voltage from 5V to 3.3V for the microcontroller and audio amp
    - Acceptable dropout voltage (between 1.1V and 1.3V)
  - LM1117-1.8 (Quantity 1)
    - Microphone: Need Vout = 1.8V, Iout = > 600 uA
    - Can handle 800mA output current (far more than needed here), drops voltage from 5V to 1.8V for the MEMS microphone.
    - Acceptable dropout voltage (between 1.1V and 1.3V)

### **AI: Garrett and Matthew**

- Connecting to the ESP32 over WIFI
- Streaming real time data to the computer
- Using ChatGPT API
- Displaying the response

### **UI: Garrett and Matthew**

- Speaker Amp: Max 98375A
  - Easy to integrate and use
  - Cheap
  - Loud enough for our project
  - $\circ$  Working code
  - I2S
  - 3.3V
- Microphone: MEMS 321
  - $\circ$  Ease of implementation
  - Working code
  - I2S
  - 3.3V
- Display
  - $\circ ~~7$  inch display provided by schafer
  - SPI
- Playstation Controller
  - Connect with bluetooth
  - Controls movement
  - Easily accessible



### **Demonstration for Design Review 2**

### 1. Demonstration/Prototyping of Motion Subsystem:

- Use existing kit and development board of ESP32-S3 for demonstration/prototyping of motion subsystem.
- Verify motors are functional and capable of moving our frame as desired.
- Verify that motion subsystem and frame design meets previously outlined requirements

### 2. Demonstrating AI and UI

- Integrate entire workflow of listening  $\rightarrow$  recording  $\rightarrow$  streaming to server  $\rightarrow$  receiving and streaming response from ChatGPT
- Demonstrate the readiness of the Microphone to "listen" and understand speech
  - Display the words that are processed on the LED
- Relay the response on the Display and over the speaker
- Show the connectivity of the controller to our ESP

**3. Demonstration/Prototyping of Power Subsystem:** 
 Convince Professor Schafer that this will work and not start a fire